Команда ученых из Калифорнийского технологического института создала систему SAIS на базе искусственного интеллекта для тренировки хирургических навыков.
«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
Все российское медицинское программное обеспечение, созданное с применением технологий ИИ, автоматически относится к наивысшему третьему классу потенциального риска. Это означает, что все заключения, выданные искусственным интеллектом, проходят строгий контроль медицинских специалистов. В России любое программное обеспечение, созданное для применения в медицинских целях, считается медицинским изделием. Обращение медицинских изделий на территории РФ возможно только при условии государственной регистрации. С 2020 по 2022 год перечень отечественных зарегистрированных медизделий на основе ИИ постепенно пополнялся, и к концу 2022 года включал в себя 16 программ. Также в указанном перечне присутствуют: программный модуль для анализа флюорограмм и рентгенограмм грудной клетки человека, система для диагностики ковида, нейросеть для анализа маммографии, нейросеть для определения продольного плоскостопия, системы для принятия врачебных решений и многое другое.
Как работает анализ медицинских изображений? А врач, когда работает с этим исследованием, уже использует результаты работы искусственного интеллекта, - рассказал "РГ" коммерческий директор компании Цельс Артем Капнинский. И мы эту работу делаем не для того, чтобы заменить его, а чтобы ему помочь. Когда врач работает вместе с искусственным интеллектом, это минимизирует возможность ошибки.
До 50 процентов уменьшается время на интерпретацию исследования, и до 15-20 процентов повышается качество - выявление онкологических и других заболеваний на ранних стадиях". Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва. Научная база столицы включает более 10,5 миллиона исследований, проанализированных с помощью сервисов искусственного интеллекта, рассказал директор Центра диагностики и телемедицины, главный внештатный специалист по лучевой и инструментальной диагностике департамента здравоохранения Москвы Юрий Васильев. Врач-рентгенолог большую часть времени что-то пишет, а не смотрит на изображение, а должно быть наоборот", - сказал он. Пока искусственный интеллект применяется в основном для анализа медицинских изображений и электронных медицинских карт Есть и другие технологии ИИ, помогающие повысить эффективность системы здравоохранения. Например, голосовые сервисы ввода данных устной речи - врач может наговаривать то, что он видит, а данные записываются в медицинскую карту уже в виде текстового сообщения. Сервисы видеоаналитики могут следить за состоянием пациентов с ограничениями по движению, например, в реанимации и при необходимости послать сообщение на пост.
Исходя из региональных показателей, в текущем году таких кейсов станет примерно в 3 раза больше, в том числе ИИ-решений, работающих со структурированными электронными медицинскими документами СЭМД и медицинскими записями. Наша компания располагает опытом работы с большими массивами медицинских записей и документов, которые необходимы для обучения и работы моделей ИИ. Совместные интеграционные проекты с разработчиками систем ИИ для здравоохранения и систем поддержки принятия врачебных решений уже стали важным направлением нашей работы.
Наша общая задача, чтобы врач непосредственно на рабочем месте в своей медицинской информационной системе получал лучшие и самые эффективные решения. Алексей Кашпанов заместитель руководителя отдела продаж и развития компании «Нетрика Медицина» Один из примеров внедрения ИИ-решений в практическое здравоохранение —центр лучевой диагностики, созданный в Архангельской области. Специалисты центра проверяют снимки, полученные после маммографии и других исследований, с использованием технологий искусственного интеллекта.
Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных. Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования. К 2019 году для специального исследования будут отобраны 1 миллион добровольцев. Исследование направлено на то, чтобы показать связь между состоянием здоровья, образом жизни, окружающей средой, а также социальным и экономическим статусом. Полученные данные будут обработаны с помощью ИИ.
Искусственный интеллект в медицине
Искусственный интеллект — это сильный инструмент, который способен принести пользу во многих отраслях и сферах медицины. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Искусственный интеллект. Можно ли использовать ИИ в медицине и здравоохранении? Решения с использованием искусственного интеллекта (ИИ) в медицине внедряют 70 российских регионов. Благодаря возможностям искусственного интеллекта (ИИ) здравоохранение в России постепенно трансформируется по мере того, как передовые технологии меняют медицинскую практику, включая диагностику, лечение пациентов и медицинские операции. Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных.
ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране
Отчет представляет из себя большой обзор всех стран - участников региона по основным показателям. В профилях указаны важнейшие компоненты цифрового здравоохранения на национальном уровне, включая цифровое управление здравоохранением, электронные медицинские карты, порталы пациентов, телемедицину, мобильное здравоохранение, а также большие данные и аналитику. Всего в рамках награды было подано более 100 заявок. Также победителями номинаций стали: Русагро, Авито, Росатом и Роскосмос. Премия Data Fusion Awards присуждается за достижения в области развития тренда Data Fusion, реализацию успешных кросс-отраслевых проектов по анализу больших данных с использованием алгоритмов машинного обучения и искусственного интеллекта, развитие образовательных инициатив для подготовки специалистов. От лица Цельса хотим поблагодарить организаторов за высочайший уровень организации конференции Data Fusion, качество докладов и актуальность повестки. Почти в каждом четвертом случае была обнаружена патология. Технология для анализа цифровых изображений помогает оперативно обнаружить изменения скелета, сердечно-сосудистые нарушения, фиброз и т.
Индивидуальные схемы лечения Ученые планируют активнее применять способности ИИ быстро выполнять анализ огромных массивов информации, в т. Благодаря этим возможностям облегчается задача составления индивидуальных планов лечения для врачей. Учет персональных особенностей здоровья пациентов существенно повышает эффективность лечебных курсов, снижает риск побочных эффектов. Совершенствование диагностических возможностей Системы диагностики с искусственным интеллектом с каждым годом работают все стремительнее и точнее. Благодаря уникальным инструментам обеспечивается раннее и высокоточное выявление аномалий, что позволяет оперативно приступить к лечению. Роботы-ассистенты в хирургии Искусственный интеллект все чаще используется при проведении хирургических операций. За счет роботизированных систем обеспечивается повышенная ловкость и улучшенный контроль выполнения манипуляций для хирургов, что делает многие сложные вмешательства малоинвазивными. Применение роботов-ассистентов способствует улучшению результатов операций, сокращению времени восстановления организма и минимизации риска осложнений. Виртуальные консультанты Такие системы с ИИ расширяют возможности медпомощи.
Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т. Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта. Это отличный шанс нащупать правильный подход к аудитории и занять прибыльную нишу. Кроме того, согласно исследованиям, рынок ИИ в медицине будет стремительно расти в ближайшие несколько лет: Источник: McKinsey and Company За искусственным интеллектом будущее, и оно наступает уже сегодня. Мы в Azoft стремимся использовать все возможности новейших технологий. Наш отдел RnD разрабатывает и использует искусственный интеллект, машинное обучение и нейронные сети для решения задач в области медицины и не только. Напишите нам на medtech azoft.
Изображение сгенерировано нейросетью Midjourney В настоящее время, ИИ в медицине представлен двумя типами решений: медицинскими анализ изображений, данных электронной медкарты, видеопотока и немедицинскими голосовые сервисы оптимизации работы центров обработки звонков, сервисы видеоаналитики для обеспечения безопасности пациента, чат-боты для первичного сбора данных о пациенте перед записью к врачу. Эксперты отмечают, что выбор проектов для внедрения должен базироваться на точности инструмента, измеримом эффекте, качестве информационной защиты и стоимости продукта. Необходимость финансирования со стороны государства для отрасли, сфокусированной на проектах с ИИ, также подчеркивается собеседниками «Ъ». Однако, даже с ростом использования ИИ, встречаются проблемы. Так, совсем недавно Росздравнадзор впервые приостановил использование системы анализов Botkin.
Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача. Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников. Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности. Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т. Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств.
Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта. Это отличный шанс нащупать правильный подход к аудитории и занять прибыльную нишу.
Так, участниками конференции стали несколько компаний-разработчиков, получивших грантовую поддержку в рамках программ фонда. Важной темой дискуссий стали расхождения в результатах работы над аналогичными задачами врачей и ИИ, их выявление и корректировка, а также недостаток в публичном поле исследований эффективности тех или иных ИИ-решений.
Решения на базе ИИ регионы сегодня рассматривают уже не в качестве любопытной новинки, а как еще один компонент системы здравоохранения, который должен решать конкретные задачи и обладать доказанной эффективностью. Исходя из региональных показателей, в текущем году таких кейсов станет примерно в 3 раза больше, в том числе ИИ-решений, работающих со структурированными электронными медицинскими документами СЭМД и медицинскими записями. Наша компания располагает опытом работы с большими массивами медицинских записей и документов, которые необходимы для обучения и работы моделей ИИ. Совместные интеграционные проекты с разработчиками систем ИИ для здравоохранения и систем поддержки принятия врачебных решений уже стали важным направлением нашей работы.
Поэтому большинство сервисов, которые мы в «Третьем мнении» вывели на рынок, — это сервисы для отделения лучевой диагностики». Недавно организация в одном из регионов завершила проект по ретроспективному анализу исследований грудной клетки, были проанализированы данные за 1,5 года. Технологии помогают и младшему медперсоналу. Например, медсестры благодаря push-уведомлениям смогут до 50 раз быстрее реагировать на тревожные ситуации, связанные с возможным падением пациентов», - говорит Анна Мещерякова. Барьеры для внедрения ИИ Вопреки всем успехам, реального внедрения серьезных, глубоких систем поддержки принятия врачебных решений на федеральном уровне очень мало, подытожил руководитель экспертной группы «Цифровые технологии в медицине» при АНО «Цифровая экономика», гендиректор ассоциации «НБМЗ» и руководитель направления цифровой медицины компании «Инвитро» Борис Зингерман. По его мнению, сейчас ИИ охотнее всего доверяют сами пациенты. А у пациентов нет медобразования, и они рады любой помощи и подсказке от искусственного интеллекта», — отметил Борис Зингерман. Сложнее ситуация обстоит в здравоохранении в субъектах. На первом этапе обновлен парк медоборудования, создан центральный архив медицинских изображений и проведено несколько технических интеграций с сервисами ИИ. Для контроля качества ИИ-решений в медицине не хватало специалистов, поэтому на призывы о помощи откликнулись эксперты Департамента здравоохранения Москвы. Согласно договоренностям со столичными экспертами, в ЯНАО подключаются сервисы, занимающие в Москве лидирующие позиции. Сейчас реализуется третий этап — вовлечение врачей-рентгенологов в работу с ИИ. Отрабатываются механизмы сбора обратной связи о работе сервисов на базе ИИ. Следующее, что мы сделаем, — продумаем, как мотивировать врачей на работу с ИИ-решениями», — объяснил Андрей Дорофеев. Для выбора обоснованного подхода к этому вопросу он предлагает рассмотреть три различных уровня зрелости ИИ-систем: «Первый уровень — это новые идеи и разработки, требующие апробации на предмет востребованности рынком. Такие решения еще не прошли необходимые клинические испытания.
Стартап Healx использует ИИ для сопоставления лекарств, прошедших клинические испытания, с редкими заболеваниями, которые они могли бы лечить. Arterys использовала облачные вычисления для предоставления изображений 4D Flow больничным радиологам через веб-браузер, что позволяет им принимать жизненно важные решения о лечении. Компания Thymia, основанная в 2020 году, разработала видеоигру на основе искусственного интеллекта, которая призвана обеспечить более быструю, точную и объективную оценку психического здоровья. Алгоритмы ИИ способны анализировать большие объемы данных о здоровье населения, включая информацию из социальных сетей, новостных порталов и официальных статистических данных, для прогнозирования возможных вспышек болезней и эпидемий. Это позволяет государственным органам заранее подготовиться к возможным эпидемиям. В России работает цифровой сервис диагностики MDDC, основанный на алгоритмах нейросети: он помогает выявлять минимальные новообразования в легких менее 4 мм , а также диагностировать рак на ранней стадии. В исследовании Journal of the National Cancer Institute ученые использовали ИИ для анализа маммограмм более чем 26 000 женщин. В целом, ранняя диагностика и прогнозирование с использованием ИИ открывает новые горизонты для медицинской науки, делая возможным профилактику и оперативное лечение многих заболеваний на самых ранних стадиях. Персонализированное лечение на основе искусственного интеллекта ИИ играет важную роль в разработке персонализированных планов лечения, основанных на индивидуальных характеристиках пациента. В хирургии, роботизированные системы и ИИ уже помогают хирургам в проведении сложных операций с большей точностью и меньшими рисками для пациента. В операционной ИИ может анализировать данные в реальном времени, предоставляя хирургам ценную информацию, которая помогает в принятии решений во время операций. Другое интересное направление - персонализированная терапия на основе генетической информации: при участии ИИ медицинские учреждения могут создавать индивидуализированные планы лечения, используя генетическую информацию пациента. Это может помочь в создании более эффективных и безопасных терапевтических планов лечения, минимизируя побочные эффекты и увеличивая шансы на успешное лечение. Алгоритмы предсказания реакции на лекарства: ИИ может анализировать большой объем данных о реакциях различных пациентов на лекарства, предсказывая, как конкретный пациент может отреагировать на определенное лекарство или терапию.
Будущее рядом: как нас будет лечить искусственный интеллект?
Применение искусственного интеллекта в медицинских нейросетях предлагает обещающие перспективы для будущего здравоохранения в России. Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения. Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине. Можно ли назвать научным направление Искусственный интеллект (ИИ) и сhatGPT4 вобравшим в себя достижения вычислительной математики, философии, нейрофизиологии для создания систем, которые бы обладали. Альманах содержит ряд статей о применении технологий искусственного интеллекта (ИИ) в здравоохранении, в частности, в медицинской диагностике и мониторинге хронических заболеваний.
ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране
Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Искусственный интеллект в медицине. Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения.
Минздрав рассказал о распространении искусственного интеллекта для медицины в России
En Искусственный интеллект в медицине и здравоохранении Внедрение технологий искусственного интеллекта в медицине — один из главных трендов в мире здравоохранения. ИИ и нейросети способны в корне изменить всю мировую медицину: преобразовать систему диагностики, способствовать разработке новых лекарственных препаратов, повысить качество медуслуг в целом и снизить расходы. В перспективе возможности ИИ практически безграничны. Однако прежде чем рассматривать особенности использования технологии в сфере здравоохранения, необходимо разобраться в том, что представляет из себя ИИ. Что такое ИИ? Одно из первых определений ИИ было предложено еще в 80-х годах XX века. Ученые в области теории вычислений Файгенбаум и Барр назвали искусственный интеллект областью информатики, направленной на создание интеллектуальных систем, обладающих возможностями, присущими человеческому разуму.
К ним относят возможность обучения, распознавание языка, умение рассуждать и решать различные проблемы. Сегодня к ИИ относят программные средства с набором алгоритмов и методов, которые могут решать интеллектуальные задачи так же, как это сделал бы человек. К примеру, искусственный интеллект способен: Прогнозировать различные ситуации Оценивать информацию и формулировать заключительную оценку Анализировать данные и искать скрытые закономерности Стоит отметить, что на настоящий момент компьютеру не доступно моделирование сложных процессов высшей нервной системы человека: творчество, эмоции и т. Все это может возникнуть со временем и с появлением более сильного искусственного интеллекта. Однако компьютеры уже научились решать задачи так называемого «слабого искусственного интеллекта». Машина может работать по заранее установленным человеком правилам.
Кроме того увеличивается количество проектов, в которых компьютеры не только работают по установленным алгоритмам, но также самообучаются, совершенствуются и решают более сложные задачи. Первые создаются программистами, которым не нужно обладать информацией обо всех зависимостях между входными параметрами и ответом — полученным результатом. Такие программные продукты прекрасно справляются со многими задачами, в том числе медицинскими — системы используются для расчетов статистик, формирования реестров и т. Искусственный интеллект нужен там, где невозможно задать четкие правила и алгоритмы. К примеру, как простая программа может на рентгенологическом снимке выявить наличие патологии? Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни.
Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы. Как работают нейронные сети в медицинской сфере? Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению. Механизм работы искусственных нейросетей повторяет принцип биологических. В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой. В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты.
Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше. Нейросети могут применяться в медицине разными способами. Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос.
Качество диагностики выходит на совершенно другой уровень. Однако с развитием технологий появляются и опасения у людей — некоторые пациенты сейчас склонны не доверять искусственному интеллекту. Но дело в том, что за весь процесс полная ответственность все также остается на враче — именно он выносит окончательное решение о диагнозе и лечении. ИИ лишь помогает ему собрать все нужные данные воедино и указывает на сигналы, которые могут свидетельствовать об отклонении. Сама технология рассматривается только в качестве СППВР-сервиса — системы поддержки принятия врачебных решений. ИИ анализирует информацию о пациенте, и только врач определяет, что и как делать дальше.
Искусственный интеллект не менее полезен для Министерства здравоохранения, например, при массовом медицинском осмотре — скрининге. Для примера возьмем норматив — двойной повторный пересмотр маммографических исследований на рак молочной железы. В этом случае мы снимаем с врачей обязанность проводить первичный или второй просмотр карты пациента и поручаем это искусственному интеллекту. Благодаря алгоритму, большой системный процесс автоматизируется, у врачей появляется свободное время — его можно уделить более тщательной диагностике, которую пока нельзя доверить технике. Этика применения ИИ Расширение участия ИИ в медицине поставило перед специалистами ряд этических вопросов, связанных, в том числе, с его использованием без контроля врача. Речь идет о вероятности самостоятельного применения инструментов пациентом. Между человеком и машиной всегда должно быть промежуточное звено — медицинский специалист. Чтобы пациенты не использовали технологии себе во вред и не занимались самолечением, существует Всероссийский свод этических правил применения искусственного интеллекта в медицине. Что касается повсеместного использования «умных» устройств, которыми пользуется каждый второй, то отнести их к технологиям ИИ нельзя. Гаджеты не анализируют информацию и не могут поставить предположительный диагноз.
Устройства могут считывать пульс, сердцебиение, уровень кислорода, то есть предоставлять данные об одном или нескольких параметрах, но не могут конкретно указать, в чем проблема. Крупные бренды, выпускающие «умные» устройства, всегда советуют обращаться к врачу, если показатели изменились в худшую сторону.
Ведомство считает, что разработка, созданная на инвестиции от «Росатома», Минпромторга, «Р-Фарм» и «Ташира», может нанести вред здоровью пациентов.
Согласно оценкам Минздрава, планируется, что в текущем году каждый регион приобретет как минимум одно медицинское устройство с использованием искусственного интеллекта. К 2024 году этот показатель планируется увеличить до не менее трех медицинских изделий с применением технологий ИИ. Пока к работе ИИ есть вопросы, к робокошкам их нет.
Пилотный проект по внедрению милых роботов-курьеров на помощь медицинскому персоналу и посетителям стартовал в трёх больницах столицы.
Низкий социально-экономический статус — основной фактор риска преждевременной смертности. Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья. С этой проблемой тесно связано смещение результатов из-за отсутствия включения меньшинств в наборы данных.
Пример — алгоритмы в дерматологии, которые диагностируют меланому, но не учитывают цвет кожи. Требуется искоренить предрассудки и стремиться к медицинским исследованиям, которые обеспечивают действительно репрезентативное представление населения. Возможности Ученые подчеркивают , что критически важны тщательные исследования результатов работы алгоритмов и проведения тестирований в клинических условиях. Человеческое здоровье слишком ценно, поэтому в ближайшее время ИИ сможет выполнять только рутинные задачи с минимальным риском.
Не смотря на проблемы, в дальнейшем исследователи видят использование нейронных сетей в программном обеспечении, которое будет быстро и точно обрабатывать огромные массивы данных и машинах, которые будут видеть и делать то, что не под силу человеку. Это в конечном итоге заложит основу для высокопроизводительной медицины, которая будет основана на данных и уменьшит зависимость от человеческих ресурсов.