В этом смысле его взрыв похож на взрыв коллапсирующей звезды с начальной массой 130–250 солнечных масс, хотя физические механизмы совершенно различны. В гигантской галактике Вертушка взорвалась звезда, в результате чего образовалась удивительная сверхновая. Взрыв, получивший название GRB 221009A, заметили 9 октября прошлого года, но он был настолько ярким, что ослепил большинство гамма-приборов в космосе. Звезда при этом не уничтожается, просто взрывается вещество на поверхности. Ученые считают, что взрыв мог произойти из-за поглощения огромного облака газа сверхмассивной черной дырой.
Как найти звезду?
- Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике – Новости Крыма – Вести Крым
- Мертвая звезда осветила мощной вспышкой соседнюю галактику
- В космосе впервые зафиксировали взрыв сверхновой в результате столкновения звезд
- Астрономы зафиксировали мощнейший взрыв в истории Вселенной
- Почему она двойная?
- Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике
Зафиксирован крайне редкий тип взрывов в космосе
Особенно наблюдательные любители космоса в течение нескольких недель смогут невооружённым глазом рассмотреть в ночном небе уникальное событие — взрыв звезды RS Змееносца. Как астрономы обнаружили остатки взрывов первых звезд в истории космоса. Ученым удалось зафиксировать самый крупный за всю историю наблюдений взрыв в космосе, сообщает New Scientist.
Ученые зафиксировали очень редкий тип взрывов в космосе
Перед тем, как стать новой, примерно на год звезда тускнеет. Тау Северной Короны начала терять свет еще в марте 2023 года. Предполагается, что вспышка T CrB будет видна с Земли невооруженным глазом. В документах астрономы нашли описания того же явления в 1787, 1866 и 1946 годах. То есть, звезда взрывается примерно каждые 80 лет, притом яркость ее увеличивалась более чем в 600 раз.
Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике 20 декабря 2023 в 10:17 391 Фото: вк-Астрономия и метеорология Крымские астрономы смогли самыми первыми заснять вспышку массивной звезды в галактике М101 в созвездии Большой Медведицы. Они сумели заснять редкое и уникальное астрономическое явление - вспышку звезды явление, когда звезда резко увеличивает свою яркость в соседней галактике.
Критическая масса накапливается примерно за 80 лет, достигает предела и происходит взрыв. Обычно на это уходят тысячи лет, чтобы дойти до момента, когда вы увидите новую звезду. Но Тау Северной Короны, похоже, делает это гораздо быстрее, что делает ее исключительной», — говорит Коррен Макгрегор, один из авторов исследования. Когда яркость T CrB достигнет своего пика, по светимости она может сравняться с Марсом. Явление вполне может продлиться и больше недели.
То есть свету для того, чтобы пройти расстояние от Бетельгейзе до Солнца, требуется шестьсот лет. На мысль о том, что Бетельгейзе нестабильна, астрономов натолкнули данные об изменении звездой цвета, а точнее, спектра. Еще в 1980 году китайские астрономы при раскопках нашли отчеты, согласно которым цвет Бетельгейзе в первом веке нашей эры был белым или желтым. А сто пятьдесят лет спустя Птолемей описывает звезду как красную. Изменение спектра от белого к красному говорит об израсходовании запасов водорода в недрах звезды. Причем это будет именно взрыв сверхновой, так как масса звезды в двадцать раз больше массы Солнца, а для взрыва сверхновой, а не просто новой звезды достаточно, чтобы масса звезды была в девять раз больше солнечной. На то, что сверхновая появится в ближайшее по космическим меркам время, все так же указывает спектр звезды. Будет ли взрыв сверхновой угрожать жизни на Земле? Событие масштабное В первую очередь стоит узнать, как будет выглядеть Бетельгейзе в момент взрыва. Уже на памяти человечества, в 1054 году, взрывалась сверхновая звезда, превратившаяся в Крабовидную туманность. Произошло это в шести тысячах световых годах от Земли, то есть в десять раз дальше по сравнению с Бетельгейзе. Взорвавшаяся в 1054 году сверхновая стала самой яркой звездой на небе, блеск которой угас спустя два года.
Ученые зафиксировали очень редкий тип взрывов в космосе
Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, и, следовательно, нужен механизм продления жизни для звёзд масс 1—2. Ученые впервые смогли увидеть взрыв красного сверхгиганта и его коллапс, представшей сверхновой звездой. вспышку звезды (явление, когда звезда резко увеличивает свою яркость) в соседней галактике. Взрыв еще одной сверхновой был зафиксирован астрономами, он произошел в галактике М101 в 21 млн световых лет от Солнечной системы. Ученые из Австралии в ходе исследования заново подсчитали, когда в космосе может взорваться гигантская звезда.
«Замученной звезды молочно-белый свет»
- Дыхание сверхновых: что за 20 лет произошло в туманностях, оставшихся от взорвавшихся звезд — видео
- В созвездии Кассиопея только что взорвалась звезда
- Ученые впервые увидеи смерть звезды — почему это важно | 360°
- Рекомендуем
- Вспышка из Вселенной: космический взрыв родил огромный огненный шар
Зафиксирован взрыв звезды, которая в 2,5 миллиарда раз ярче Солнца
Взорвётся ли Бетельгейзе и чем это нам грозит? | И одна из возможных в ближайшее время катастроф — взрыв звезды Бетельгейзе. |
Наше время - Все публикации | Звезда стала новостью последних дней, поскольку явила необычный по глубине минимум яркости. |
В 2024 году произойдет первый за 80 лет видимый взрыв сверхновой — как на него посмотреть | И одна из возможных в ближайшее время катастроф — взрыв звезды Бетельгейзе. |
Ученые раскрыли секрет гигантских взрывов на звездах
Постепенно в ядре накапливаются более тяжелые элементы. Когда масса ядра звезды превышает предел Чандрасекхара максимальная масса, теоретически возможная для стабильного белого карлика, около 1,44 солнечных масс , происходит его имплозия. В конце концов, имплозия отскакивает от ядра и выбрасывает звездный материал в космос — это и есть вспышка сверхновой. В результате остается сверхплотная нейтронная звезда. Существуют две различные подкатегории сверхновых типа II, определяемые изменениями их светимости в течение времени. Свет сверхновой подтипа II-Liner после резкого максимума быстро и линейно затухает, в то время как сверхновые подтипа II-Plateau продолжают светить довольно ярко в течение длительного периода времени. Оба этих типа имеют в своих спектрах сигнатуру водорода. Все сверхновые первого типа не имеют в своем световом спектре линии водорода. Подтип Ia: Считается, что сверхновые данной категории образуются в бинарных звездных системах, включающих умеренно массивную звезду и белый карлик.
В таких системах звездный материал перетекает к белому карлику от более крупной звезды-компаньона. Когда белый карлик накопит достаточно материала, чтобы его масса превысила предел Чандрасекхара, происходит взрыв. Сверхновые типа Ia встречаются довольно часто, и все они в момент своего пика имеют одинаковую светимость. Поэтому они нередко используются астрофизиками для оценки космических расстояний. Подтип Ib: Так же как и сверхновые второго типа, эта подкатегория сверхновых тоже переживает коллапс ядра, однако без участия водорода. Поэтому их относят к типу I. Кроме того, в их спектрах присутствуют линии гелия. Изучение сверхновых дало нам понимание того, как эволюционируют звезды и через какие этапы жизненного пути они проходят, прежде чем взорвутся.
Благодаря исследованиям ученые поняли важность и роль, которую сверхновые играют в формировании новых звезд, планет и других объектов нашей Вселенной. На фото взрывающаяся сфера. Сверхновые типа Ic, как правило, не имеют в своих спектрах водорода и гелия, так как оба этих элемента были "утеряны" во время жизненного цикла звезды. Кроме этих видов сверхновых существуют еще несколько подкатегорий типа I и II, включая сверхновые типа Ic - BL, которые относятся к гамма-всплескам и сверхновым с очень высокой светимостью. Жизненный цикл звезды, заканчивающийся рождением сверхновой Звезды, подобно живым существам, проходят через определенные фазы жизненного цикла, начиная с рождения и заканчивая смертью. Правда, в отличие от живых организмов, срок жизни звезды может составлять несколько миллиардов лет. Прежде чем произойдет вспышка сверхновой, звезда должна "пережить" несколько стадий. Ниже рассмотрим этапы звездной эволюции.
Звездная туманность Рождение формирование звезды происходит в туманности - облаке пыли и газообразного вещества, включая водород и гелий. По этой причине некоторые туманности получили название "звездных яслей. Сами туманности образуются из газа и пыли, выброшенных взрывом умирающей звезды, например, при вспышке сверхновой. Россия, Иран и Китай намерены "перезагрузить" систему коллективной безопасности в Персидском заливе В туманностях частицы газа и пыли сильно рассеяны, но со временем под воздействием сил гравитации они начинают собираться в сгустки. По мере роста сгустков их гравитация также увеличивается, притягивая к себе все новые и новые частицы.
Так, все отчеты о сверхновых исходят от цивилизаций северного полушария, хотя звездочеты в Южной Америке также могли иметь четкое представление о галактическом диске — главном месте появления сверхновых. Возможно, изображения и записи инков о сверхновой 1054 года и других космических взрывах до сих пор похоронены в перуанской Амазонии.
Брэдли Шефер, астроном из Университета штата Луизиана, который не участвовал в исследовании, сказал, что группа проделала хорошую работу и создала правдоподобную карту неба, которая соответствует предыдущим результатам. При этом причудливые местоположения пяти исторических сверхновых не слишком его беспокоят, учитывая их небольшое количество и отсутствие известных записей из южного полушария. Карта распределения вероятности возникновения сверхновых с нанесенными известными остатками звездных взрывов. Хорошо видно, что многие исторические сверхновые 1054 года и Тихо Браге 1572 года находятся на краю карты вероятности или вообще за ее пределами. Большая часть интереса к этой исторической астрономии заключается в установлении точной даты взрыва сверхновых. По словам Филдса, многие места древних детонаций до сих пор существуют как расширяющиеся облака из пыли и газа, и точное определение года или даже дня взрыва может помочь астрономам восстановить их историю. Исследователи также размышляют о прошлом, чтобы подготовиться к будущему.
Когда взорвется следующая сверхновая в Млечном Пути, будь это через год или столетие — астрономы определенно не пропустят ее. Например, детекторы нейтрино заметили сверхновую аж в соседней галактике в 1987 году, и если бы нечто подобное произошло на нашем «космическом заднем дворе», говорит Филдс, «они [детекторы] просто зашкалили бы». Причем на текущий момент детекторы нейтрино — далеко не единственный способ засечь звездный взрыв. Произойди сейчас взрыв сверхновой, различные астрономы быстро бы скооперировались, делясь данными с телескопов и детекторов гравитационных волн, чтобы превратить даже тусклую и невидимую глазом сверхновую в самую изученную звезду в истории человечества.
Взрыв был настолько мощным, что после него образовался разрыв в диске раскаленной плазмы, окружающей черную дыру. Ученые отмечают, что в полости, которая образовалась на месте катаклизма, могли бы поместиться 15 звездных скоплений, таких как Млечный Путь. В результате взрыва произошел выброс энергии, в пять раз превышающий предыдущий рекорд.
Так вот, Бетельгейзе по размерам в сотни раз больше нашего Солнца. Диаметр варьируется, потому что звезда как бы пульсирует: то сжимается, то расширяется. Сейчас, как пишут учёные, она в 764 раза больше нашего светила.
При этом по массе, по разным оценкам, то ли в 16, то ли даже в 19 раз тяжелее Солнца. Бетельгейзе — это красный гигант. Такими звёзды становятся на старости лет, когда в них иссякают запасы водорода для термоядерных реакций.
Тогда ядро без этих реакций начинает сжиматься, коллапсировать, от этого ещё больше раскаляется и нагревает свою внешнюю оболочку. И она начинает раздуваться до невообразимых объёмов. Надо сказать, такие массивные звёзды, к сожалению, сгорают быстро.
Бетельгейзе даже, оказывается, меньше девяти миллионов лет. Нашему ничем не примечательному Солнцу, для сравнения, 4,5 миллиарда лет, и ему ещё далеко до старости.
Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике
Авторы исследования предполагают, что существует несколько объяснений уникальной формы взрыва: звезда сформировала диск непосредственно перед смертью, или же это может быть недоформированная сверхновая, ядро которой коллапсирует в черную дыру или нейтронную звезду, а затем поглощает остаток светимости. Ожидается, что это открытие послужит толчком для дальнейших исследований и поможет астрономам лучше понять, как умирают звезды и как они могут образовывать черные дыры.
Опасность в том, что очередная мощная вспышка на Солнце может ударить по Земле и сжечь большую часть используемой нами электроники. Его статья называется «Угроза солнечной супербури растёт, а мы не готовы». Одна вспышка — как сотни миллионов термоядерных бомб В отличие от Земли, которая имеет довольно сильное и хорошо организованное магнитное поле, подобное полю одного гигантского магнита, на Солнце преобладают бесчисленные магнитные поля, которые возникают локально, тут и там.
Динамика этого процесса чрезвычайно сложна, но учёные давно заметили, что общая сила магнитного поля нашей звезды возрастает и убывает в течение периода времени, примерно равному 11 лет. Его мы и называем циклом солнечной активности. Во время максимума этого цикла на звезде резко возрастает количество пятен. Большинство из них имеют диаметр в несколько тысяч километров, а некоторые достигают размеров, превышающих размер Земли, иногда в несколько раз больше. Когда эти локальные магнитные поля прорываются через поверхность Солнца, они увлекают за собой его вещество, создавая невероятно высокие светящиеся шпили, называемые протуберанцами.
Эти фонтаны плазмы — относительно безобидное явление. Но магнитные поля, которые их формируют, могут вызвать вполне реальную опасность.
Это очень редкое явление, поскольку обычно взрывы звезд во Вселенной сопровождаются шарообразной формой, ведь сами светила сферические. Авторы предполагают, что этому может быть несколько объяснений: взрыв звезды образовал диск непосредственно перед тем, как она погибла; или же это недосформированная сверхновая, у которой ядро превращается в результате коллапса в черную дыру или нейтронную звезду, а затем поглощает остальную часть светила.
Пока в ядре и вокруг него продолжается генерация термоядерной энергии, оболочка звезды еще больше расширяется, и красный гигант становится сверхгигантом. Однако эти космические исполины не отличаются устойчивостью.
Но одиночный карлик обречен на постепенное остывание. Он будет желтеть, краснеть, а потом и вовсе потухнет в оптическом диапазоне. Дело это небыстрое, счет идет на многие миллиарды лет. Пока что самые тусклые белые карлики, внесенные в астрономические каталоги, немногим холоднее Солнца. Радиус типичного белого карлика сравним с земным, а масса составляет 0,6—1,2 массы Солнца. Белые карлики с массами свыше 1,44 солнечной массы не существуют и не могут существовать, но об этом позже.
Материя белого карлика сжата до давлений, при которых разрушаются атомные электронные оболочки. Возникает особого рода плазма, состоящая из атомных ядер и вырожденного газа обобществленных электронов, движением которых управляют законы квантовой механики. Давление такого газа так называемое давление Ферми не зависит от температуры и определяется исключительно плотностью, поэтому остывание белого карлика не сказывается на его внутренней структуре. В отличие от звезды-родительницы, это чрезвычайно устойчивая физическая система: если белый карлик не будет проглочен черной дырой, он просуществует до тех пор, пока протоны не начнут распадаться, как им предписывают современные теории физики элементарных частиц. Период же их полураспада заведомо превышает 1032 лет. Коллапсирующие ядра Звезды с начальной массой свыше восьми солнечных заканчивают жизнь взрывами фантастической мощности, вызванными очень быстрым сжатием коллапсом их ядер.
Одна сотая этого остатка т. И хотя световые вспышки гибнущих массивных звезд представляют из себя феерическое зрелище, на их долю приходится лишь одна сотая доля процента высвобожденной энергии. Именно эти космические катаклизмы и называют сверхновыми звездами, или просто сверхновыми. Их подразделяют на группы в соответствии с оптическими спектрами. Эту классификацию 80 лет назад предложили Бааде и его коллега по обсерватории Маунт-Вильсон Рудольф Минковский, племянник знаменитого математика, эмигрировавший из Германии. Излучение сверхновых I типа не содержит линий испускания водорода, которые есть у сверхновых II типа, зато они включают семейство, спектры которого демонстрируют наличие ионизированного кремния.
Представители группы Ia взрываются на основе иного механизма, нежели гравитационный коллапс их ядер, поэтому о них поговорим позднее. Открытые в 1985 г. В среднем в каждой крупной галактике типа Млечного Пути ежегодно загораются две-три сверхновые, причем на каждую вспышку из группы Ia приходится три-пять сверхновых прочих разновидностей. Хотя в наши дни процессы коллапса массивных звезд обсчитывают с использованием хорошо проработанных физических моделей и мощных компьютерных ресурсов, многие детали этого процесса еще далеки от ясности. Для иллюстрации рассмотрим в общих чертах типичную судьбу голубого сверхгиганта с начальной массой порядка 20—25 солнечных масс. Водородное топливо он сжигает за 7 млн лет, еще полмиллиона лет займет формирование углеродно-кислородного ядра, нагретого до 200 млн К.
С его возникновением термоядерный синтез останавливается, но ненадолго. В отсутствие тепловой подпитки ядро сжимается под действием тяготения звездного вещества и соответственно нагревается. По достижении температуры 600—800 млн К углерод начинает гореть с образованием неона и магния, а спустя еще 600 лет при температуре 2,3 млрд К начинается горение кислорода. Оно запусткает цепочки ядерных превращений, которые приводят к синтезу различных изотопов кремния, серы, фосфора, аргона, калия, кальция и скандия. Американский астрофизик индийского происхождения С. Чандрасекар, будущий нобелевский лауреат, в 1930-х гг.
Масса, которая получила название «предел Чандрасекара», составляет около 1,4 массы Солнца За сутки до кончины звезды ее ядро нагревается до 3,3 млрд К. Последние поглощаются другими ядрами, образуя все более тяжелые элементы. Поскольку далее термоядерный синтез не идет, железное ядро сжимается и нагревается. В результате возрастает кинетическая энергия атомов железа, и они претерпевают хаотические превращения. Некоторые из них распадаются, а некоторые, напротив, вступают в реакции слияния и порождают более тяжелые элементы, такие как платина и золото. Поскольку эти реакции идут за счет накопленной тепловой энергии, температура звездного ядра уменьшается, давление его вещества падает, и ядро вновь начинает сжиматься.
Этот процесс ускоряется, если в окрестностях ядра продолжаются процессы термоядерного синтеза, которые порождают новые и новые ядра железа. Затем наступает финальный катаклизм. Электроны прижимаются к ядрам и сливаются с протонами, превращаясь в нейтроны и нейтрино. Нейтроны остаются на месте, а нейтрино вылетают в пространство. В результате сердцевина звезды охлаждается, давление ее вещества вновь падает, а темп сжатия увеличивается. Этот процесс имплозии начинается и завершается за считанные секунды, поэтому внешние слои звезды не успевают ничего почувствовать.
Наружный наблюдатель в течение еще нескольких часов не заметит ни малейших перемен. На этой стадии возможны два сценария. Полагают, что звезды с массой от 30 до 100 солнечных масс коллапсируют полностью и дают начало черным дырам. У звезд в диапазоне 12—30 по другим модельным симуляциям 12—20 солнечных масс образуются ядра из нейтронной материи, плотность которой в 100 триллионов раз превышает плотность воды. Внешние слои звезды обрушиваются на ядро и «отскакивают» от него со скоростью в десятки тысяч километров в секунду. Поскольку эта скорость значительно превышает скорость звука в звездном веществе, образуется ударная волна, буквально разрывающая звезду изнутри.
По всей вероятности, ей «помогают» тепловые нейтрино, приходящие из «вскипающего» нейтронного ядра, нагретого как минимум до 150 млрд К это самая высокая температура, возможная в нынешней Вселенной. От звезды остается деформированный нейтронный шар радиусом около десяти километров, окруженный облаком сверхгорячей плазмы. Это и есть нейтронная звезда. Звезде был присвоен индекс SN 2007bi. Возможно, это было первое наблюдение сверхновой с парной нестабильностью. Звезды этой группы очень быстро сжигают водород и гелий.
Звезда на пике. Астроном предупредил о солнечной супербуре
Считается, что это звезда типа O. Звезда находится на грани превращения в сверхновую. Но когда она перейдёт эту грань зависит от целого ряда факторов и один из них — это реальные размеры звезды, о чём учёные спорят несколько десятилетий. Согласно последним измерениям, Бетельгейзе скорее маленькая для звёзд типа O , чем большая. Это означает, что на превращение её в сверхновую могут уйти многие десятки тысяч лет.
Однако исследователи из Университета Тохоку в Японии и Женевского университета в Швейцарии заново проанализировали все данные по Бетельгейзе и пришли к выводу, что звезда может иметь намного больший размер и её судьба — это превратиться в сверхновую за тридцать-пятьдесят лет или около того.
Согласно нашим наблюдениям, яркость Бетельгейзе меняется с двумя более-менее выраженными периодами — коротким длительностью 420 дней и большим длительностью 2200 дня. Если для оценки скорости эволюции звезды использовать более короткий период, то это определяет её радиус примерно в 800-900 раз больше радиуса нашего Солнца. Японские и швейцарские астрономы показали, что опора на 2200-дневную периодичность может указывать на радиус Бетельгейзе примерно в 1300 раз больше радиуса Солнца, что вносит радикальные коррективы в прогнозирование судьбы этой звезды. Если они правы, Бетельгейзе превратится в сверхновую после 2050 года. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
В повестях Роберта Чейза «Транзит Бетельгейзе» 1990 и «Индевор» 2005 рассказывается о спасательной экспедиции к одной из планет системы Бетельгейзе, на которой остались колонисты, перед взрывом звезды. В романе Роберта Сойера «Вычисление Бога» 2001 угроза гибели обитаемых миров из-за превращения Бетельгейзе в сверхновую заставляет Творца явить чудо и тем самым подтвердить своё существование. Постепенно ожидания фантастов перекочевали в паранаучную литературу, а оттуда — на страницы «жёлтой» прессы. Позже они стали основой катастрофических сценариев. Первую волну паники в информационном пространстве спровоцировали публикации 2009 года о том, что, по наблюдениям астрономов, радиус звезды уменьшается. Они очень «удачно» наложились на ожидание конца света по календарю майя, который должен был наступить 21 декабря 2012 года. Конспирологи и ясновидцы всех мастей пытались убедить общественность, что именно взрыв Бетельгейзе разрушит нашу планету. В декабре 2011 года учёные из NASA в отдельном пресс-релизе развенчали все эти мифы. Изменение формы и яркости фотосферы Бетельгейзе за 2019 год, зарегистрированное Очень большим телескопом eso. В декабре журналисты начали писать о том, что наблюдаемый феномен может быть связан с превращением звезды в сверхновую, однако учёные более осторожны в прогнозах. Они рассматривают три вероятных объяснения: так совпали минимумы в циклах переменности блеска Бетельгейзе; звезду затемняет одно из газопылевых облаков, находящихся в непосредственной близости; поверхность звезды охлаждается после колоссального выброса вещества. Так или иначе, Бетельгейзе опять привлекла к себе внимание, и теперь астрономы постоянно наблюдают за её светимостью. Конец света отменяется! Кривая блеска Бетельгейзе в период с августа 2018 года по февраль 2020 года aavso. Так если всё-таки звезда взорвётся, насколько страшны будут последствия?
Дальнейшее изучение показало, что взрыв, располагающийся в галактике на расстоянии 180 миллионов лет от Земли, обладает беспрецедентной асферичностью, то есть самой плоской формой, из когда-либо обнаруженных. Это очень редкое явление, поскольку обычно взрывы звезд во Вселенной сопровождаются шарообразной формой, ведь сами светила сферические.
Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике
Телескоп Хаббл смог запечатлеть процесс взрыва сверхновой, а мы публикуем видео этого процесса, который происходил в течение 5 лет. В этом смысле его взрыв похож на взрыв коллапсирующей звезды с начальной массой 130–250 солнечных масс, хотя физические механизмы совершенно различны. Речь идет о взрыве звезды T Северной Короны, (T Coronae Borealis), ее еще называют «Полыхающей звездой». Вы здесь: Главная» Все новости» Наука» В космосе впервые зафиксировали взрыв сверхновой в результате столкновения звезд. Речь идет о взрыве звезды T Северной Короны, (T Coronae Borealis), ее еще называют «Полыхающей звездой».
Коллапс звезды
- К космосе нашли странную звезду: она вспыхивает каждые 80 лет и все равно остается целой
- Зарегистрирован самый мощный за всю историю космический гамма-всплеск
- Телескоп Джеймса Уэбба сфотографировал фееричные последствия сверхновой - Shazoo
- Дыхание сверхновых: что за 20 лет произошло в туманностях, оставшихся от взорвавшихся звезд — видео
- Вот-вот взорвётся: Учёные взбудоражены внезапной вспышкой Бетельгейзе
Вот-вот взорвётся: Учёные взбудоражены внезапной вспышкой Бетельгейзе
Вот-вот взорвётся: Учёные взбудоражены внезапной вспышкой Бетельгейзе | Это называется взрывом сверхновой звезды. |
Зафиксирован взрыв звезды, которая в 2,5 миллиарда раз ярче Солнца | Взрыв, получивший название GRB 221009A, заметили 9 октября прошлого года, но он был настолько ярким, что ослепил большинство гамма-приборов в космосе. |
Маленькая чёрная дыра уничтожила звезду и устроила сверхмощный взрыв | В качестве льтернативы, другое распространённое взрывное явление в космосе, тип Ia сверхновой, происходит, когда остатки звёзд, называемые белыми карликами, стягивают материю у партнёрской звезды. |
Зарегистрирован самый мощный за всю историю космический гамма-всплеск | Телескоп ART-XC им. М. Н. Павлинского, который установлен на борту космической обсерватории "Спектр-РГ", заснял взрыв сверхновой звезды. |