Новости теория суперсимметрии

На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак.

Откройте свой Мир!

Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии.
Большой адронный коллайдер подорвал позиции теории суперсимметрии Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные.
Суперсимметрия и суперкоординаты — все самое интересное на ПостНауке Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими.
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения.

Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?

Суперсимметрия оказывается полезной в некоторых задачах статистической физики например, суперсимметричная сигма-модель. Основная статья: Суперсимметричная квантовая механика Суперсимметричная квантовая механика отличается от квантовой механики тем, что включает супералгебру SUSY, в противоположность квантовой теории поля. Суперсимметричная квантовая механика часто становится актуальной при изучении динамики суперсимметричных солитонов, и из-за упрощенного характера полей, которые зависят от времени а не пространства-времени , в этом подходе достигнут большой прогресс, и эта теория теперь изучается самостоятельно. Квантовая механика SUSY рассматривает пары гамильтонианов, которые находятся в определённом математическом отношении, которые называются гамильтонианами-партнерами. А соответствующие члены потенциальной энергии, входящие в гамильтонианы, тогда известны как потенциалы-партнеры. Основная теорема показывает, что для каждого собственного состояния одного гамильтониана, его гамильтониан-партнер имеет соответствующее собственное состояние с той же энергией.

Этот факт можно использовать для вывода многих свойств спектра собственных значений. Это аналогично новому описанию SUSY, которое относилось к бозонам и фермионам. Можно представить «бозонный гамильтониан», собственными состояниями которого являются различные бозоны нашей теории.

Стандартная модель фундаментальных взаимодействий обеспечивает единую структуру для трех из этих сил, но гравитация никак не хочет вписываться в эту картину. Несмотря на точное описание крупномасштабных явлений, таких как поведение планеты на орбите или динамика галактик, общая теория относительности перестает работать на очень коротких дистанциях. Согласно Стандартной модели, все силы опосредуются определенными частицами. В случае с гравитацией работу выполняет гравитон. Но когда мы пытаемся рассчитать взаимодействия этих гравитонов, появляются бессмысленные бесконечности в уравнениях. Полноценная теория гравитации должна быть рабочей в любых масштабах и принимать во внимание квантовую природу фундаментальных частиц. Это позволило бы уместить гравитацию в объединенной структуре с тремя другими фундаментальными взаимодействиями, тем самым создав пресловутую теорию всего.

Конечно, с тех пор, как умер Альберт Эйнштейн в 1955 году, был проделан значительный прогресс в этой области. Наш лучший кандидат сегодня носит имя M-теории. Революция струн Чтобы понять основную идею М-теории, нужно вернуться в 1970-е годы, когда ученые поняли, что вместо того, чтобы описывать вселенную, основываясь на точечных частицах, их лучше было бы описывать в виде осциллирующих струн энергетических трубочек. Новый способ осмысления фундаментальных составляющих природы привел к решению многих теоретических проблем. Прежде всего, отдельное колебание струны можно интерпретировать как гравитон.

Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма.

Весь этот мусор, наконец, пойдёт в корзину истории и я рад этому, потому что давно пишу об ошибочности этих теорий. Но у официальной физики нет им альтернативы. Вернее, альтернативных теорий довольно много, но они не признавались и не проверялись, так как противоречили общепризнанным и сколько теперь понадобится времени на отсев, проверку, а главное объединение других теорий сказать сложно. По моей теории квантового пространства за пол года так и не прислали ответа не из РАН, не из Физико-технологического института, не из Китайской Академии. А жаль... Хотя они может ещё про неё и вспомнят. Почему "однобокая", да потому что "привязана" только к восприятию исключительно "нашего" мира, который определяется "на ощуп". В "нашем" мире точно нет суперсимметрии. И темная материя с темной энергией, а также с виртуальными частицами никак в этот "однобокий" мир не вписываются. Главное понять, что есть реальный физический мир. Но сразу надо определиться с так называемой темной энергией.

Вы точно человек?

С точки зрения физики элементарных частиц эти энергии ничтожны. При такой низкой энергии, соответствующей комнатной температуре, большинство фундаментальных симметрий нарушаются. При высоких же энергиях они способны восстанавливаться. Симметрия электрослабого взаимодействия, например, восстанавливается как раз при энергиях, достигающихся на Большом адронном коллайдере, о чем сигнализирует нам рождение бозона Хиггса. Это маленькие группы, как видно по небольшим числам в скобках. Но более крупные группы симметрии зачастую содержат в себе несколько групп поменьше, так что одна большая группа, чья симметрия нарушается при высоких энергиях, могла бы породить Стандартную модель при энергиях, которые мы исследуем. Получается, теория Великого объединения — словно некий слон, а у нас сейчас, на низких энергиях, есть от него лишь ухо, хвост и нога. Целиком слон восстановится только при энергии объединения, оцениваемой примерно в 1016 ГэВ, что на 15 порядков превышает энергии Большого адронного коллайдера. Сначала для симметрии Великого объединения была предложена самая маленькая группа, содержащая группы симметрии Стандартной модели, — SU 5. Такие объединенные силы в общем случае допускают новые взаимодействия, позволяющие протонам распадаться. А если протоны нестабильны, значит, нестабильны и ядра атомов.

В подобных теориях объединения время жизни протона может достигать 1031 лет, существенно превышая возраст Вселенной на текущий момент. Однако в соответствии с квантовой механикой это попросту означает, что среднее время жизни протона таково. Раз протоны вообще могут распадаться, значит, это может происходить и быстро — просто быстрые распады будут событиями редкими. В каждой молекуле воды 10 протонов, а в каждом литре воды около 1025 молекул воды. Поэтому вместо того, чтобы ждать 1031 лет, дабы увидеть распад одного протона, мы можем следить за огромным объемом воды, ожидая, пока распадется один из тамошних протонов. Подобные эксперименты проводятся с середины 1980-х годов, но еще никто не засек распада протона. Текущие наблюдения а точнее, отсутствие оных намекают на то, что среднее время жизни протона больше 1033 лет. Так что SU 5 -модель Великого объединения исключается. Следующей была предложена группа побольше — SO 10 , в этой модели объединения верхняя граница для времени жизни протона проходит повыше. С тех пор опробованы были еще несколько групп симметрии, и в некоторых моделях верхняя граница для времени жизни протона сдвинута аж до 1036 лет, что на порядки превышает даже возможности будущих экспериментов.

Помимо распада протона теории Великого объединения также предсказывают существование новых частиц, поскольку крупные группы содержат больше, чем есть в Стандартной модели. Предполагается, как обычно, что эти новые частицы слишком тяжелые, поэтому пока и не могли быть замечены. Таким образом, сейчас у физиков-теоретиков есть широкий ассортимент теорий объединения, застрахованных от опровержения на основании экспериментов в обозримом будущем. Само по себе Великое объединение между тем не решает проблемы с массой бозона Хиггса. Физикам приходится еще и суперсимметризовать Великое объединение. Мы знаем, что суперсимметрия — если это суперсимметрия природы — должна нарушаться при энергиях выше тех, что нами пока достигнуты, ведь мы еще не засекли суперсимметричных частиц. Но мы так пока и не знаем, при какой энергии симметрия восстанавливается — и происходит ли это вообще. Аргумент, согласно которому суперсимметрия должна придать массе бозона Хиггса естественность, подразумевает, что энергия, при которой суперсимметрия нарушается, на Большом адронном коллайдере должна быть уже достигнута.

Для описания таких расширенных суперпространств наиболее естественным и простым образом необходимо, кроме пространственных координат и грассмановых переменных, ввести дополнительные координаты, а именно т. Гармоническое суперпространство было открыто в Дубне коллективом авторов. На сегодняшний день понятие гармонического суперпространства стало общепринятым в математической физике. Оно оказалось незаменимым для изучения суперсимметричных калибровочных теорий и особенно — их квантовых свойств, в пространствах с разным количеством измерений от четырех до десяти. Для изучения структуры суперструн необходимо в полной мере понимать все теоретико-полевые пределы этой теории. Определенный этап работ закончен, но сейчас возникает множество новых задач, которыми мы продолжаем заниматься. Результаты конкретных вычислений в рамках теории суперструн в итоге позволят найти связи между наблюдаемыми константами взаимодействия в природе», — заключил Евгений Иванов. Труды авторов имеют высокую цитируемость. Их результатами пользуются и принимают активное участие в их дальнейшем развитии многие научные группы в мире: в Австралии, Германии , США, Франции и других странах. Основные результаты исследований представили сами ученые: «Цикл актуальных исследований, выполненных за последние семь лет, направлен на развитие явно ковариантных и явно суперсимметричных методов построения эффективных действий калибровочных теорий поля с расширенной суперсимметрией в различных размерностях. Общая мотивация и цели вошедших в цикл работ связаны с изучением низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля. Показано, что этот метод позволяет единым образом воспроизвести все известные суперполевые инварианты, отвечающие таким теориям, и построить новые суперинварианты. Развит метод изучения структуры однопетлевых и двухпетлевых расходимостей в рассматриваемых шестимерных теориях.

При этом меня очень раздражает то, что мы уже несколько десятилетий топчемся на одном месте и так и не можем сформулировать убедительного обобщения всего, что было открыто за последние годы и того, что лежит за пределами Стандартной модели. Я бы сказал, что теоретическая физика высоких энергий находится в кризисе, причем достаточно серьезном. С чем они связаны? Когда развитие замедляется, то, как правило, начинаются поиски "злодеев", которые довели нас "до такой жизни". Нужно разделять теорию — феноменологию частиц и теорию струн, чье отношение к "реальной физике" пока не до конца определено. Есть огромное число моделей, которые никак с ней не связаны, и многие практические вопросы тоже ее не затрагивают и не зависят от нее. Ожидает ли нас такая же революция, сопоставимая по масштабам с созданием квантовой физики? В каком-то смысле современная ситуация и то, что происходило в конце 19 века, очень похожи друг на друга. В то время мы достигли пределов классической физики, но еще не начали замечать квантовых эффектов. Всем казалось, что фундаментальная наука закончилась, и что остались лишь различные мелочи и прикладная физика. Но потом появился Планк и его открытия, и ситуация резко изменилась. Можно ли ожидать какого-то эпохального открытия в экспериментальной физике или, что не менее важно и возможно, в космологии? Не стоит забывать, что космос — это гигантская лаборатория по изучению физики частиц на самых высоких энергиях. Вполне возможно, что гравитационные волны помогут нам заглянуть в самые ранние эпохи жизни Вселенной, когда она еще не была прозрачной для света. Может быть, наши коллеги найдут там что-то, что перевернет не только космологию, но и выведет физику частиц на новый уровень. Как показывают примеры темной материи и темной энергии, проблемы макро- и микромира неразрывно связаны между собой. Есть, конечно, и более пессимистический сценарий — не исключено и то, что мы просто достигли пределов человеческого знания и способности познавать мир. Кто-то из великих физиков, кажется, Леонард Сасскинд, любит говорить, что коту можно объяснять квантовую механику до посинения, но он никогда не поймет, как решать уравнение Шредингера. Мне вот кажется, что котик просто отлично понимает, что его покормят колбаской и без всякого уравнения Шредингера. Лично я, как простой советский человек, усердно конспектировавший "Материализм и эмпириокритицизм", верю в бесконечность познания и неисчерпаемость наших возможностей расширять пределы науки. К сожалению, этого не произошло и не понятно, произойдет ли в будущем. Вероятность этого, на мой взгляд, крайне мала, но экспериментаторы скрипят зубами, но продолжают эти поиски. Что касается гравитационных волн от астрофизических черных дыр, ситуация тут сложнее, так как эти волны больше касаются классической физики, нежели квантовой гравитации. Могут ли они дать нам что-то принципиально новое в смысле обобщений теории гравитации, я не знаю. Их изучение было бы интересным, однако тут мы столкнемся с теми же ограничениями и проблемами, которые накладываются теорией струн и отсутствием надежных предсказаний.

Метод вызвал среди ученых БАКа заметное оживление; экспериментаторы CMS сразу же приняли его и не только показали, что метод работает, но и в течение всего нескольких месяцев обобщили и улучшили его. Теперь это часть стандартной стратегии поиска суперсимметрии; метод, предложенный нами так недавно, был использован в первом же сеансе поиска суперсимметрии на CMS. Два скварка, одновременно возникшие в БАКе, распадутся на кварк и LSP каждый и оставят после себя сигнатуру в виде дефицита энергии Если суперсимметрия будет обнаружена, экспериментаторы на этом не остановятся. Они попытаются определить весь спектр суперсимметричных частиц, а теоретики будут работать над интерпретацией полученных результатов. Под идеей суперсимметрии и частиц, способных вызывать ее спонтанное нарушение, скрывается интереснейшая теория. Мы знаем, какие суперсимметричные частицы должны существовать, если суперсимметрия существенна для проблемы иерархии, но мы пока не знаем ни их точных масс, ни того, как эти массы возникают. То, что увидит БАК, очень сильно зависит от спектра масс суперсимметричных частиц, который, вероятно, отличается от спектра масс обычных частиц. Мы знаем, что частицы могут распадаться только на более легкие. Цепочка распадов — последовательность возможных распадов суперсимметричных частиц — определяется их массами, тем, какие из них легче, а какие тяжелее. Скорости различных процессов также зависят от массы частиц. Более тяжелые частицы в среднем распадаются быстрее. Кроме того, их обычно сложнее получить, потому что они возникают только при высокоэнергетических столкновениях. Все это дало бы нам важную информацию о том, что лежит в основе Стандартной модели и что ожидает нас на следующих энергетических масштабах. Естественно, это относится к анализу любых новых данных, которые нам удастся получить. Тем не менее следует помнить, что, несмотря на популярность теории суперсимметрии среди физиков, существует несколько поводов для беспокойства и оснований сомневаться в том, что эта теория действительно применима в реальном мире и решает проблему иерархии. Во—первых, и это, возможно, самое главное, мы пока не видели никаких экспериментальных свидетельств в пользу этой теории. Если суперсимметрия существует, то единственным оправданием для полного отсутствия доказательств может быть тот факт, что все суперпартнеры тяжелые. Но естественное решение проблемы иерархии требует, чтобы суперпартнеры были относительно легкими. Чем тяжелее суперпартнеры, тем менее адекватным средством решения проблемы иерархии представляется суперсимметрия. Потребуется подгонка, определяемая отношением массы бозона Хиггса к масштабу масс, при которых нарушается суперсимметрия. Чем больше это отношение, тем сильнее придется «настраивать» теорию. В суперсимметричной модели есть единственный способ сделать Хиггса достаточно тяжелым, чтобы его не обнаружили до сих пор, а именно — включить в его массу значительные квантовомеханические поправки, для которых опять же необходимы тяжелые суперпартнеры. Их массы должны быть настолько большими, что естественное решение проблемы иерархии вновь невозможно, несмотря на суперсимметрию. Еще одна проблема с суперсимметрией — проблема поиска непротиворечивой модели, которая предусматривала бы нарушение суперсимметрии и была согласована со всеми полученными до сего дня экспериментальными данными. Суперсимметрия — очень специфическая симметрия, она устанавливает связи между многими взаимодействиями и запрещает некоторые из них, которые, вообще говоря, квантовая механика допускает. При нарушении суперсимметрии берет верх «принцип анархии» и все, что может случиться, случается. Большинство моделей предсказывают типы распадов, которые либо никогда не регистрировались в эксперименте, либо встречаются слишком редко по сравнению с прогнозом. В общем, стоит суперсимметрии нарушиться, и квантовая механика не упустит случая разворошить осиное гнездо. Возможно, физики просто не замечают верных ответов. Мы, разумеется, не можем точно сказать, что хороших моделей не существует или что некоторой подгонки не потребуется. Конечно, если суперсимметрия — верное решение проблемы иерархии, то доказательства ее существования скоро будут получены на БАКе. Так что этот вариант, безусловно, стоит исследовать. Открытие суперсимметрии означало бы, что эта новая симметрия пространства—времени применима не только в теоретических изысканиях, но и в реальном мире. Однако пока суперсимметрия не доказана, имеет смысл рассмотреть и альтернативные варианты. И первой в очереди стоит модель, известная как техницвет. Данный текст является ознакомительным фрагментом. Продолжение на ЛитРес.

Теория суперструн популярным языком для чайников

Нобелевская премия по физике 2008 года. Нобелевская асимметрия Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2.
Гляжусь, как в зеркало: есть ли шансы у суперсимметрии? Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими.
Большой адронный коллайдер подорвал позиции теории суперсимметрии » Последние новости — Аргументы Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями.

Доказательство суперсимметрии полностью изменит наше понимание Вселенной

Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн. Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели.

Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?

Всему виной сферическая и полностью гладкая форма электрона. Несколько лет назад я уже писал в статье " Суперсимметрии не существует " про то, что группа физиков из Йельского университета изучила форму распределения заряда электрона с беспрецедентной точностью, чтобы показать, что его форма представляет собой идеальную сферу. Однако отказаться и лишить смысла десятилетия работ и развития ведущих современных теорий, которые оказались ошибочными не так-то просто и в этот раз физики увеличили точность измерений ещё в 2. Это космологический парадокс, поскольку, согласно исследованиям, в первые мгновения своего существования Вселенная должна была содержать примерно равное количество материи и антиматерии, которые должны были взаимно аннигилировать. Одно из возможных объяснений того, почему Вселенная до сих пор существует и в ней почти нет антиматерии — гипотеза, что свойства частиц материи и антиматерии не являются полностью симметричными". Эта гипотеза очередной раз не подтвердилась, что влечёт за собой отказ от теории Большого Взрыва. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. А это, согласитесь, огромный и практически основной пласт современной астрофизики. Но и это ещё не всё.

Виртуальные частицы вакуума - электроны и позитроны, на которые тот должен постоянно распадаться и схлопываться назад, должны были бы вносить изменения в форму зарядов исследуемых электронов. Но этого не обнаружено, как и самих виртуальных частиц вакуума.

Прошлые успехи не гарантируют успеха в будущем.

Кроме того, сейчас имеется серьезная объективная трудность: в отличие от 1950-х годов, у нас сейчас не так много экспериментальных данных. Вот если бы БАК или другой ускоритель нашли бы "новую физику", тогда дело бы пошло веселей. А так, в основном, мы имеем только косвенные подтверждения, что новая физика есть.

По сути, мы сейчас идем за экспериментами — мы строим коллайдер, он, к счастью, находит бозон Хиггса, но не открывает микро-черные дыры или какие-то другие новые и интересные объекты, вроде суперпартнеров. Теоретики задыхаются от недостатка новых данных и у них, образно говоря, начинаются разнообразные сугубо математические галлюцинации… И это все при том, что острые нерешенные вопросы еще у нас есть. Мне, теоретику, ситуация, в которой теория становится ведомой, совсем не по душе.

Мне кажется, что вопрос "нужно ли идти дальше? Я верю в то, что тяга к фундаментальному знанию будет существовать до тех пор, пока существует человечество. Не думаю, что апокалиптическая картина "общества всеобщего потребления", которую нам часто рисуют футуристы, будет воплощена в жизнь до такой степени, что фундаментальная наука станет никому не нужна и ее полностью прекратят финансировать.

С другой стороны, есть немало примеров саморазрушительной динамики на уровне индивидуумов и сообществ, поэтому гарантий тут нет. Что касается чисто технической стороны, то в последнее время большое внимание уделяется разработке новых принципов ускорения частиц. Если прогресс в этом направлении будет достигнут, вовсе необязательно строить ускоритель размером с половину континента.

В любом случае, пока экспериментаторы ведут в изучении физики частиц, мы будем двигаться в этом направлении. Бозон Хиггса - недостающее звено Стандартной модели За пределами Стандартной модели сейчас находится своеобразная "полоса незнания", побуждающая экспериментаторов строить новые машины и копаться в ней. Это копание проявляется в двух вещах — мы сталкиваем частицы на все более высоких энергиях, надеясь найти что-то новое, и более точно промеряем параметры их взаимодействий.

Это тоже очень большая работа, которая, может быть, не принесет каких-то громких фундаментальных открытий, но крайне важна для понимания общей картины устройства мироздания. Иными словами, я пока не готов окончательно хоронить ни экспериментальную, ни теоретическую физику высоких энергий. При этом меня очень раздражает то, что мы уже несколько десятилетий топчемся на одном месте и так и не можем сформулировать убедительного обобщения всего, что было открыто за последние годы и того, что лежит за пределами Стандартной модели.

Я бы сказал, что теоретическая физика высоких энергий находится в кризисе, причем достаточно серьезном. С чем они связаны? Когда развитие замедляется, то, как правило, начинаются поиски "злодеев", которые довели нас "до такой жизни".

Нужно разделять теорию — феноменологию частиц и теорию струн, чье отношение к "реальной физике" пока не до конца определено. Есть огромное число моделей, которые никак с ней не связаны, и многие практические вопросы тоже ее не затрагивают и не зависят от нее. Ожидает ли нас такая же революция, сопоставимая по масштабам с созданием квантовой физики?

Это значит, что суперсимметрия в физике элементарных частиц обладает приятным свойством — в ее рамках возможно великое объединение! Объединение с гравитацией Стандартная модель не включает гравитационное взаимодействие. Оно совершенно незаметно в ускорительных экспериментах из-за малых масс элементарных частиц. Однако при больших энергиях гравитация может стать существенной.

Современная теория гравитационных взаимодействий — общая теория относительности — является классической теорией. Квантовое обобщение этой теории, без сомнения, стало бы самой общей физической теорией, если бы было построено. Помимо отсутствия каких бы то ни было экспериментальных данных, имеются серьезные теоретические препятствия в построении теории квантовой гравитации. В объединении гравитации с остальными взаимодействиями также есть трудности.

Переносчик гравитационного взаимодействия, гравитон, должен иметь спин 2, в то время как спин переносчиков остальных взаимодействий фотон, W- и Z-бозоны, глюоны равен 1. Чтобы «перемешать» эти поля, нужно преобразование, меняющее спин. А преобразование суперсимметрии как раз и есть такое преобразование. Таким образом, объединение с гравитацией в рамках суперсимметрии вполне естественно.

Природа темной материи Вселенной Суперсимметрия может объяснить некоторые результаты исследований в космологии. Один из таких результатов заключается в том, что видимая светящаяся материя составляет не всю материю во Вселенной. Значительное количество энергии приходится на так называемую темную материю и темную энергию. Прямым указанием на существование темной материи являются зависимости скоростей звезд в спиральных галактиках от их расстояния до центра.

Эту зависимость легко вычислить. Оказывается, экспериментальные данные существенно расходятся с предсказаниями теории. Расхождение объясняют тем, что галактики находятся в «облаках» темной материи. Частицы темной материи взаимодействуют только гравитационно.

Поэтому они группируются вокруг галактик правильнее было бы сказать, что обычная материя группируется вокруг сгустков темной материи и искажают распределение масс в галактике. В 1964 году физики Арно Пензиас и Роберт Вилсон, сотрудники Веll Laboratories, занимавшиеся обслуживанием радиоантенны слежения за американским космическим спутником «Эхо» в Холмделе Нью-Джерси , решили проверить некоторые свои научные гипотезы о радиоизлучении тех или иных объектов Вселенной. Антенна была самым чувствительным на тот момент детектором СВЧ-волн, а потому сначала ее надо было правильно настроить, чтобы исключить возможные помехи. Реликтовое излучение — равновесное тепловое излучение, заполняющее Вселенную.

Это излучение отделилось от вещества на ранних этапах расширения Вселенной, когда электроны объединились с протонами и образовали атомы водорода рекомбинация. Тогда Вселенная была в 1000 раз моложе, чем сейчас. Нынешняя температура реликтового излучения составляет примерно 3 K. В Стандартной модели нет подходящих частиц для объяснения темной материи.

В то же время в некоторых суперсимметричных моделях есть прекрасный кандидат на роль холодной темной материи, а именно нейтралино — легчайшая суперсимметричная частица. Она стабильна, так что реликтовые нейтралино могли бы сохраниться во Вселенной со времен Большого взрыва. Что касается темной энергии, ее природа в рамках современных физических теорий совершенно непонятна. Это настоящий вызов физикам двадцать первого века.

Темную энергию можно интерпретировать как собственную энергию вакуума, однако при этом возникают огромные несоответствия между теоретическими оценками и наблюдаемым значением плотности темной энергии. Существование темной энергии приводит к наблюдаемым следствиям — ускоренному расширению Вселенной в настоящее время. МССМ Для построения суперсимметричных моделей был развит математический аппарат, останавливаться на котором здесь нет никакой возможности. Однако, несмотря на всю сложность математического аппарата, суперсимметричные теории обладают рядом простых особенностей.

К одной из таких особенностей относится удвоение числа частиц. В Стандартной модели нет частиц, которые могли бы быть суперпартнерами друг друга. Следовательно, в суперсимметричных расширениях Стандартной модели каждая частица приобретает своего суперпартнера — новую частицу. Минимальная суперсимметричная Стандартная модель МССМ требует для построения меньше всего новых частиц.

Другой важной особенностью суперсимметричных моделей является нарушение суперсимметрии. Если бы такого нарушения не было, суперпартнеры имели такие же массы, что и обычные частицы. Однако новые частицы с массами известных частиц Стандартной модели никогда не наблюдались. Также без нарушения суперсимметрии не работал бы хиггсовский механизм нарушения электрослабой симметрии.

Чтобы применять суперсимметричные модели в физике высоких энергий, необходимо потребовать нарушение суперсимметрии. При этом суперпартнеры могут приобрести большие массы, чем можно объяснить их ненаблюдение в настоящее время. Конкретный механизм нарушения суперсимметрии сейчас неизвестен. Это существенно снижает предсказательную силу модели, так как в ней появляется большое число свободных параметров, подбирая которые, можно получать произвольные следствия.

Некоторые соображения, например, гипотеза великого объединения, позволяют ограничить число свободных параметров. Исследование ограничений на параметры суперсимметричных моделей является одним из важных направлений в исследовании физики за пределами Стандартной модели. Экспериментальный статус суперсимметричных моделей Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. Поиски различных проявлений суперсимметрии в природе были одной из главных задач многочисленных экспериментов на коллайдерах LEP — большой электрон-позитронный коллайдер и Тэватрон и в неускорительных экспериментах на протяжении нескольких десятилетий.

К сожалению, результат пока отрицательный. Нет никаких прямых указаний на существование суперсимметрии в физике элементарных частиц, хотя имеющиеся суперсимметричные модели в целом не запрещены имеющимися теоретическими и экспериментальными требованиями. Его энергия в семь раз превосходит энергию действующего американского ускорителя Тэватрона. В большинстве суперсимметричных моделей массы новых частиц лежат в области, доступной LHC.

Предполагается, что на LHC будет открыт бозон Хиггса и суперсимметричные частицы. В новых экспериментах низкоэнергетическая суперсимметрия будет либо обнаружена, либо исключена. Хотя суперсимметрия и не открыта на опыте, различные суперсимметричные модели могут быть исследованы уже сейчас. Во-первых, следует исключить модели, в которых новые частицы имеют недостаточно большие массы, к настоящему времени уже закрытые экспериментально.

Во-вторых, расхождения некоторых экспериментальных данных и теоретических предсказаний Стандартной модели могут объясняться вкладом суперсимметричных частиц, и с этой точки зрения некоторые суперсимметричные модели оказываются предпочтительнее других. Многие специалисты в физике высоких энергий исследуют различные варианты суперсимметричных моделей и их следствия. Вполне возможно, что одна из таких моделей будет подтверждена на ускорителе LHC.

Боле того, наша новая теория предсказывает некоторые особенности, которые могут облегчить жизнь ученым, производящим поиски частиц темной материи». Как уже упоминалось выше, сейчас существует множество теорий, призванных объяснить малую массу бозона Хиггса. Эти теории включают в себя релаксационную полевую модель relaxion field model , базирующуюся на одном из новых явлений квантовой космологии, «эгоистичную» модель Хиггса. Так же существуют и более классические теории, согласно которым бозон Хиггса является сложной частицей, основанной на новом типе симметрии, суперсимметрии. Но, в конце концов, только время и эксперименты позволят расставить все точки над «i» и определить ту модель и теорию, которая будет преобладающей в физике на долгие годы вперед. Статья опубликована в журнале Physical Review Letters.

Адронный коллайдер подтвердил теорию суперсимметрии

Когда суперсимметрия задана как местный симметрия, теория Эйнштейна общая теория относительности включается автоматически, и результат называется теорией супергравитация. Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счет наличия суперпартнеров. Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля.

Нобелевская премия по физике 2008 года. Нобелевская асимметрия

Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно.

Поиски суперсимметрии на коллайдере принесли новую интригу

Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений.

Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии.

Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон.

Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит к последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение недостатка энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии.

Однако исследователи отмечают, что пока рано полностью ее исключать — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии.

Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц.

По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон.

Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной.

Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу.

Симметрия, суперсимметрия и супергравитация

Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми.

Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами.

И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях.

Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику.

Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии?

Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии.

Но что это? С тех пор, как в 1915 году была сформулирована общая теория относительности Эйнштейна, каждый физик-теоретик мечтал примирить наше понимание бесконечно малого мира атомов и частиц с бесконечно большим масштабом космоса.

Если последнее отлично описывается уравнениями Эйнштейна, первое с необычайной точностью прогнозируется так называемой Стандартной моделью фундаментальных взаимодействий. Наше нынешнее понимание состоит в том, что взаимодействие между физическими объектами описывается четырьмя фундаментальными силами. Две из них — гравитация и электромагнетизм — проявляются для нас на макроскопическом уровне, мы имеем с ними дело каждый день.

Остальные две — слабое и сильное взаимодействие — проявляются на очень малых масштабах и только когда мы имеем дело с субатомными процессами. Стандартная модель фундаментальных взаимодействий обеспечивает единую структуру для трех из этих сил, но гравитация никак не хочет вписываться в эту картину. Несмотря на точное описание крупномасштабных явлений, таких как поведение планеты на орбите или динамика галактик, общая теория относительности перестает работать на очень коротких дистанциях.

Согласно Стандартной модели, все силы опосредуются определенными частицами. В случае с гравитацией работу выполняет гравитон. Но когда мы пытаемся рассчитать взаимодействия этих гравитонов, появляются бессмысленные бесконечности в уравнениях.

Полноценная теория гравитации должна быть рабочей в любых масштабах и принимать во внимание квантовую природу фундаментальных частиц.

Новые результаты, детализированные в двух статьях, не исключают эту гипотезу полностью, но устанавливают новые пределы для ее обнаружения. Теория суперсимметрии под угрозой Сотрудники Европейского центра ядерных исследований ЦЕРН , работающие на Большом адронном коллайдере, обнаружили чрезвычайно редкий случай распада элементарных частиц. Это наблюдение наносит значительный урон теории суперсимметрии. Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной.

Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии.

Возможность того, что при слабых взаимодействиях пространственная «зеркальная» чётность может изменяться, была предсказана в 1956 году американскими физиками Ли Цзундао и Янг Чженьнин, а спустя год американский физик Ву Цзяньсюн экспериментально обнаружила, что такой эффект действительно имеет место: до взаимодействия состояние может быть чётным, а после него стать нечётным, и наоборот. Вскоре после этого советский физик Л. Ландау сформулировал гипотезу, согласно которой при любых взаимодействиях должна сохраняться комбинированная чётность — волновая функция не меняет знак при зеркальном отражении Р и одновременной замене частиц античастицами последнюю операцию называют зарядовым сопряжением и обозначают буквой С. Гипотезу назвали СР-инвариантностью. Долгое время её считали таким же незыблемым законом сохранения, как, скажем, закон сохранения энергии, которому подчиняются все процессы.

Но в 1964 году был обнаружен редкий распад долгоживущего нейтрального К-мезона, свидетельствующий, что это не так. Сахаров сразу же отметил, что именно невыполнение СР-инвариантности на ранних стадиях образования горячей Вселенной могло привести к её барионной асимметрии — преобладанию вещества над антивеществом. Тогда всё сущее, в том числе, конечно, и мы сами, порождено нарушенной симметрией. Оставалось, однако, непонятным, как нарушение СР-инвариантности «втиснуть» в рамки бытовавших в то время теоретических представлений. Дело в том, что тогда ещё только-только была предложена американцами М. Гелл-Маном и Дж. Цвейгом систематизация упоминавшегося выше «зоопарка» адронов, основанная на представлении, что они состоят из кварков трёх типов — u, d и s и соответствующих антикварков.

Но нарушению СР-инвариантности там места не было. И тогда Кобаяши и Маскава обратили внимание на то обстоятельство, что несохранение СР-чётности можно описать весьма непринуждённо, если кроме упомянутых выше имеются как минимум ещё три кварка. Говоря точнее, если в природе существует не менее трёх поколений кварков. Их догадка блестяще подтвердилась, теперь мы знаем, что три поколения — это пары ud -, cs - и tb -кварков, которые, однако, «смешиваются» друг с другом. Последний, тяжёлый t-кварк третьего поколения, «поймали» в Национальной ускорительной лаборатории им. Более того, выяснилось, что при распадах нейтральных B-мезонов СР-чётность нарушается намного сильнее, чем в аналогичных процессах с участием К-мезонов, о которых упоминалось выше. В заключение заметим, что во всей этой захватывающей физике микромира ещё далеко не всё понятно.

По существу, пока мы не знаем самого главного: в чём причина нарушения симметрии в слабых взаимодействиях? Дальнейшее тесно связано со свойствами хиггсовского бозона, существование которого предсказывается так называемой стандартной моделью см. Если же выяснится, что его нет, это будет означать, что глубинную структуру материи мы понимаем в действительности намного хуже, чем кажется сейчас. Словарик к статье Адроны от греч. Киральная симметрия от греч. Это глобальная симметрия — она не зависит от координат пространства-времени.

Похожие новости:

Оцените статью
Добавить комментарий