Новости искусственный интеллект в медицине и здравоохранении

Разрабатываем решения для медицины будущего с искусственным интеллектом. Разрабатываем решения для медицины будущего с искусственным интеллектом. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств.

Решения СберМедИИ вошли в ТОП-10 медицинских нейросетей (ИИ) в России в 2024 году

Нужны они в первую очередь для обучения студентов-медиков. Ученые показывают фантомы мозга, простаты, сосудов кровеносной системы, молочной железы. Фантомов молочной железы сразу несколько. Нужно это для имитации разных патологий у пациентов. На некоторых образцах заболевания видны даже без УЗИ. Причем одну и ту же патологию создают с разными характеристиками, чтобы картина была максимально реалистична.

Денис Леонов, старший научный сотрудник Центра диагностики и телемедицины: «Здесь заложены образования различной жесткости. Жесткость — один из диагностических критериев, который позволяет отличить одно образование от другого. Данный фантом позволяет научиться студентам работать в режиме эластографии». А еще фантомы помогают настраивать медоборудование. Например, аппарат-фантом имитирует позвоночник человека.

По нему можно исследовать остеопороз. Кости при этом заболевании становятся хрупкими, и как раз их состояние с максимальной точностью отражает фантом.

Технологии ИИ находят все большее применение в биологических науках, медицине и национальных системах здравоохранения. Авторы выделили пять основных уровней, где внедрение ИИ за последние годы дало наибольшие результаты: на уровне живой клетки — ИИ применяется в биоинформатике, биотехнологических и медицинских исследованиях, дизайне лекарственных препаратов; на уровне тканей и органов — активно используются технологии компьютерного зрения; на уровне целого организма — интенсивно развивается разработка носимых устройств медицинский интернет вещей , мобильные приложения, цифровые медицинские консьержи, платформы агрегации медицинских данных и др.

В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой. В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше.

Нейросети могут применяться в медицине разными способами. Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос. Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства. Алгоритм разработан с помощью технологий машинного обучения в медицине. Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии.

Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений. Распознавание рака кожи Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов. Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам. Машина справилась с задачей лучше специалистов. ИИ в УЗИ-обследовании беременных Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами. Система работает на основе искусственного интеллекта, и в нее заложено более 350 тысяч снимков плодов с теми или иными отклонениями.

Система называется ScanNav и она способна давать врачу много полезной информации о патологиях плода, опираясь на имеющиеся в базе данные по другим пациенткам. Пока ScanNav работает в тестовом режиме и используется только в акушерстве, но в будущем она может получить намного более широкое распространение и будет особенно полезна для стран, испытывающих острый дефицит во врачах. Применение и польза искусственного интеллекта в медицине Разработка ИИ сегодня является приоритетной задачей для многих стран мира. Если рассматривать внедрение умных систем в медицинской сфере, то в первую очередь их польза будет состоять в увеличении точности диагностики различных заболеваний. Практики и опыта врача может быть недостаточно для того, чтобы своевременно выявить ту или иную проблему в организме человека, тогда как нейронная сеть, обладающая доступом к огромному объему данных, передовой научной литературе и миллионам историй болезней, сможет быстро классифицировать любой случай, соотнести его со схожими проблемами у других пациентов и предложить план лечения. Сегодня искусственный интеллект не может решать сложные медицинские задачи: он самостоятельно не придумает и не спроектирует прибор из будущего, который сможет за пару секунд отсканировать организм человека, выявить любые проблемы и назначить оптимальное лечение. Однако и нынешние возможности очень интересны для врачей, пациентов и клиник. Врачам Сегодня искусственный интеллект отлично справляется с простыми задачами.

Например, он способен выявить наличие инородного тела или патологии по рентгеновскому снимку, а также определить наличие раковых клеток в цитологическом материале.

В этом году уже необходимо было внедрить не менее одного решения с искусственным интеллектом, в следующем году - не менее трех централизованных систем, в которых должны использоваться медицинские изделия с искусственным интеллектом. Та статистика, которую мы имели на начало октября, - это 70 регионов [, которые] уже приобрели и внедряют соответствующие решения", - сказал он на форуме "Биотехмед".

Врачам и пациентам: как искусственный интеллект помогает в медицине

Лекторий ФКН в Библиотеке иностранной литературы им. М. И. Рудомино в рамках Дней компьютерных пересечение технологий и здравоохранения меняет будущ. Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Искусственный интеллект и Big Data (анализ больших данных) трансформировали медицинскую сферу. Будущее искусственного интеллекта в здравоохранении безоблачно и имеет огромный потенциал, чтобы революционизировать способы оказания медицинской помощи. Технологии искусственного интеллекта для системы здравоохранения. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением.

Искусственный интеллект в медицине: добро или зло?

Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине. Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи.

Искусственный интеллект в здравоохранении внедряют 70 регионов России

Что хотите найти? Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением.
Искусственный интеллект в сфере здравоохранения — Википедия В 2024 году влияние технологий искусственного интеллекта (ИИ) на здравоохранение будет более глубоким и масштабным, чем когда-либо прежде.
Эксперимент Лекторий ФКН в Библиотеке иностранной литературы им. М. И. Рудомино в рамках Дней компьютерных пересечение технологий и здравоохранения меняет будущ.

Диагностика заболеваний

  • Диагностика заболеваний
  • Данные на 23 апреля 2024 г.
  • Робот со скальпелем
  • Последние новости про современные технологии в медицине
  • Цифровой ассистент: как искусственный интеллект помогает московским врачам

Искусственный интеллект в медицине и здравоохранении

нейротехнологии и технологии искусственного интеллекта. Напомним, цифровизация здравоохранения происходит благодаря нацпроекту «Здравоохранение», который реализуется по решению президента. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Мы активно развиваем искусственный интеллект в медицине.

Оценка решений на основе ИИ и критерии их выбора

  • Как AI может повлиять на CRISPR?
  • Искусственный интеллект в медицине: технологии, методы и польза
  • Последние новости про современные технологии в медицине
  • Искусственный интеллект для точной диагностики
  • «Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»
  • Искусственный интеллект в медицине

«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»

Они помогли предотвратить эпизоды гипогликемии. Таким образом, распространенные хронические состояния, такие как гипертония, депрессия и астма, теоретически можно лучше контролировать с помощью приложений. Проблемы и ограничения Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных. Существует риск выявления конфиденциальных данных пациента из истории болезни. Более того, есть риск преднамеренного взлома алгоритма для нанесения вреда людям в больших масштабах, например передозировки инсулина у диабетиков. Вторая проблема — неточная работа алгоритмов. Используемый сотнями больниц по всему миру для рекомендаций по лечению больных раком, алгоритм был основан на небольшом количестве синтетических случаев и очень ограниченом количестве реальных данных. Многие из его рекомендаций по лечению были ошибочными, например, предлагали использовать несовместимое лекарство для пациента с сильным кровотечением, что представляет явное противопоказание. Еще одна проблема — предвзятость. Низкий социально-экономический статус — основной фактор риска преждевременной смертности.

Та статистика, которую мы имели на начало октября, - это 70 регионов [, которые] уже приобрели и внедряют соответствующие решения", - сказал он на форуме "Биотехмед". Большая часть таких разработок - решения для работы с медицинскими изображениями, уточнил Пугачев.

При этом он не задевает лёгкие и другие органы, находящиеся рядом, что заметно снижает болезненность операции для пациента. А STAR, Smart Tissue Autonomous Robot, самостоятельно проводит лапароскопию, позволяющую «заглянуть» внутрь человеческого организма через небольшой разрез. Обе разработки прошли испытания на животных, но ещё не используются в медицинской практике. Их главные преимущества в том, что хирургам не нужно вскрывать большие участки тела для операций и медицинское вмешательство практически не оставляет следов на коже. Ещё ИИ помогает студентам-медикам практиковаться. Нейросеть SAIS оценивает работу хирургов по видеозаписям проведённых ими операций. С ней начинающие специалисты смогут мгновенно получать фидбэк о своей работе и заниматься без наставников. А российская компания «Нейроспутник», входящая в Сколково, разрабатывает тренажёр для безопасного обучения будущих медиков: он заменит тела животных и людей, на которых обычно тренируются студенты. Тренажёр — один из трёх элементов экосистемы «Левша». В неё также входит 3D-симулятор, который имитирует архитектуру сосудов конкретного пациента и позволяет подготовиться к операции, и робот-хирург на дистанционном управлении — он защищает врачей от рентгена и корректирует тремор в их движениях, минимизируя риски для пациента. Диагностика заболеваний Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Алгоритмы научились анализировать медицинские изображения и выявлять по ним заболевания — от плоскостопия до инсульта. Основные преимущества таких разработок — скорость и точность. Они оптимизируют работу докторов, снижают вероятность ошибки и сокращают время получения результатов, что может спасти не одну жизнь. Разработчики СберМедИИ шагнули ещё дальше и научили искусственный интеллект ставить диагноз не по снимкам, а по словам. Они используются во всех взрослых поликлиниках Москвы и постепенно проникают в другие субъекты России. ТОП-3 предлагает три наиболее вероятных диагноза по Международной классификации болезней на основе жалоб пациента. AIDA использует для постановки диагноза данные электронной медицинской карты за последние два года.

Обе разработки прошли испытания на животных, но ещё не используются в медицинской практике. Их главные преимущества в том, что хирургам не нужно вскрывать большие участки тела для операций и медицинское вмешательство практически не оставляет следов на коже. Ещё ИИ помогает студентам-медикам практиковаться. Нейросеть SAIS оценивает работу хирургов по видеозаписям проведённых ими операций. С ней начинающие специалисты смогут мгновенно получать фидбэк о своей работе и заниматься без наставников. А российская компания «Нейроспутник», входящая в Сколково, разрабатывает тренажёр для безопасного обучения будущих медиков: он заменит тела животных и людей, на которых обычно тренируются студенты. Тренажёр — один из трёх элементов экосистемы «Левша». В неё также входит 3D-симулятор, который имитирует архитектуру сосудов конкретного пациента и позволяет подготовиться к операции, и робот-хирург на дистанционном управлении — он защищает врачей от рентгена и корректирует тремор в их движениях, минимизируя риски для пациента. Диагностика заболеваний Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Алгоритмы научились анализировать медицинские изображения и выявлять по ним заболевания — от плоскостопия до инсульта. Основные преимущества таких разработок — скорость и точность. Они оптимизируют работу докторов, снижают вероятность ошибки и сокращают время получения результатов, что может спасти не одну жизнь. Разработчики СберМедИИ шагнули ещё дальше и научили искусственный интеллект ставить диагноз не по снимкам, а по словам. Они используются во всех взрослых поликлиниках Москвы и постепенно проникают в другие субъекты России. ТОП-3 предлагает три наиболее вероятных диагноза по Международной классификации болезней на основе жалоб пациента. AIDA использует для постановки диагноза данные электронной медицинской карты за последние два года. Эти сервисы не вытесняют врачей, как может показаться, — наоборот, они помогают не упустить важные детали и вынести наиболее подходящее для пациента решение. Уход за больными В больницах искусственный интеллект активно помогает медсёстрам и медбратьям.

Похожие новости:

Оцените статью
Добавить комментарий