Увеличивается количество используемых кубитов, модернизируются системы поддержания кубитной когерентности, ведутся поиски оптимальной технологии изготовления многокубитных архитектур.
Почему от квантового компьютера зависит национальная безопасность и когда он появится в России
Кубит, минимальная единица передаваемой или хранимой квантовой информации, аналогичная биту в классической информации. Кубит отличается от бита тем, что он представляет собой фактически не два отдельных состояния, а два состояния, которые как бы перекрываются. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. В процессе вычислений значение кубита определяется не единицей или нулём, а вероятностью наличия в нём одного из этих значений. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии.
Эксперт рассказал, из чего состоит квантовый компьютер, что такое кубиты и для чего они нужны
Именно необычное свойство кубита, его способность одновременно становиться и нулём, и единицей, даёт квантовому компьютеру потрясающую вычислительную мощность. Новый квантовый компьютер достигает когерентности кубита на заряде электрона в 0,1 миллисекунды. Для кубитов IBM и Google безошибочная работа кубитов означает, что каждый логический кубит должен состоять из 1000 физических кубитов.
Что такое кубит?
С другой, кубиты откликаются не только на управляющее поле, но и на слабые электрические поля, присутствующие вокруг и создающие шумы. Чаще всего в заголовки новостей попадает так называемый «сверхпроводящий» кубит. Кубит, минимальная единица передаваемой или хранимой квантовой информации, аналогичная биту в классической информации. Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Рассказываем, как появился первый квантовый компьютер, сколько кубитов в современных процессорах и какие задачи они могут решать. Российские ученые изготовили и испытали первый в нашей стране сверхпроводящий кубит.
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
С декогеренцией можно бороться разными способами. Например, компания D-Wave, которая производит квантовые компьютеры, охлаждает атомы почти до абсолютного нуля, чтобы отсечь все внешние процессы. Поэтому они такие большие — почти всё место занимает защита для квантового процессора. Квантовый процессор на девяти кубитах от Google Зачем нужны квантовые компьютеры Одно из самых важных применений квантового компьютера сейчас — разложение на простые числа. Дело в том, что вся современная криптография основана на том, что никто не сможет быстро разложить число из 30—40 знаков или больше на простые множители. На обычном компьютере на это уйдёт миллиарды лет. Квантовый компьютер сможет это сделать примерно за 18 секунд. Это означает, что тайн больше не будет, потому что любые алгоритмы шифрования можно будет сразу взломать и получить доступ к чему угодно. Это касается всего — от банковских переводов до сообщений в мессенджере. Возможно, наступит интересный момент, когда обычное шифрование перестанет работать, а квантовое шифрование ещё не изобретут.
Симметричное шифрование Ещё квантовые компьютеры отлично подходят для моделирования сложных ситуаций, например, расчёта физических свойств новых элементов на молекулярном уровне. Это, возможно, позволит быстрее находить новые лекарства или решать сложные ресурсоёмкие задачи. Сейчас квантовые компьютеры всего этого не умеют — они слишком сложные в производстве и очень нестабильные в работе. Максимум, что можно пока сделать, — заточить квантовый компьютер под единственный алгоритм, чтобы получить на нём колоссальный выигрыш в производительности. Как раз для этих целей их и закупают крупнейшие компании — чтобы быстрее решать одну-две самые важные для себя задачи.
Нетрудно в этом убедиться, ознакомившись со свежим выпуском Nature. Статьи «High-fidelity parallel entangling gates on a neutral atom quantum computer» и «High-fidelity gates and mid-circuit erasure conversion in an atomic qubit» заявляют о достижениях в этом направлении. Авторам первой удалось сконструировать 60-кубитный атомный массив, точность выполнения запутывающего гейта в котором достаточно низкая, чтобы потенциально можно было получить устойчивые к ошибкам вычисления при использовании поверхностных кодов. Вторая же предлагает реализацию атомной архитектуры, позволяющую эффективно детектировать возникающие ошибки.
Специалисты Atomic Computing при описании своей работы тоже предоставляют ссылку на работу в Nature, где заявляют о рекордном времени когерентности кубита. В статье можно подробнее ознакомиться с деталями реализации кубитной архитектуры. Результаты действительно впечатляют — время декогеренции в 40 секунд существенно превосходит предыдущие показатели и потенциально позволяет производить очень объёмные вычисления. Конечно, при условии, что информация в кубитах не будет потеряна вследствие неточности применяемых к ним гейтов, особенно двухкубитных. И вот тут информации о характеристиках нового устройства достаточно мало. По какой-то причине авторы не выносят точных значений фиделити двухкубитного гейта в своей системе в первые строки пресс-релиза.
Если вы знаете про закон Мура количество транзисторов на кристалле интегральной схемы, удваивается каждые два года — ред. Нанометры, про которые сейчас все говорят, — это скорее маркетинговые штуки. Сейчас в литографии есть новая ветка развития — экстремальный ультрафиолет, где светят длиной волны 13,5 нм.
Это рекордная длина волны, которую можно получать стабильно и делать чипы в пределе 2-3 нм, снижая дифракционный предел различными оптическими ухищрениями. Но что делать дальше, — непонятно. Возможен тупик в уменьшении транзисторов на горизонте 5—10 лет. Данила Шапошников Тут может помочь фундаментальное отличие квантовых и классических вычислений. Классические — последовательны, а квантовые природным образом позволяют делать полностью параллельные вычисления. То есть каждый квантовый бит может вычислять параллельно с другими квантовыми битами системы. При этом бит может иметь несколько состояний одновременно — быть и нулем, и единицей. Или вообще многоуровневой системой, но мейнстрим сейчас — кубит, у него два уровня. Вычислительная мощность растет экспоненциально с добавлением кубитов в систему 2n.
А в обычной системе она растет квадратично n2. Современная наука находится в стадии понимания, что такое квантовая механика. Все законы частиц, взаимодействия атомов между собой описывается законами квантовой механики. Эта наука отличается от того, что было до нее. Например, в квантовой механике есть принцип суперпозиции, благодаря которому размерность пространства состояний растет экспоненциально. Классический компьютер просто не может это смоделировать. А квантовый компьютер сам построен на таких явлениях и умеет работать с такими системами. Плюс в квантомеханической системе есть амплитуды вероятности с комплексными числами — у обычных компьютеров такого нет. Если взять задачу по разложению какого-то числа в 2 048 бит, то классический алгоритм будет раскладывать его за тысячу шагов и за 1 000 000 000 000 лет.
А алгоритм Шора, если бы был квантовый компьютер с нужным количеством кубит, сделает это за 107 шагов — примерно 10 секунд. Пока таких квантовых компьютеров нет, но те, которые есть, уже умеют делать то, на что классическому компьютеру понадобится огромное количество времени. Физик Дэвид ди Винченцо грамотно сформулировал пять основных критериев: Сформулировать, что такое кубит. Они бывают разные, сегодня есть несколько известных платформ — на атомах, ионах, сверхпроводниках, фотонах. Уметь вводить кубит в суперпозицию. Понять, как сделать так, чтобы кубит одновременно был нулем и единицей. В каждой из платформ введение в суперпозицию — отдельная задача и это позволяют делать разные физические принципы. Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе.
Квантовый бит кубит может быть одновременно и в состояниях "0" и "1", и во всех их комбинациях. Кубит - это элементарная единица информации в квантовых вычислениях.
Конечно, с точки зрения большинства людей, это звучит совершенно невероятно, но квантовая физика открывает такую возможность. Именно она позволяет квантовому компьютеру за счет параллельного выполнения сразу нескольких операций быстро решать задачи, которые не по силам мощному суперкомпьютеру. Самое главное, что квантовый выбирает из множества вариантов решения по-настоящему лучший, а не просто оптимальный. Основа традиционного компьютера - кремниевый транзистор, а на чем строится квантовый? Руслан Юнусов: Здесь пока ситуация неопределенная. Мир еще не выбрал лучшую технологию. Сейчас конкурируют 4 варианта кубитов: на одиночных атомах, ионах, сверхпроводниках, фотонах. У каждой платформы есть свои плюсы и минусы. Возможно, какая-то одна в конце концов вытеснит остальных конкурентов. А может, останутся все, и каждая окажется наилучшей для определенного класса задач.
Ваше превосходство О фантастических возможностях квантового компьютера говорят лет 40, но вот о кардинальных прорывах не слышно. Зато есть достаточно авторитетные скептики, которые утверждают, что он вообще никогда не будет создан. Что это игрушка, которой морочат голову и умело выбивают огромные деньги, удовлетворяя собственное любопытство. Руслан Юнусов: Да, такое мнение существует. Но скептики всегда были, есть и будут. Это нормально. Напомню, что сама идея квантового компьютера была сформулирована в 80-е годы, а первые кубиты появились только через 20 лет, на рубеже 2000-х годов. Прошло еще 20 лет, и сейчас лидеры делают вычислители с сотнями кубитов. Что касается глобальных достижений, то за последние годы произошло как минимум несколько. Так, группы в США и Китае смогли достичь так называемого квантового превосходства.
Превосходства над чем? Руслан Юнусов: Над суперкомпьютерами. Им были предложены тесты, с которыми квантовые, имея всего несколько десятков кубитов, справились за несколько минут. Так вот суперкомпьютерам они оказались вообще не под силу. Безоговорочная победа? Значит, квантовые машины уже сейчас можно выпускать в "люди"? Руслан Юнусов: Увы, к этому мы еще не пришли. Да, квантовый победил, но в специальных, абстрактных тестах. А вот для реальных задач в промышленных масштабах он пока не приспособлен. Не может соперничать с традиционными компьютерами.
Для этого нужны системы с многими тысячами, а возможно, миллионами кубит.
Квантовые компьютеры: как они работают — и как изменят наш мир
Китай создал новый центр квантовых исследований National Laboratory for Quantum Information Sciences стоимостью 10 миллиардов долларов; Евросоюз разработал генеральный план развития квантовых технологий и планирует потратить на это около миллиарда евро; США, в соответствии с законом о национальной квантовой инициативе, выделили 1,2 миллиарда долларов на развитие проектов в этой области за пятилетний период. Однако для достижения полезной вычислительной производимости, вероятно, понадобятся машины, состоящие из сотен тысяч кубитов. Как работают квантовые компьютеры Классические компьютеры выполняют логические операции, используя биты — единицы информации, принимающие значение либо «0», либо «1». В квантовых вычислениях для этого используются кубиты, представляющие собой квантовое состояние объекта, например, фотона.
До момента измерения квантовое состояние является неопределенным, то есть оно находится в суперпозиции двух возможных состояний — «0» или «1». Суперпозиция одного объекта может быть связана с суперпозициями других объектов, то есть можно сконструировать между ними логические отношения, подобные тем, что существуют на основе транзисторов в классических компьютерах. Однако квантовые системы трудно поддерживать в состоянии суперпозиции достаточно долго, поскольку квантовое состояние нарушается система декогерирует в результате взаимодействия с окружающей средой.
Чтобы добиться квантового превосходства, необходимо использовать явление, называемое квантовой запутанностью. Оно возникает в случае, когда две системы настолько сильно связаны, что получение информации об одной системе немедленно даст информацию о другой — вне зависимости от расстояния между этими системами. Хартмут Невен, директор Google Quantum AI Labs предложил новое правило, которое предсказывает прогресс квантовых компьютеров в ближайшие 50 лет.
Оно гласит, что мощность квантовых вычислений испытывает двукратный экспоненциальный рост по сравнению с обычными вычислениями. Если бы этому принципу подчинялись классические компьютеры, то ноутбуки и смартфоны появились бы в мире уже к 1975 году. Невен обосновывал свое правило тем, что ученые создают все более совершенные квантовые процессоры с большим количеством запутанных кубитов, и при этом процессоры сами по себе экспоненциально быстрее традиционных компьютеров.
Закон Невена, или, как его еще называют, закон Мура 2. Это лишь вопрос количества доступных кубитов и снижения частоты ошибок, которые представляют основную проблему современных квантовых информационных систем. Если закон Невена себя оправдает, то в ближайшем будущем квантовые компьютеры покинут пределы университетских и исследовательских лабораторий и станут доступны для коммерческих и других приложений.
Как применяются квантовые компьютеры сейчас Все больше крупных компаний разрабатывают квантовые компьютеры, обеспечивая доступ к ним через облачные технологии. Заказчиками могут быть университеты, исследовательские институты, а также различные организации, которые заинтересованы в том, чтобы протестировать возможные сценарии использования таких вычислений. Рынок пока невелик: по оценкам Hyperion Research , в 2020 году он составил 320 миллионов долларов, однако его ежегодный рост составляет почти 25 процентов.
Специалисты Boston Consulting Group предсказывают, что к 2040 году рынок вырастет до 850 миллиардов долларов. Этот прогноз основан на уверенности, что уже в ближайшие годы мир получит оборудование, подходящее для решения коммерческих и общественных задач. Даже отсутствие готовых прототипов не мешает инвестициям в начинающие стартапы.
Например, PsiQuantum привлек 665 миллионов долларов на создание квантовых компьютеров на базе запутанных фотонов. В настоящее время усилия ученых сосредоточены на двух направлениях: создании универсальных квантовых компьютеров для широкого круга задач и специализированных квантовых вычислителях. Как правило, коммерчески доступные системы имеют небольшое количество кубитов, однако в них используются принципы квантовой механики, ускоряющие вычисления.
Существуют несколько способов кодирования кубита в состоянии фотона. Наиболее простые — поляризационный кубит и двухрельсовая кодировка. Поляризационный кубит подразумевает сопоставление состояний 1 и 0 ортогональным поляризациям, например, вертикальной и горизонтальной.
Двухрельсовая кодировка предлагает кодировать один кубит в паре оптических мод, сопоставленных состояниям 0 и 1, в одной из которых находится фотон. В обоих случаях из-за слабого взаимодействия фотонов реализация двухкубитного гейта требует использования нелинейной среды. Причём величина нелинейности должна на много порядков превосходить достижимые значения.
Ввиду технической невозможности прямой реализации был найден альтернативный подход, названный протоколом KLM Knill, Laflamme, Milburn [21]. Он позволяет реализовывать двухкубитный запутывающий гейт с использованием только линейных элементов, однако получаемая схема имеет ограниченную вероятность успешного срабатывания. Такой подход уже является приемлемым для экспериментальных задач, и позволяет реализовывать квантовые вариационные алгоритмы с малым числом кубитов.
Однако конечная вероятность успешного срабатывания гейта ведёт к экспоненциально малой вероятности срабатывания всей схемы при её масштабировании, что недопустимо. Преодоление этого ограничения потребовало выработки ещё одного альтернативного подхода. Из характеристик квантового состояния светового пучка могут быть выделены отдельные параметры, связанные соотношением неопределённостей Гейзенберга.
Связь данных параметров позволяет кодировать в них состояние кубита. В некотором смысле это подобно тому, как оно кодируется в поляризации. Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела.
Оказывается, что кубиты на сжатых состояниях можно телепортировать с использованием базовых оптических элементов. А корректируя протокол телепортации, можно менять телепортируемое состояние [22]. В обычных условиях такое изменение является нежелательным, но при работе со сжатыми состояниями скорректированную телепортацию можно использовать для реализации гейта.
Телепортируя многокубитные состояния, можно реализовать многокубитные гейты детерменированным образом. Необходимо только владеть технологией приготовления запутанных состояний высокой размерности, необходимых для осуществления телепортации. Но опять же, для сжатых состояний генерация запутанности возможна при помощи базовых оптических элементов.
Экспериментально была продемонстрирована генерация запутанных кластерных состояний на данной архитектуре объёмом до 1000000 кубитов. Строго говоря, сжатые состояния не являются кубитами. Кубит является лишь подмножеством пространства сжатых состояний.
И телепортационные гейты не обеспечивают возможности произвольной трансформации сжатого состояния. Однако если специально выделить из сжатого состояния кубит, то и это ограничение удаётся преодолеть. Более того, оставшиеся степени свободы сжатого состояния можно использовать для дублирования состояний кубита, и таким образом реализовывать коррекцию ошибки.
Он обеспечивает устойчивую коррекцию ошибок, если степень сжатия состояния, то есть отношение дисперсии квадратур, достигает 15-17дБ, а в теории — 10дБ [24]. Экспериментальные же результаты сегодня демонстрируют техническую возможность достижения сжатия состояния до 15 дБ, чего может быть достаточно для экспериментальной демонстрации коррекции ошибки. Таким образом для оптической архитектуры удалось преодолеть фундаментальные ограничения реализации запутывающего гейта, технически показана возможность создания регистра до 1000000 кубитов, архитектура включает естественный механизм коррекции ошибки, а продемонстрированный уровень шумов находится на границе устойчивой коррекции.
Безусловно, все эти результаты были продемонстрированы в независимых экспериментах, опубликованные значения являются пиковыми и разработка единого вычислителя, использующего все представленные технологии, представляет собой сложнейшую инженерную задачу. Но необходимо констатировать, что имеющиеся результаты позволяют перевести оптическую архитектуру из ранга потенциально перспективного кандидата для реализации масштабируемого квантового вычислителя на дальних временных горизонтах в ранг актуального игрока. Это демонстрирует канадская компания Xanadu, 1 июня 2022 года представившая в публичном доступе вычислитель на сжатых состояниях с регистром из 216 оптических мод [26].
Заключение С учётом всего вышеизложенного, можно вернуться к представлению об интеграции квантовых вычислений в индустрию информационных технологий. Отрасль в целом демонстрирует ожидаемый планомерный рост, сопряженный с последовательным решением инженерных задач. Это отражается в появлении квантовых вычислителей с большими чем раньше объёмами квантовых вычислительных регистров.
Доминирующей архитектурой остаются кубиты на основе сверхпроводников. Однако малое время жизни кубитов данного типа, связанное с их большой чувствительностью к шумам и необходимостью криогенного охлаждения, ставит под вопрос величину нереализованного потенциала масштабируемости данной технологии. Можно ожидать, что в ближайшие 3-5 лет технология будет оставаться основной, но в дальнейшем может уступить более устойчивой архитектуре.
Примером более устойчивой архитектуры могут послужить кубиты на основе холодных атомов. В ближайшее время можно ожидать публикации с демонстрацией рекордной степени точности двухкубитного гейта, построенного на основе подхода с наносекундным временным масштабом. Совершенствование и масштабирование данной технологии может привести к появлению программируемого атомного вычислителя с рекордным количеством кубитов.
Наиболее перспективными на дальнем временном горизонте остаются вычислители на основе оптических схем. Исследования последних лет в значительной мере конкретизировали понимание того, как должен быть устроен оптический вычислитель большого масштаба с коррекцией ошибок. То есть устройство, полностью выводящее отрасль квантовых вычислений из эпохи NISQ.
Можно со значительной степенью уверенности утверждать, что это будет система с кубитами на основе сжатых состояний с непрерывными переменными. Главными ограничениями для такого вычислителя остаётся неизбежное возникновение ошибки телепортационного гейта из-за невозможности сжать квадратуру квантового состояния до нуля, а также потери излучения в волокне. Существенными шагами в направлении к созданию масштабируемого оптического вычислителя станет экспериментальная демонстрация устойчивой коррекции ошибки и исполнение вычислителя такого типа в виде интегрально-оптической схемы.
Облачные квантово-вычислительные сервисы могут начать внедряться в программные продукты для решения задач оптимизации при помощи вариационных алгоритмов уже в обозримом будущем, на горизонте 5-7 лет. Наиболее вероятно, что аппаратным обеспечением данных сервисов будут оставаться вычислители на основе сверхпроводящих схем или холодных атомов. Значительное развитие может получить инфраструктура квантовой оптической связи, призванная, в первую очередь, решать задачи обеспечения информационной безопасности.
Можно ожидать, что со временем данные сети будут усложняться, переходя на обмен состояниями более высокой размерности и обеспечивая реализацию коррекции ошибок за счёт простых интегрально-оптических устройств. В отдалённой перспективе, на горизонте 15 и более лет, это может привести к созданию разветвлённой квантово-коммуникационной сети, объединяющей, в том числе, оптические квантовые компьютеры, что позволит использовать квантово-вычислительные ресурсы более широко и эффективно. КРК квантовый компьютер квантовые вычисления Список литературы F.
Arute, K. Arya, John M. Martinis et al.
Zhou, E.
Лебедева РАН при координации госкорпорации «Росатом». Это часть реализации дорожной карты по квантовым вычислениям. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность демонстрирует ионный процессор. До конца 2024 года планируется увеличить число кубитов в отечественных вычислительных машинах до 50-100.
Российские ученые решили сосредоточиться на использовании кубитов из ионов, которые обладают более длительным временем когерентности и, следовательно, обеспечивают больше возможностей для успешного выполнения квантовых алгоритмов с меньшим количеством ошибок. В 2021 году был представлен прототип компьютера на ионах с четырьмя кубитами.
Элементы классических компьютеров могут хранить только один бит: 1 или 0. Кубиты — это квантовые объекты, которые могут находиться в суперпозиции двух состояний, то есть кодировать одновременно и логическую единицу, и ноль. Это открывает новые возможности для обработки информации: компьютер из нескольких тысяч кубитов может производить вычисления со скоростью, недоступной современным суперкомпьютерам. В роли кубитов могут выступать атомы или электроны — цифровые данные записываются на их спине.
Как работают квантовые процессоры. Объяснили простыми словами
Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. Фундаментальные принципы кубитов, простое объяснение того, что такое суперпозиция. Еще одна хорошая новость — логические операции с большим массивом кубитов всегда можно представить в виде последовательности двухкубитных операций. Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа. Поэтому для квантовых компьютеров придумали единицу информации кубит (от английского quantum bit).
ЧТО ТАКОЕ КУБИТ
Отчасти это происходит из-за того, что при начальном вводе кубиты могут перебирать методом грубой силы огромное число возможных результатов одновременно. Окончательный ответ появляется лишь когда ученые измеряют кубиты — так же, используя микроволновые сигналы — что заставляет их «коллапсировать» в двоичное состояние. Зачастую ученым приходится производить расчеты несколько раз, чтобы проверить ответ. Запутанность — еще более потрясающая штука.
Применение микроволновых импульсов на пару кубитов может запутать их так, что они всегда будут существовать в одном квантовом состоянии. Это позволяет ученым манипулировать парами запутанных кубитов, просто изменяя состояние одного из них, даже если они физически разделены большим расстоянием, отсюда и «жуткое действие на расстоянии». Из-за предсказуемой природы запутанности, добавление кубитов экспоненциально увеличивает вычислительную мощность квантового компьютера.
Интерференция — последнее из свойств, которые реализуют квантовые алгоритмы. Представьте себе катящиеся волны: иногда они подгоняют друг друга действуют конструктивно , иногда гасят деструктивно. Использование интерференции позволяет ученым контролировать состояния, усиливая тип сигналов, приводящих к правильному ответу, и отменяя те, которые выдают неверные ответы.
Как программируются квантовые компьютеры? Основная цель состоит в том, чтобы закодировать части задачи в сложное квантовое состояние, используя кубиты, и затем манипулировать этим состоянием, чтобы привести его к некоему решению, которое можно будет измерить после коллапса суперпозиций в детерминированные последовательности нулей 0 и единиц 1. Перечитайте еще раз.
Звучит сложно, но поскольку все термины мы уже разобрали, понять можно.
Это классический бит некая логическая единица, которая может принимать два значения, скажем: ноль и единичка. Так работает обычный компьютер. Кубит отличается от бита тем, что он представляет собой фактически не два отдельных состояния, а два состояния, которые как бы перекрываются. Причем перекрываются в разной пропорции, то есть количество состояний кубита бесконечно, и его можно записать как сумму состояний ноль и один с разными коэффициентами которые, вообще говоря, комплексные числа таким образом, что сумма квадратов модулей коэффициентов равняется единичке. Какова физическая реализация кубита у вас?
Наши кубиты реализованы в виде напыленного на полупроводниковую подложку тонкого металлического у нас алюминиевого плоского кольца. По сути, они представляют собой разрыв в кольце, расстояние между берегами которого составляет несколько нанометров. Берега разделены прослойкой диэлектрика, в нашем случае просто оксидом алюминия. Главное свойство этих переходов заключается в том, что из-за явления туннелирования через эти разрывы протекает сверхпроводящий ток. Это явление было предсказано 50 лет назад Брайаном Джозефсоном. Десятки милликельвин.
Как достигаются такие низкие температуры? Это довольно стандартная технология. Для охлаждения объекта до нескольких кельвин подходит обычный жидкий гелий. Именно он позволяет получать еще более низкие температуры при атмосферном давлении. Речь идет о температурах порядка десятых долей кельвина. Наконец, чтобы опуститься еще ниже, требуется специальная смесь изотопов гелия-3 и гелия-4.
В общем, такие низкие температуры можно получать, просто включив прибор в розетку. Там же есть еще один, работающий на гелии-4. Что в вашем кубите играет роль нулей и единиц, то есть двух основных состояний? В нашем кольце кубит, напомним, реализован как кольцо на полупроводниковой подложке при приложении определенного магнитного поля существуют два равновероятностных состояния. Они равновероятностные потому, что имеют одинаковую энергию то есть ни одно из состояний не является более выгодным энергетически для всей системы, чем другое. Эти состояния соответствуют незатухающему сверхпроводящему току, текущему по кольцу по часовой и против часовой стрелки соответственно.
Это и есть ноль и единица. Физики говорят, что в кубите возникает суперпозиция этих двух состояний. Суть явления туннелирования заключается в следующем: квантовые частицы, в отличие от классических, могут с некоторой вероятностью проходить сквозь потенциальные барьеры.
В разработке принимали участие специалисты из Московского физико-технического института, Российского квантового центра, Национального исследовательского технологического университета МИСиС и ряда других научных учреждений. О разработке сообщается в пресс-релизе. Единицей памяти современных компьютеров являются биты. Они могут принимать только одно значение: 0 или 1. По сравнению с ними кубиты могут кодировать сразу и логическую единицу, и ноль, что открывает совершенно новые возможности хранения и обработки цифровой информации. Физическим объектом в роли кубитов могут выступать атомы или электроны.
Современные процессоры это произведение технологического искусства, за которым стоят многие десятки, а то и сотни лет фундаментальных исследований. И это одни из самых высокотехнологичных устройств в истории человечества! Мы о них уже не раз рассказывали, вспомните хотя бы процесс их создания! Но что если я скажу что на самом деле все наши компьютеры совсем не всесильны! Например, если мы говорим о BigData больших данных то обычным компьютерам могут потребоваться года, а то и тысячи лет для того, чтобы обработать данные, рассчитать нужный вариант и выдать результат. И тут на сцену выходят квантовые компьютеры. Но что такое квантовые компьютеры на самом деле? Чем они отличаются от обычных? Действительно ли они такие мощные? Небольшая затравочка — мы вам расскажем, как любой из вас может уже сегодня попробовать воспользоваться квантовым компьютером! Устраивайтесь поудобнее, наливайте чай, будет интересно. Глава 1. Чем плохи обычные компьютеры? Начнем с очень простого классического примера. Представим, что у вас есть самый мощный суперкомпьютер в мире. Это компьютер Фугаку. Его производительность составляет 415 ПетаФлопс. Давайте дадим ему следующую задачку: надо распределить три человека в две машины такси. Сколько у нас есть вариантов? Как быстро наш суперкомпьютер справится с этой задачей? Задачка-то элементарная. А теперь давайте возьмем 25 человек и рассадим их по двум шикарным лимузинам, получим 2 в 25 степени или 33 554 432 варианта. Поверьте, это число тоже плевое дело для нашего суперкомпьютера. А теперь 100 человек и 2 автобуса, сколько вариантов? Считаем: 2 в 100 степени — это примерно 1. Теперь нашему суперкомпьютеру на перебор всех вариантов понадобится примерно 4. А это уже очень и очень много. Такой расчет займет больше времени чем суммарная жизнь сотен вселенных. Суммарная жизнь нашей вселенной: 14 миллиардов лет или 14 на 10 в 9 степени. Даже если мы объединим все компьютеры в мире ради решения, казалось бы, такой простой задачки как рассадка 100 человек по 2 автобусам — мы получим решение, практически никогда! И что же? Выхода нет? Есть, ведь квантовые компьютеры будут способны решить эту задачку за секунды! И уж поверьте — использоваться они будут совсем не для рассадки 100 человек по 2 автобусам!
Что такое кубит в квантовом компьютере человеческим языком
Кубит отличается от бита тем, что он представляет собой фактически не два отдельных состояния, а два состояния, которые как бы перекрываются. Каждый лишний кубит играет большую роль – ведь он сразу повышает мощность вычислений в два раза. Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе. Кубит может принять значение любого из квадратов в сфере, а бит — только 1 или 0.