На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Области применения технологий на основе искусственного интеллекта быстро расширяются, в частности, умные технологии приходят на помощь врачам и пациентам.
Врачам и пациентам: как искусственный интеллект помогает в медицине
По его словам, приведены и решения для здоровой конкуренции сервисов. Так, в каждом направлении активизировано как минимум два продукта. Поддерживать высокий уровень медицинских ИИ-решений Москве помогают инвестиции. Так, в 2020-2022 годах на апробацию решений в рамках эксперимента выделено 900 млн рублей. По словам Ильи Тырова, ИИ в московском здравоохранении используется для поддержки решений в диагностике. Например, цифровое зрение применяется в радиологии, ИИ помогает в расшифровке ЭКГ, также пилотируется аналитика патоморфологических исследований.
К тому же ИИ автоматизирует рутинные процессы. Так, чат-бот принимает жалобы пациентов, видеоаналитика в медорганизациях следит за сервисом, а технологии распознавания речи переводят речь медработника в текст. Ключевые достижения цифровых платформ базируются на данных В 40 раз с 2019 года вырос объем медицинских данных, ежедневно регистрируемых в Федеральном реестре электронных медицинских документов. Эта информация доступна для машинной обработки, что способствует целям развития ИИ в здравоохранении, полагает Дмитрий Темнов. О необходимости работы с разными источниками данных рассказала Елена Соколова Sber AI Lab; лаборатория искусственного интеллекта «Сбера» : «Это и медицинские тексты, и изображения, и сигналы.
Например, в 2021 году благодаря анализу медицинских сведений мы создали решения для определения вероятности нового коронавируса по кашлю, и Symptom Checker — решение для анализа симптоматики заболевания пациента и подсказки, к какому врачу с такой симптоматикой лучше обратиться». В планах Sber AI Lab — развивать направление популяционного анализа населения для выявления пациентов из группы риска развития хронических болезней. Этот проект базируется на анализе электронных медкарт. А еще один проект — персональная комплексная диагностика пациента, которая также будет основана на изучении ИИ его медкарты. Пример такого проекта мы реализовывали в 2022 году вместе с правительством Москвы.
С этими задачами неплохо справляются многие современные мобильные приложения: 1 AliveCor Карманный кардиолог. Приложение, которое позволяет в домашних условиях обработать сведения с датчика, снимающего кардиограммы. Искусственный интеллект анализирует данные пациента, отслеживает любые тревожные сигналы и рекомендует пользователю обратиться к врачу, если предвидит скорый инфаркт. На основе полученных от человека данных программа отправляет информацию лечащему врачу или рекомендует обратиться к определенному специалисту. Может рассказать о правилах приема лекарств или связать пациента по видеосвязи с врачом. Управление больницей Работа больницы требует быстрой координации персонала и имеющихся ресурсов, ведь на кону стоит не только здоровье, но и жизни людей. ИИ в здравоохранении может существенно помочь в управлении клиникой. Уже сегодня существуют проекты, предназначенные именно для этого: 1 Bright.
Он предназначен для быстрого решения важных задач: организации встреч, назначения времени сдачи анализов, получения ответов больных по опросному листу и т. С его помощью врач освобождается от выполнения многих бюрократических процедур и может сосредоточиться на спасении жизней людей. Она умеет анализировать многочисленные данные здоровья, может предсказывать ухудшение состояния, а также резервировать врачей и оборудование в случае возникновения критических ситуаций. Искусственный интеллект в российской медицине Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. Конечно, передовые технологии зачастую внедряются в США и Азии, однако и Европа Россия в том числе применяет многочисленные инновации и выстраивает стратегию использования ИИ в здравоохранении. Самые актуальные для нашей страны методы искусственного интеллекта в медицине — это распознавание речи и онлайн-диагностика заболеваний по медицинским картам и снимкам. В 2017 году Институт развития интернета начал работу над созданием системы ИИ, предназначенной для постановки диагноза по снимкам. Ожидается, что она позволит гражданам узнавать о состоянии здоровья по снимкам, в том числе и в домашних условиях.
Ведутся также работы по созданию системы TeleMD, которая должна позволить онкологам связываться с коллегами для консультаций и своевременного выявления раковых клеток. Регулирование сферы на законодательном уровне Искусственный интеллект в медицине в России, как впрочем и в остальном мире, представляет собой абсолютно новое решение, требующее самого пристального внимания со стороны не только инвесторов, врачей и пациентов, но и законодателей. Пока данная сфера никак не регламентируется законодательством, а ведь в будущем ИИ может серьезно влиять на работу медицинских учреждений. При этом не стоит забывать, что стопроцентно точные и достоверные результаты машины показывают далеко не всегда: есть вероятность возникновения ошибок, поэтому так важно, чтобы была правовая база, в деталях регламентирующая особенности данной сферы. Работы в этом направлении уже ведутся. К примеру, в стране обсуждается возможность создания специального государственного агентства по робототехнике и введения поста профильного премьера, чтобы специалисты могли курировать сферу в целом. Проблемы внедрения ИИ в здравоохранении: за и против Искусственный интеллект и интернет вещей в здравоохранении — очень перспективные области, внедрение и развитие которых имеет преимущества и недостатки. Повышение эффективности диагностики ИИ работает на основе огромных объемов данных, благодаря чему существенно увеличивается точность и эффективность постановки диагнозов.
Чтобы изучить несколько миллионов медицинских карт, специалисту нужны годы, а компьютер справляется с этим за короткое время. Сокращение рутинных задач врачей Искусственный интеллект может взять на себя все задачи, которые отвлекают медицинский персонал от основной работы — спасения человеческого здоровья и жизни. Программы могут подбирать палаты, искать доступное оборудование, следить за исправностью медтехники и т. Уменьшение количества врачебных ошибок ИИ уже сегодня часто показывает более высокую точность при постановке диагнозов и выполнении других работ, чем врач. Если же доктор и ИИ будут работать вместе, то вероятность ошибок сводится практически к уровню статистической погрешности.
Работы много, но все поставленные нами цели — абсолютно конкретны и достижимы», — подытожил Собянин.
По материалам: сайт Сергея Собянина. Картина дня.
Искусственный разум проанализирует снимок и сделает описание патологии, сэкономив врачу время и силы. Он напомнил, что всем субъектам РФ необходимо в этом году внедрить не менее одного решения с ИИ, а в следующем - не менее трех. Пока большинство регионов выбрали технологии, работающие с медицинскими изображениями: маммографией, компьютерной томографией органов грудной клетки и головного мозга, рентген-снимками органов грудной клетки. Также 32 региона заключили контракт на закупку решений для работы с электронными медкартами, говорится в презентации замминистра. Замминистра также обратил внимание, что перевес в этой сфере имеют российские продукты - из 24 медицинских изделий с ИИ, зарегистрированных Росздравнадзором, 17 - от российских разработчиков.
Как работает анализ медицинских изображений? А врач, когда работает с этим исследованием, уже использует результаты работы искусственного интеллекта, - рассказал "РГ" коммерческий директор компании Цельс Артем Капнинский. И мы эту работу делаем не для того, чтобы заменить его, а чтобы ему помочь. Когда врач работает вместе с искусственным интеллектом, это минимизирует возможность ошибки. До 50 процентов уменьшается время на интерпретацию исследования, и до 15-20 процентов повышается качество - выявление онкологических и других заболеваний на ранних стадиях". Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва.
Роман Душкин: «Медицина — это область доверия»
Ученые из Сколковского института наук и технологий (Сколтех) занимаются применением методов машинного обучения и искусственного интеллекта в медицине. Как искусственный интеллект создает лекарства. ИИ от фирмы Insilico Medicine носит название GENTRL. Преимущества применения нейросетей в медицине очевидны – возможность обрабатывать большие массивы данных в короткие сроки, а также точность диагностики. Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении. ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов. Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора.
Искусственный интеллект в медицине: применение и перспективы
В 2022 году ИИ начал ускорять научные открытия. Однако в 2023 году были запущены еще более значимые приложения искусственного интеллекта, связанные с наукой, — от AlphaDev, который делает алгоритмическую сортировку более эффективной, до GNoME, который облегчает процесс обнаружения материалов. Количество нормативных актов, связанных с искусственным интеллектом, в США значительно выросло за последний год и за последние пять лет. В 2023 году было принято 25 нормативных актов, связанных с искусственным интеллектом, по сравнению с одним в 2016 году. Люди во всем мире лучше осведомлены о потенциальном влиянии ИИ и больше нервничают. Подробнее о результатах исследования мы расскажем подробнее в отдельной статье в ближайшие недели! В условиях быстро меняющейся ситуации в сфере цифровизации сектор здравоохранения переживает глубокую трансформацию, характеризующуюся растущей интеграцией технологий цифрового здравоохранения, телемедицины, единых реестров и ИИ. Этот сдвиг не только предлагает множество преимуществ, но и меняет динамику отношений между пациентами и поставщиками медицинских услуг в рамках системы здравоохранения.
Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии. Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений. Распознавание рака кожи Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов. Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам. Машина справилась с задачей лучше специалистов. ИИ в УЗИ-обследовании беременных Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами. Система работает на основе искусственного интеллекта, и в нее заложено более 350 тысяч снимков плодов с теми или иными отклонениями. Система называется ScanNav и она способна давать врачу много полезной информации о патологиях плода, опираясь на имеющиеся в базе данные по другим пациенткам. Пока ScanNav работает в тестовом режиме и используется только в акушерстве, но в будущем она может получить намного более широкое распространение и будет особенно полезна для стран, испытывающих острый дефицит во врачах. Применение и польза искусственного интеллекта в медицине Разработка ИИ сегодня является приоритетной задачей для многих стран мира. Если рассматривать внедрение умных систем в медицинской сфере, то в первую очередь их польза будет состоять в увеличении точности диагностики различных заболеваний. Практики и опыта врача может быть недостаточно для того, чтобы своевременно выявить ту или иную проблему в организме человека, тогда как нейронная сеть, обладающая доступом к огромному объему данных, передовой научной литературе и миллионам историй болезней, сможет быстро классифицировать любой случай, соотнести его со схожими проблемами у других пациентов и предложить план лечения. Сегодня искусственный интеллект не может решать сложные медицинские задачи: он самостоятельно не придумает и не спроектирует прибор из будущего, который сможет за пару секунд отсканировать организм человека, выявить любые проблемы и назначить оптимальное лечение. Однако и нынешние возможности очень интересны для врачей, пациентов и клиник. Врачам Сегодня искусственный интеллект отлично справляется с простыми задачами. Например, он способен выявить наличие инородного тела или патологии по рентгеновскому снимку, а также определить наличие раковых клеток в цитологическом материале. Интересно еще и то, что сейчас разрабатывается все большее количество проектов, ориентированных именно на врачей: 1 IBM: Watson Это суперкомпьютер, способный отвечать на вопросы, которые задаются не на языке программирования, а на простом человеческом языке. Позднее было запущено подразделение Watson Health, главное направление которого — использование суперкомпьютера в медицине. Компьютеру обеспечили доступ к огромному количеству данных: энциклопедиям, базам научных статей, а также медицинским картам и снимкам. Машина проанализировала свыше 50 миллионов анонимных медкарт и более 30 миллиардов снимков. Вся эта информация использовалась для дальнейшего применения в онкологии, для поиска на УЗИ признаков порока сердца. IBM запустило облачную платформу Watson Health Cloud, благодаря которой технологии доступны для врачей и исследователей по всему миру. ИИ используют для анализа анонимных глазных снимков и выявления первичных симптомов слепоты. Новый проект от израильских разработчиков призван помочь правильно диагностировать инсульт — система сравнивает снимок мозга пациента со снимками сотен тысяч других людей для выявления и подтверждения отклонений. Пациентам Системы ИИ в медицине разрабатываются не только для врачей, но и для их пациентов. Многие современные разработки позволяют людям самостоятельно отслеживать свое состояние здоровья, следить за динамикой пульса, давления, дыхания и прочих показателей.
Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва. Научная база столицы включает более 10,5 миллиона исследований, проанализированных с помощью сервисов искусственного интеллекта, рассказал директор Центра диагностики и телемедицины, главный внештатный специалист по лучевой и инструментальной диагностике департамента здравоохранения Москвы Юрий Васильев. Врач-рентгенолог большую часть времени что-то пишет, а не смотрит на изображение, а должно быть наоборот", - сказал он. Пока искусственный интеллект применяется в основном для анализа медицинских изображений и электронных медицинских карт Есть и другие технологии ИИ, помогающие повысить эффективность системы здравоохранения. Например, голосовые сервисы ввода данных устной речи - врач может наговаривать то, что он видит, а данные записываются в медицинскую карту уже в виде текстового сообщения. Сервисы видеоаналитики могут следить за состоянием пациентов с ограничениями по движению, например, в реанимации и при необходимости послать сообщение на пост. Ну и, конечно, стоит отметить чат-боты, которые помогают с первичным сбором данных о пациенте в кол-центрах при записи к врачу. Она позволяет на УЗИ-аппаратах неэкспертного уровня за счет анализа данных получать то же качество, как и на УЗИ-аппаратах более высокого класса", - рассказал Павел Пугачев. Искусственный интеллект имеет большие возможности, но решать с его помощью все задачи сразу не требуется, полагают эксперты. Инвесторы, работающие в сегменте цифровой медицины, считают, что нужно фокусироваться на отдельных ключевых элементах, где ИИ сегодня действительно может помогать, отметил директор по развитию венчурного фонда НТИ под управлением Kama Flow Евгений Борисов. В первую очередь это все, что связано с ассистированием и поддержкой врачебных решений.
Источник: Freepik Мэр Москвы отметил, что ИИ помогает врачам-терапевтам ставить диагнозы и создавать перечни исследований. Также при внедрении ИИ в работу службы лучевой диагностики, было доказано, что цифровые технологии могут спасти жизнь и повысить качество лечения. Например, анализируя КТ, МРТ, маммографию или рентген, компьютерное зрение распознает 37 заболеваний.
Национальная база медицинских знаний
Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. Как именно программа решает столь сложную задачу и сможет ли компьютер полностью заменить специалистов? Корреспондент «Известий» Екатерина Моран все выяснила. Елизавета Бакши вместе с маленькой дочкой готовится к выписке. У Ксюши — врожденный гиперинсулинизм. Это редкое и тяжелое заболевание, при котором стремительно падает уровень глюкозы. Если его вовремя не обнаружить и не начать лечить, исход может быть летальным. Помочь маленькой пациентке смогли лишь в Санкт-Петербурге, проведя специально исследование. Медики спасли жизнь маленькой Ксюши.
С ее помощью ИТ-разработчики смогут получать доступ к обезличенным медицинским данным жителей России из медицинских карт. Главная цель этого проекта заключается в том, чтобы объединить обезличенные медицинские данные в верифицированные датасеты наборы данных , а также дать отечественным ИТ-компаниям площадку для разработки и тестирования сервисов ИИ в сфере здравоохранения. Компаниям нужен доступ к структурированным данным для разработки алгоритмов, которые смогут стать основой систем поддержки врачебных решений. Появление подобных сервисов поможет усовершенствовать систему здравоохранения.
Врачам нужно на постоянной основе обновлять информацию о последних исследованиях в медицине. Они не способны это делать с такой же скоростью, что и искусственный интеллект, так как врач не может одновременно и лечить людей, и отдыхать, и обновлять информацию, а еще и держать ее в голове. Искусственный интеллект может регулярно обновлять данные об исследованиях и хранить всю полученную информацию. Внедрение такой технологии облегчит жизнь медикам и поможет спасти чьи-то жизни.
Так, суперкомпьютер IBM Watson, изучив 20 млн статей о раке, помог выявить редкую форму лейкемии у 60-летней пациентки с неверным диагнозом. С помощью ИИ можно распознавать симптомы возникновения злокачественных новообразований, диагностировать нарушение работы головного мозга, туберкулез, нарушения зрения. Примером работы программы выступает сервис Ada. Это специальное мобильное приложение, которое задает человеку вопросы, а тот описывает симптомы.
После этого сервис проводит поиск информации о проблеме и дает рекомендации. Также программы с искусственным интеллектом используются в анализе рентгеновских снимков и в разработке новых лекарств.
Анастасия Управляющая сетью аптек Использование нейросети iiMed стало настоящим прорывом для нашей сети клиник. Я была поражена, когда увидела на что способен искусственный интеллект. Что меня особенно впечатлило, так это то, как нейросеть понимает наши потребности и угадывает предпочтения. И что меня особенно порадовало, она создает контент сразу адаптированный под название нашего бренда. Благодаря iiMed.
Я желаю команде iiMed дальнейшего развития и искренне рекомендую iiMed. Александра Основатель и директор сети стоматологических клиник Теги ии нейросети продающий текст искусственный интеллект iimed.
Прежде чем обработать данные, предстоит подготовить их. Для этого их нужно обезличить: в ходе этого процесса пациент получает код, а также убираются персональных данных ФИО, номер паспорта и т. При этом год рождения и диагноз, не обезличиваются. Разметка данных. После того, как данные прошли процедуру обезличивания, они передаются врачам на разметку.
Прежде чем приступить к разметке данных, врачи определяют методологию, по которой они будут работать с разметкой. Они определяют диагноз, симптоматику, а также зоны и маркеры, с которыми они будут работать. Только после этого врачи вручную размечают снимки. Сегодня разметка данных, как правило, происходит с помощью программ, где врач в специальном интерфейсе очерчивает необходимые зоны. Повторная разметка. После первичной разметки данных те же снимки проходят аналогичную процедуру, которую проводит уже другая группа врачей. На этом этапе отсеиваются сомнительные, спорные или неверные диагнозы, а также снимки, которые не могут быть валидированы в выбранной модели исследования.
Обучение нейросети. Когда все снимки прошли разметку, этот набор данных попадает к разработчикам, которые на их основе начинают обучать нейронную сеть. Даже если сервис достиг определённого уровня работоспособности, он не может быть сразу использован на практике. Прежде он проходит этап валидации: группе врачей и обученной нейросети выдаются новые данные, которые им предстоит разметить. После этого результаты, полученные врачами и нейросетью, сопоставляются между собой, и модель получает класс точности. Регистрация в Министерстве здравоохранения. По завершении этапа валидации прототип должен пройти регистрацию в Минздраве и получить регистрационное утверждение.
На этом этапе экспертная группа — на этот раз со стороны Минздрава — вновь внимательно проверяет работу модели и её алгоритмов. Интеграция в систему здравоохранения. Только если сервис пройдёт проверку в Минздраве и получит регистрационное утверждение, он может использоваться в медицинских учреждениях. Диагностика заболеваний Чат-боты уже могут с высокой эффективностью помогать пациентам самостоятельно ставить диагноз, а также помогать в постановке диагноза и врачам. Например, ИИ компании Babylon Health предоставляет соответствующую информацию о здоровье на основе симптомов, описанных самим пациентом. Понятно, что симптомы могут быть описаны неверно или пациент может попытаться ввести ИИ в заблуждение умышленно. Поэтому в компании прямо заявляют, что их компьютерный ассистент не ставит диагноз.
Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы. А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком». Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM. И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения. А вот исследователи из Babylon Health продвинулись совершенно точно. Также современные ИИ решают проблемы приоритизации и медицинской сортировки. Рекомендации на основе глубокого анализа данных поступающих пациентов для обеспечения точной приоритизации и медицинской сортировки ИИ дает очень быстро в режиме реального времени.
Наиболее известные решения для этих целей предлагает Enlitic. ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных в том числе учитываются и старые диагностические карты и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу. Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней. Стоит рассказать и о новом алгоритме ИИ, который поможет диагностировать рак легких. Много лет человечество проигрывало борьбу с онкологическими заболеваниями, которые ежегодно убивают около 10 миллионов человек по всему миру. Одной из самых страшных форм онкологии является рак легких, распознавание которого на ранних стадиях и до сих пор является для ученых сложнейшей задачей. Но весьма вероятно, что справиться с этим человеку поможет искусственный интеллект.
Исследователи из Бостонского университета разработали ИИ, который долгое время обучался на полноформатных фотографиях легочных тканей пациентов размеры таких изображений составляют обычно более 1 Гб, что делает их анализ человеком крайне сложным. ИИ на примере фото обучали распознавать аденокарциному легкого, плоскоклеточный рак легкого и соседнюю не раковую ткань. Результаты обучения оказались положительными: алгоритм смог продемонстрировать более высокую эффективность, чем другие современные методы распознавания патологий на полноформатных слайдах. На данный момент новый алгоритм планируется внедрить в помощь патологоанатомам, однако при успешном внедрении возможности ИИ могут быть расширены, ведь главное — научиться диагностировать опасные заболевания на самых ранних стадиях, пока сохраняются высокие шансы на полноценное излечение. Существуют и компании, специализирующиеся на разработке ИИ-продуктов для ранней диагностики различных заболеваний. Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше. Так, программное обеспечение от Ezra использует ИИ при анализе МРТ-сканов всего тела, чтобы помочь специалистам в раннем выявлении рака.
Их слоган говорит сам за себя: «Мы обнаружили самую большую слабость рака — раннее обнаружение». SkinVision — компания, занимающаяся диагностикой рака кожи на основе медицинской визуализации, то есть диагностикой по фото. ИИ, разработанный командой SkinVision, позволяет обнаруживать рак кожи на ранней стадии по фотографиям, сделанным на телефон. Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
Технологии Искусственный интеллект преуспел уже во многих сферах нашей жизни. И в основном ИИ находит свое применение в области сложных вычислений, построении математических моделей и так далее. Однако и в медицинской сфере искусственный разум может быть не менее полезен следите ли вы за успехами ИИ? Мы регулярно рассказываем о них в нашем Телеграм-канале. К примеру, недавно гонконгская компания Insilico Medicine опубликовала результаты исследования, показывающего, что ее система на основе ИИ и глубокого обучения может создавать новые лекарства против определенных патологий всего за 3 недели.
А это в несколько десятков раз быстрее, чем традиционные методы. Причем что примечательно, у руля компании стоит наш соотечественник Алекс Жаворонков.
Но даже у здоровых людей они могут немного варьироваться, их расположение может отличаться на несколько сантиметров. У людей со структурными патологиями, такими как опухоль, эти зоны могут смещаться ввиду нейропластичности, и до операции это неизвестно. Во время операции нужно соблюдать баланс: убрать как можно больше пораженной ткани и оставить как можно больше здоровой, чтобы не повредить важные мозговые центры. Чтобы не вырезать лишнего, прямо во время операции пациента будят, разговаривают с ним, дотрагиваются электродами до поверхности мозга и смотрят на результат. Например, когда попадают в речевую зону, человек начинает запинаться, а если воздействуют на моторную зону, он не может пошевелить рукой. В мозге нет болевых рецепторов, поэтому пациенту в сознании не больно. Я сам несколько раз был на таких операциях, чтобы понимать, как это работает. Хирург о чём-то говорит с человеком и при этом удаляет какие-то участки.
И так несколько часов. Желательно локализацию этих зон хотя бы примерно знать до операции, когда череп еще не вскрыт. Здесь и выручает ФМРТ, которая при наложении на структурную МРТ позволяет получить карту функциональных зон, которые для наглядности можно раскрасить в разные цвета. Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход. А если мы загрузим эту модель в нейронавигационную систему, то хирург в реальном времени будет видеть на экране, где находится его скальпель относительно конкретных зон. Лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией Источник: Анастасия Пешкова — Недавно вы начали совместный проект с Университетом Шарджи ОАЭ. Это ваше первое сотрудничество с арабскими коллегами? Российскую часть возглавляю я, а арабскую — Рифат Хамуди, профессор и директор Научно-инновационного центра точной медицины в Университете Шарджи. Они в большей степени отвечают за медицину и биологию, сбор данных, мы как центр ИИ — за анализ данных, обработку и построение моделей. Стартовым проектом совместной лаборатории стало создание методов и моделей исследования гетерогенности раковых опухолей.
Но проблема в том, что в этом образце присутствует много разных типов клеток, которые содержат разную информацию. Если мы берем полностью часть ткани и проводим генетический или транскриптомный анализ, то мы смотрим «среднюю температуру». Мы считаем, что всё гомогенно и однообразно, но это не так. Часть клеток могут откликаться на какую-то одну терапию, а другие — только на другую.
Созданные лекарственные средства ингибируют рецептор DDR1, который участвует в развитии болезни. Для этого ИИ потребовался 21 день, после чего ученые выбрали наиболее подходящие варианты препаратов и протестировали их на лабораторных животных. На это ушло еще 25 дней. Таким образом на выбор потенциального лекарства потребовалось всего 46 дней. Для сравнения, традиционный процесс разработки кандидатов на звание лекарства занимает около 8 лет и обходится компаниям в несколько миллионов долларов США.
В то время как на создание ИИ ушло всего 150 тысяч долларов. Слева — нормальная мышечная ткань.
Адрес редакции: 125124, РФ, г. Москва, ул. Правды, д.
Почта: mosmed m24.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. Преимущества искусственного интеллекта. Благодаря использованию технологий ИИ в медицине, сможет повысится эффективность оказания медицинских услуг, практически единогласно говорят участники рынка. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении.
Применение искусственного интеллекта в медицине
- Топ-7 прорывов в медицине в 2023 году
- Для чего в российских регионах используют ИИ в медицине - Российская газета
- ИИ в медицине: тренды и примеры применения
- Видео: Как искусственный интеллект помогает в медицине | Новости России
Применение искусственного интеллекта в медицине
Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность. Внедрение искусственного интеллекта (ИИ) в медицину открывает новые возможности для диагностики, лечения и исследований. ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов.
Искусственный интеллект в медицине — не конкурент, но помощник
Одной из них является диагностика заболеваний. Системы ИИ могут анализировать медицинские изображения например, снимки рентгена, МРТ, КТ , выявлять аномалии и помогать врачам в постановке диагноза. Это позволяет улучшить точность диагностики и своевременно выявлять заболевания, такие как рак или сердечно-сосудистые заболевания и многое другое. Другим применением искусственного интеллекта является прогнозирование результатов лечения.
Системы ИИ могут анализировать исторические данные о лечении пациентов и предсказывать вероятность успеха лечения для конкретного пациента. Это позволяет врачам принимать более обоснованные решения и выбирать оптимальные лечебные стратегии.
Медико-технологические достижения, произошедшие в этот полувековой период, позволили вывести здравоохранение на новый уровень.
Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных. Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования.
К 2019 году для специального исследования будут отобраны 1 миллион добровольцев. Исследование направлено на то, чтобы показать связь между состоянием здоровья, образом жизни, окружающей средой, а также социальным и экономическим статусом.
Причем что примечательно, у руля компании стоит наш соотечественник Алекс Жаворонков. Господин Жаворонков еще в середине 2000-х годов получил степень магистра в Университете Джона Хопкинса, а затем и докторскую степень в Московском Государственном Университете, где его исследования были сосредоточены на использовании машинного обучения для изучения физики молекулярных взаимодействий в биологических системах. В 2014 году Алекс основал уже упомянутую Insilico Medicine, имея за плечами опыт работы в индустрии высоких технологий и заинтересовавшись вопросами фармации. Это интересно: Как работает искусственный интеллект Если вернуться к ИИ, то сами разработчики называют основную технологию работы искусственного интеллекта «генеративным тензорным обучением».
Она позволяет ИИ, если не вдаваться в подробности, более эффективно и быстро обучаться требуемым навыкам. Мы подумали: можем ли мы заставить машины придумывать с нуля новые молекулы с определенными свойствами вместо того, чтобы заставлять их перебирать десятки доступных вариантов, — говорит Алекс Жаворонков. Insilico использовали GENTRL для того, чтобы создать несколько а если быть точным, то 6 вариантов лекарств для лечения мышечного фиброза.
Анализируя снимки компьютерной и магнитно-резонансной томографии, маммографии или рентгеновские снимки, нейросети распознают 37 различных заболеваний. В их числе рак легких, пневмония, остеопороз, ишемическая болезнь сердца, инсульт и другие. Точность такой диагностики превышает 95 процентов. Часто искусственный интеллект выявляет патологию на самой ранней стадии, когда врач еще ее не обнаружил. Цифровизация позволяет московским врачам больше времени уделять пациентам — Мэр Эра технологий.
Врачи рассказали о новых стандартах в столичном здравоохранении Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований.
Искусственный интеллект в клинической медицине
Искусственный интеллект (ИИ) сегодня является инновационной технологией, которая вызвала настоящую революцию в различных отраслях, и медицина не стала. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей. “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов. Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики.
Минимизация ошибок
- Искусственный интеллект в клинической медицине | Новый Элемент
- Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
- Топ-7 прорывов в медицине в 2023 году
- Машины лечат людей: как нейросети используют в российской медицине | Москва | ФедералПресс