Новости коэффициент джини показывает

вы делаете те новости, которые происходят вокруг нас. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам.

В России зафиксирован рост доходного неравенства

Однако, какой бы система распределения ни была, в любом обществе неизбежно неравенство доходов. Проблема неравенства доходов в обществе Рыночная система экономики, существующая на сегодняшний день лишь за малым исключением во всех странах мира, представляет собой механизм, который вознаграждает людей лишь по конечному результату эффективности их деятельности, то есть объективно задает существование неравенства в обществе. И ведь действительно, все люди очень отличаются друг от друга: трудолюбием, активностью, способностями, образованием, владением собственностью, склонностью к накоплению или, напротив, к потреблению. А это значит, что они не могут одинаково работать, значит, не могут одинаково зарабатывать и одинаково жить. Что и является причинами неравенства доходов. И что же тогда? Оставлять за чертой бедности немалую часть населения?

По принципу «пусть выживают, как могут»? Полезно ли ЭТО для общества? Очевидно, что нет. Также очевидно, что без вмешательства государства здесь не обойтись. Ведь именно государство призвано сглаживать неравенство в доходах населения, чтобы не допустить чрезмерного социального расслоения и напряжённости в обществе. Однако чрезмерное вмешательство государства в перераспределение и выравнивание доходов заметно снижает эффективность производства, поскольку растущие налоги подавляют интерес бизнесменов к предпринимательской активности, а всевозрастающая социальная помощь бедным слоям населения снижает у них тягу к поиску работы и энергичному труду.

На первый взгляд, равенство выглядит более справедливым и соблазнительным, но, как мы уже говорили, оно подрывает стимулы к труду как у «богатых», так и у «бедных», и позволяет приспосабливаться менее способным и менее трудолюбивым жить за счёт других.

Изначально данная модель оценки финансового неравенства между слоями населения была разработана и предложена итальянским статистиком и демографом Коррадо Джини в 1912 году в работе под названием «Вариативность и изменчивость признака» известна также как «Изменчивость и непостоянство» , в честь которого впоследствии и была названа. Данный коэффициент показывает отклонение фактического распределения доходов между разными социальными группами от абсолютно равного. Для его расчета, как правило, используется уровень годового дохода граждан, но иногда могут применяться дополнительные параметры например, сбережения, дорогостоящие активы, недвижимость и т. Индекс Джини: расчет и формула Коэффициент Джини рассчитывается по следующей формуле: В графическом отображении коэффициент Джини представляет собой соотношение площади фигуры, образованной линией абсолютно равномерного распределения доходов под 45 градусов и кривой Лоренца, отображающей неравномерность распределения, к общей площади треугольника, образованной линиями абсолютно равномерного и абсолютно неравномерного распределения доходов: В десятичном значении показатель выступает коэффициентом, также его могут отображать в процентах, тогда он становится индексом.

Удача также помогает получать больший доход, например, если какой-то человек найдет клад. Таким образом, по крайней мере, в силу названных причин равенство экономических возможностей соблюдается далеко не всегда.

Бедные и богатые по-прежнему существуют даже в самых благополучных высокоразвитых странах. Все эти причины действуют в разных направлениях, увеличивая или уменьшая неравенство. Для того чтобы определить степень этого неравенства, экономисты используют различные показатели. Кривая Лоренца — это графическое изображение функции распределения. В таком представлении она есть изображение функции распределения, в котором аккумулируются доли численности и доходов населения. В прямоугольной системе координат кривая Лоренца является выпуклой вниз и проходит под диагональю единичного квадрата, расположенного в I координатной четверти. Данная кривая отражает долю дохода, приходящуюся на различные группы населения, сформированные на основании размера дохода, который они получают.

На оси абсцисс откладывается доля населения, а на оси ординат - доля доходов в обществе в процентном соотношении. Как видно из графика, в обществе всегда имеет место быть неравенство в распределении доходов, что отражает кривая OABCDE — кривая Лоренца. Коэффициент Джини Gini coefficient — количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини.

Вторую - под доли в сумме доходов, которые получает каждая такая доля населения. Если доходы каждой доли абсолютно одинаковы, получим вот такой график с прямой линией. А теперь изменим доходы. Пусть одни децили общества получают поменьше, а другие - побольше. График начинает выглядеть по-иному. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.

Gini Coefficient

Коэффициент Джини Всемирного банка - CIA World Factbook. Коэффициент концентрации доходов, или индекс Джини, может быть рассчитан и с помощью других методик. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel.

Задача №77. Расчёт коэффициента Джини

Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.

Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление.

Коэффициент Джини — статистический показатель меры расслоения доходов или богатства общества. Измеряется по шкале от 0 до 1, где ноль означает полное равенство, а единица — полное неравенство. Нулевое значение будет в стране или в регионе, в которой абсолютно у всех одинаковый доход. На практике же значения чаще всего укладываются в диапазон от 0,2 до 0,6.

Измеряется по шкале от 0 до 1, где ноль означает полное равенство, а единица — полное неравенство. Нулевое значение будет в стране или в регионе, в которой абсолютно у всех одинаковый доход. На практике же значения чаще всего укладываются в диапазон от 0,2 до 0,6. Низкий показатель коэффициента Джини не означает богатства или бедности выборки в целом, а лишь низкую разницу между самыми богатыми и самыми бедными.

Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие. Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом. Создадим искусственную бизнес-задачу из сферы free2play игр. У нас есть база данных пользователей когда-то игравших в нашу игру и по каким-то причинам отвалившихся. Мы хотим их вернуть в наш игровой проект, для каждого пользователя у нас есть некое признаковое пространство время в проекте, сколько он потратил, до какого уровня дошел и т. Оцениваем модель коэффициентом Джини и строим Lift Curve: Предположим, что в рамках маркетинговой кампании мы тем или иным способом устанавливаем контакт с пользователем email, соцсети , цена контакта с одним пользователем — 2 рубля. Мы знаем, что Lifetime Value составляет 5 рублей. Необходимо оптимизировать эффективность маркетинговой кампании. Предположим, что всего в выборке 100 пользователей, из которых 30 вернется. Это провал кампании. Рассмотрим график Lift Curve. Мы в плюсе. Таким образом, Lift Curve позволяет нам наилучшим образом оптимизировать нашу маркетинговую компанию. Сортировка пузырьком Коэффициент Джини имеет довольно забавную, но весьма полезную интерпретацию, с помощью которой мы его также можем легко подсчитать. Оказывается, численно он равен: где, число перестановок, которые необходимо сделать в отранжированном списке для того, чтобы получить истинный список целевой переменной, — число перестановок для предсказаний случайного алгоритма. Напишем элементарную сортировку пузырьком и покажем это: Комбинаторно несложно подсчитать число перестановок для случайного алгоритма: Видим, что мы получили значение коэффициента, как и в рассматриваемом выше игрушечном примере. Надеюсь, статья была полезна и развеяла некоторые мифы относительно этой метрики качества. ВВП на душу населения некоторым образом подобен средней температуре по больнице — в стране может быть и огромнейшее количество бедняков, и невероятно богатых людей, и небольшая прослойка среднего класса. То есть страна может иметь и сравнительно немалый ВВП, но тем не менее, и уровень образования, и средняя продолжительность жизни в ней будут иметь не радующие показатели. И в этой связи интересен Индекс человеческого развития. Что такое коэффициент Джини? Коэффициент Джини варьируется между нулем и единицей. Какова ситуация с неравенством распределения доходов в мире Мы видим, что среди стран с высоким уровнем дохода есть страны с широким средним классом, например, Скандинавские страны, страны Западной Европы. В Швеции, Норвегии, Дании, Канаде относительно равномерное распределение доходов.

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини

В области машинного обучения коэффициент Джини, находясь в диапазоне от 0 до 1, показывает качество прогнозирования модели — чем ближе к единице, тем точнее прогноз в данном посте не будем касаться применения коэффициента Джини в социальной области. Какой же доверительный интервал может быть у единственного числа? И тем не менее, доверительный интервал коэффициент Джини существует. В этом посте хочу познакомить экспертов, занимающихся оценкой качества моделей, с таким малоизвестным инструментом как «доверительный интервал коэффициента Джини» Вопрос происхождения и расчета указанного показателя очень мало освещен в интернете: поисковики выдадут одну внятную англоязычную ссылку с попыткой интерпретации соответствующей формулы, которая без дополнительной информации будет недостаточно понятна. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле: Указанная формула приведена в статье «The Meaning and Use of the Area under a Receiver Operating Characteristic ROC Curve».

Они придумали множество различных формул, графиков, индексов и коэффициентов. О них я сегодня тебе и расскажу. Начну с главного коэффициента, который лучше всего отражает ситуацию с неравенством в том или ином обществе — будь то семья, компания, город, страна или целый мир.

Речь идёт о коэффициенте, который придумал в 1912 году итальянский демограф и статистик Коррадо Джини. Коэффициент Джини представляет собой производную от площади геометрической фигуры, построенной на основе Кривой Лоренца. Кривая Лоренца представляет собой график распределения доходов в обществе. Строится она следующим образом: 1. Берём ось координат, по оси X будем отмерять процент населения обычно принято делить на 5 частей, называемых квинтилями , а по оси Y будем отмерять процент дохода также принято делить на 5 частей. Отмечаем точками, процент от общего дохода, который получает каждый квинтиль. Соединяем линии — Кривая Лоренца готова.

Но для определения Коэффициента Джини нужно построить ещё и линию «абсолютного равенства». Линия будет являться биссектрисой между координатными осями. График готов. Чем больше площадь фигуры, образованной Кривой Лоренца и линией «абсолютного равенства», тем сильнее проявляется в данном обществе неравенство. Коэффициент Джини — это отношение площади этой фигуры к площади треугольника, образованного осью X, линией «абсолютного равенства» и вертикальной линией на отметке 100 по оси X. В результате мы получим значение от 0 до 1. Где 0 — абсолютное равенство, а 1 — абсолютное неравенство когда все доходы принадлежат одному человеку.

Если считать по квинтилям, то единицу мы не получим даже в теории, но при разбиении оси X на количество граждан такая ситуация возможна теоретически, если всё принадлежит кому-то одному из представителей данного общества и то, коэффициент всё равно на какие-то миллионные доли будет меньше 1. То есть, чем меньше значение этого коэффициента, тем меньше будет неравенство.

Графическое представление индекса Джини Индекс Джини часто представляется графически через кривую Лоренца, которая показывает распределение доходов или богатства путем нанесения процентиля населения по доходу на горизонтальную ось и совокупного дохода на вертикальной оси. Коэффициент Джини равен площади под линией полного равенства 0,5 по определению за вычетом площади под кривой Лоренца, деленной на площадь под линией полного равенства.

Другими словами, это вдвое больше площади между кривой Лоренца и линией полного равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая это число из 0,5 площадь под линией равенства , мы получаем 0,3, которое затем делим на 0,5. Эта цифра представляет собой чрезвычайно высокое неравенство.

Другой способ восприятия коэффициента Джини — это показатель отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально равной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем меньше равноправия в обществе. В приведенном выше примере Гаити более неравное, чем Боливия. Коэффициент Джини в мире Глобальный Джини По оценкам Кристофа Лакнера из Всемирного банка и Бранко Милановича из Городского университета Нью-Йорка, коэффициент Джини для глобального дохода составлял 0,705 в 2008 году по сравнению с 0,722 в 1988 году.

Однако цифры значительно различаются. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Книга Лакнера и Милановича показывает снижение неравенства примерно в начале 21 века, как и книга Бургиньона 2015 года: Источник: Всемирный банк. Экономический рост в Латинской Америке, Азии и Восточной Европе во многом стал причиной недавнего снижения неравенства доходов.

Коэффициент Джини — статистический показатель меры расслоения доходов или богатства общества. Измеряется по шкале от 0 до 1, где ноль означает полное равенство, а единица — полное неравенство. Нулевое значение будет в стране или в регионе, в которой абсолютно у всех одинаковый доход. На практике же значения чаще всего укладываются в диапазон от 0,2 до 0,6.

Коэффициент Джини. Формула. Что показывает

Коэффициент Джини может принимать значения от 0 до 1. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения. Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi.

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини

Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. Что такое коэффициент Джини и кривая Лоренца: показатель концентрации доходов и по какой формуле он определяется, сколько составляет в России и в мире. Коэффициент Джини может принимать значения от 0 до 1. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно. К 1912 году итальянский статистик Коррадо Джини разработал алгебраическую интерпретацию кривой Лоренца: коэффициент, призванный указывать, насколько неравным является экономическое распределение.

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини

Так образуется специфическая «ловушка бедности», которая не позволяет обществу полноценно развиваться. Передовые страны, которые входят в рейтинги самых лучших по разным показателям, стараются устранить это негативное явление. Так, например, в Норвегии, за последние 15 лет коэффициент Джини стремится вниз — он уменьшился с 0,4 до 0,2, то есть в 2 раза. Обобщая, в случае этой скандинавской страны можно утверждать, что количество бедных здесь снизилось вдвое. И такая картина наблюдается во многих развитых странах.

А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию. Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей.

Естественно, из расчета на одного человека. Далее, если рассматривать эти общие расходы по-отдельности, то получится следующее.

Богатые, по сравнению с бедными, тратят больше в 5 раз на питание, в 12 раз — на одежду, 20 раз — на медицину. Возможно ли из бедного превратится в богатого Если исходить из статистики, то можно заметить некоторые неутешительные тенденции. Бедные становятся еще беднее, им труднее зарабатывать и приумножать свой капитал, чем богатым. Между тем количество миллиардеров растет и это тоже факт. У богатых денег больше, соответственно, и возможностей больше.

Они увеличивают свое состояние быстрее. Поэтому даже при равных условиях в более выгодном положении остается тот, у кого средств оказалось больше. Но, как говорится, нет ничего не возможного. Если абстрагироваться от размера капитала, и исходить из реальности, то оптимальной позицией будет следующая. Самостоятельность в действиях, анализ доходов и трат, четкий план действий, а также грамотное распределение денег, накопление, откладывание, инвестиции — необходимый минимум на пути к благосостоянию.

Подытоживая, следует заметить, что, безусловно, есть много людей, которые считают, что со временем ситуация ухудшится и число бедных будет только расти. Но если все время придерживаться этой позиции и ничего совсем не делать, то лучше от этого точно не станет. Все в руках человека. Преимущества коэффициента Джини Gini coefficient позволяет: Провести сопоставления по распределению исследуемого признака в совокупностях, разных по числу единиц, и между разными совокупностями.

These rules apply only to custom country groups you have created. They do not apply to official groups presented in your selected database. For each selected series, choose your Aggregation Rule and Weight Indicator if needed from the corresponding drop-down boxes. Check the Apply to all box if you wish to use the same methodology for all selected series.

Aggregation Rules include: 1. Max: Aggregates are set to the highest available value for each time period. Mean: Aggregates are calculated as the average of available data for each time period. Mean 66: Aggregates are calculated as the average of available data for each time period. Values are not shown if more than one third of the observations in the series are missing. Median: Aggregates are calculated as the median of available data for each time period.

Для простоты понимания рассмотрим рисунок 1.

Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам.

Похожие новости:

Оцените статью
Добавить комментарий