Европейский союз коэффициенты Джини государств-членов, согласно Евростат. Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране.
Новости партнеров
- Штаты США по коэффициенту Джини
- В Турции рекордно увеличился разрыв между богатыми и бедными
- Коэффициент Джини
- Коэффициент Джини |
- предоставляет экономические и финансовые данные
- Социальное неравенство. Индекс Джини
Коэффициент Джини, значение по странам мира и в России
Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее. Коэффициент или индекс Джини позволяют оценить данное неравенство в конкретной стране или в мире в целом. По коэффициенту Джини (статистический показатель степени экономического неравенства в обществе) Россия уступает лишь Бразилии. Европейский союз коэффициенты Джини государств-членов, согласно Евростат. Коэффициент или индекс Джини позволяют оценить экономическое неравенство в конкретной стране или между государствами. Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее.
Коэффициент джини в России
Коэффициент Джини - это число от 0 до 1, где 0 соответствует полному равенству где у всех одинаковый доход , а 1 соответствует полному неравенству когда один человек имеет весь доход, а все остальные не имеют дохода. Распределение доходов может сильно отличаться от распределения богатства в стране см. Список стран по распределению богатства.
Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений. Для прогнозирования использую логистическую модель. Запишу факторы в отдельный лист для удобства. Однако, в ходе анализа модели было предложено рассмотреть возможность добавления нового фактора — F18. Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини.
По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него.
Справедливо рассмотреть топ-10 стран, где живут люди с самым высоким индексом качества жизни. Затем оценки складывались и делились на количество учтенных параметров. Рейтинг стран мира по уровню жизни 2024 Более справедливым распределение заработных плат стало в здравоохранении и предоставлении социальных услуг -3,47 , в сфере оптовой и розничной торговли автотранспортными средствами -2,27 , в сфере научных исследований и разработок -2,16.
В целом, исследователи пришли к выводу, что процессы глобализации сократили глобальное имущественное неравенство между странами, но увеличили его именно внутри стран. Отмечается, что в основном, развивающиеся страны имеют более значительным имущественное неравенство, чем развитые страны. Но при этом в некоторых развитых странах, например в США, коэффициент Джини высок. Это считают аномалией закона.
Кривая Лоренца
- Котировки участников рынка
- Список стран по равенству доходов - List of countries by income equality - Википедия
- Коэффициент Джини. Из экономики в машинное обучение / Хабр
- Коэффициент Джини - Рейтинг
- Коэффициент Джини |
- Кривая Лоренца
Коэффициент Джини. Формула. Что показывает
Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. всех стран мира представлены в таблицах по основным регионам мира а также флаги стран, изменения показателя на один период, дата и т.д. Сравнение коэффициента Джини по странам, конечно, довольно условно, так как размер страны влияет на уровень неравенства: чем больше территория, население и ВВП, тем больше неравенство. Рейтинг был составлен согласно коэффициенту Джини (статистическому показателю степени расслоения общества страны или региона по определенному признаку). Список стран по показателям неравенства доходов — Различия в равенстве доходов в разных странах по коэффициенту Джини. Ниже представлен список стран по по показателям неравенства доходов, включая Коэффициент Джини. Коэффициент или индекс Джини позволяют оценить экономическое неравенство в конкретной стране или между государствами.
В Турции рекордно увеличился разрыв между богатыми и бедными
Необходимо принимать решения, математически и статистически обоснованные. То есть, строится график отсортированных прогнозных target-значений рис. Затем рассчитывается площадь под кривой — площадь фигуры под линией прогнозных значений. Так мы узнаем качество работы нашего алгоритма. Данный показатель прост в расчёте и легко интерпретируем, а значит популярен и часто используется в моделях банковского скоринга. Но достаточно ли одной метрики и можно «положиться» на Gini в управленческих вопросах? Возникает необходимость управления кредитным риском.
А значит, появляется задача улучшения модели рейтингования заемщиков. В качестве примера возьмем датасет с наблюдениями по количественным и качественным характеристикам заемщиков на протяжении экономического цикла и более, для которых проставлен признак дефолта. В таблице ниже представлен пример маркированных данных. Необходимо преобразовать качественные показатели. Многие модели машинного обучения работают только с числовыми факторами и не чувствительны к иным.
Ниже приведена карта мира с распределением стран по индексу неравенства. Источник: Всемирный Банк, 2018 год Как можно увидеть, в развитых странах индекс неравенства находится на уровне от низкого до среднего. Это обусловлено как социальной ролью государства в таких странах, осуществляющего прямую поддержку слоев населения с низкими доходами, так и часто применяемой в развитых странах прогрессивной ставкой налогообложения, являющейся универсальным выравнивающим механизмом.
По данным Всемирного Банка первые 15 стран с самым высоким неравенством выглядят так: Здесь любопытно нахождение США на 15 месте. Впрочем, ни для кого не секрет что в США достаточно большое расслоение в доходах. Это плата за высокую эффективность экономики. Рейтинг приведен на основе данных за 2019 год, так как за более поздние периоды данные неполные. Россия находится в третьем десятке и имеет средний индекс неравенства, на уровне Китая, Индонезии, Таиланда. Что дает индекс?
Индекс Джини не применяется для анализа государств, где действует плановая экономика, поскольку уровень дохода в таких странах априори не имеет большого разрыва между трудящимися, так как регулируется государством. Также этот коэффициент не является мерилом уровнем экономического развития и богатства страны. Наоборот, беднейшие страны планеты могут иметь самый высокий индекс Джини! Иногда и бедные, и богатые страны могут иметь одинаковый показатель. В каждой стране, которая попала под исследование, индекс выведен в разные годы: к примеру, в Китае расчет проводился в 2016 году, а в России — в 2012. Удобство расчетов Если применять коэффициент, соблюдая все правила, можно определить реальный уровень неравенства в доходах и других экономических показателях разных государств мира. Правильно выведенный индекс Джини позволит изучить средние доходы гражданина выбранной страны, узнать подробную информацию об уровне ВВП, посмотреть динамику изменения уровня неравенства за каждый год. В каких странах самый большой уровень неравенства 90 В десятку стран с самым большим неравенством дохода среди населения регулярно входят государства, расположенные на территории Африки, однако есть и страны из Латинской Америки.
Иногда используется процентное представление этого коэффициента, называемое индексом Джини. Коэффициент Джини после 2-й Мировой Войны: 0 - идеально ровное распределение доходов, 100 - всё богатство сконцентрированно в руках одного человека:.
Коэффициент Джини по странам.
Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения. В России коэффициент Джини в последние годы держится на уровне 0,41. Сообразно общей картине различается и коэффициент Джини по странам. Распределенный за весь период существования России, как самостоятельного государства, коэффициент Джини выглядит следующим образом.
Минфин пообещал больше не повышать налоги на богатых
Децильный коэффициент (соотношение мин доходов 10% наиболее обеспеченного населения и макс доходов 10% наименее обеспеченного населения). News turk | новости турции. В итоге после учета всех трансфертов и всех налогов коэффициент Джини для США сокращается вдвое – с 0,45 до 0,23 и из страны с самым высоким они становятся страной с самым низким неравенством среди всех развитых стран! Индекс Джини это тот же коэффициент Джини, только значения здесь выражены в процентах.
Уровень жизни. Динамические ряды
И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели.
Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.
С ростом числа рассматриваемых групп населения кривая Лоренца будет выглядеть следующим образом: Кривая Лоренца позволяет судить о степени неравенства доходов в экономике о ее изгибу. Для количественного измерения степени неравенства дохода по кривой Лоренца существует специальный коэффициент — коэффициент Джини. Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. Чем ближе коэффициент Джини к единице, тем больше изгиб кривой Лоренца, и доходы распределены менее равномерно.
Рассчитаем коэффициент Джини для нашего примера с тремя индивидами. Площадь внутренней фигуры D быстрее всего можно посчитать путем вычитания из площади большого треугольника площади фигур А, В и С. В этом случае коэффициент Джини будет равен: Частный случай кривой Лоренца и коэффициента Джини: попарное сравнение. Материалы данного раздела не публикуются на сайте, а доступны в полной версии данного пособия, которое я использую на занятиях с учениками. Как известно, любой статистический показатель имеет свои изъяны. Так же как и по показателю ВВП нельзя судить об уровне благосостояния экономики, и коэффициент Джини и другие показатели степени неравенства не могут дать в полной мере объективную картину степени неравенства доходов в экономике. Это происходит по нескольким причинам: Во-первых, уровень дохода индивидов не является постоянным и может резко изменяться с течением времени.
Доходы молодых людей, которые только что закончили университет, как правило, являются минимальными, и затем начинают расти по мере того, как человек набирается опыта и наращивает человеческий капитал. Доходы людей, как правило, достигают пика между 40 и 50 годами, и затем резко снижаются, когда человек уходит на пенсию. Э то явление называется в экономике жизненным циклом. Но человек имеет возможность компенсировать различие в доходах на разных этапах жизненного цикла с помощью финансового рынка — беря кредиты или делая сбережения. Так, молодые люди, находящиеся в самом начале жизненного цикла, охотно берут кредиты на образование или ипотечные кредиты. Люди, которые находятся ближе к окончанию экономического жизненного цикла, активно делают сбережения. Кривая Лоренца и коэффициент Джини не учитывают жизненный цикл, поэтому этот показатель степени неравенства доходов в обществе не является точной оценкой степени неравенства доходов.
Во-вторых, на доходы индивидов влияет экономическая мобильность. Экономика США является примером экономики возможностей, когда индивид из низов может благодаря сочетанию усердия, таланта и удачи, стать очень успешным человеком, и история знает множество подобных примеров. Но также известны случаи потери крупных состояний или даже полных банкротств вполне состоятельных предпринимателей. Как правило, в таких экономиках, как экономика США, отдельное домохозяйство за свою жизнь успевает побывать в нескольких категориях распределения доходов. И связано это с высокой экономической мобильностью. Так, например, какое-т домохозяйство может в одном году входит в группу с самым низким уровнем дохода, а следующем году уже в группу со средним уровнем доходов. Кривая Лоренца и коэффициент Джини также не учитывают данный эффект.
В-третьих, индивиды могут получать трансферты в натуральной форме, которые не отражаются в кривой Лоренца, хотя при этом влияют на распределение доходов индивидов. Трансферты в натуральной форме могут быть реализованы в виде помощи беднейшим слоям населения продуктами питания, одеждой, но обычно они предоставляются в виде многочисленных льгот бесплатный проезд в общественном транспорте, бесплатные путевки в санатории и так далее. С учетом подобных трансфертов экономическое положение беднейших слоев населения улучшается, но кривая Лоренца и коэффициент Джини этого не учитывают. Не так давно в России многие льготы были монетизированы, и объективные доходы беднейших слоев населения стало считать легче. Следовательно, кривая Лоренца стала лучше отражать реальное распределение доходов в обществе. Данные показатели используются для оценки степени неравенства доходов, и входят в область позитивного экономического анализа. Напомним, что позитивный анализ отличается от нормативного анализа тем, что позитивный анализ анализирует экономику объективно, как есть, а нормативный анализ является попыткой улучшить мир, сделать «как должно быть».
Принято считать, что чем ВВП страны выше — тем страна богаче, а значит богаче и люди, проживающие в этой стране. Если в отношении страны в целом такое утверждение верно, хоть и с некоторыми оговорками, то в отношении людей, проживающих в ней, не всегда. Все дело в распределении благ. Все помнят про «среднюю температура по больнице», и ВВП — это тот статистический показатель, для которого эта аллегория точно подходит. Оценивая ВВП двух стран, когда речь идет о ВВП на душу населения, то есть уровне развития, нельзя не учитывать равномерность распределения доходов в экономике. В противном случае может получиться, что на бумаге страна богаче, а большая часть населения живет в ней беднее, чем в другой, где средняя величина ниже, но распределение более равномерное.
Индекс Джини Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов — кривой Лоуренса. Пример кривой Лоренца приведен на изображении ниже. В идеальной ситуации, то есть ситуации, когда нет неравенства в распределении доходов, эта линия будет биссектрисой, то есть пройдет под углом 45 градусов от начала координат.
Модель стала важнейшим инструментом оценки экономического неравенства в мире и получила имя в честь своего создателя — коэффициент Джини. Источник: Getty Images В 2015 году Греция, Таиланд, Израиль и Великобритания оказались неравны в равной степени, то есть все четыре страны имели одинаковый коэффициент Джини — общий показатель неравенства доходов. Коэффициент Джини, равный 1 единице , означает, что в обществе наблюдается абсолютное неравенство, в то время как 0 ноль означает полное равенство.
Коэффициент Джини. Формула. Что показывает
Индекс Джини по Странам Мира 2024 Таблица • 7-е место исландия. Income and wealth inequality remains a global concern with varying levels of disparity seen across countries. The Gini coefficient, a measure used by economists, offers a numerical representation of this distribution. Ranging from 0 to 1, or 0% to 100%, a Gini coefficient of 0 signals perfect equality. Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even.