Какова максимальная частота кадров, которую видит человеческий глаз? Существуют люди, способные воспринимать большее количество кадров в секунду. Например, пилоты и игроки в видеоигры могут воспринимать до 60 кадров в секунду. сколько кадров видит человек: 45 фото. Сколько FPS воспринимает человеческий глаз. Заблуждение на тему «какой уровень FPS не может видеть человеческий глаз», похоже, началось с того, что люди говорили «мы не можем видеть больше 24 FPS».
Как наш мозг обрабатывает реальность
- Сколько FPS видит человеческий глаз?
- Сколько кадров в секунду видит человеческой глаз – скорость восприятия
- Сколько кадров в секунду видит человек. Строение глаза и интересные факты
- Публикации
Сколько всё же кадров в секунду способен воспринимать человеческий глаз?
сколько кадров видит человек: 45 фото. Сколько FPS воспринимает человеческий глаз. Читала где-то, что человеческий глаз может видеть от 24 до 30 кадров в секунду. Миф базируется на убеждении, что человеческий глаз не может распознать больше 24 кадров в секунду. 120 кадров видит муха, глаз человека так не может. Миф базируется на убеждении, что человеческий глаз не может распознать больше 24 кадров в секунду. Сколько кадров в секунду видит человеческий глаз | Комфортное число FPS для игр и кино.
Сколько кадров видит человеческий глаз
Но когда речь заходит о восприятии плавных игровых кадров это только часть головоломки. Это потому, что игры выводят движущиеся изображения, и, следовательно, вызывают различные визуальные системы по сравнению с теми, которые просто обрабатывают свет. Например, есть такая штука, как закон Блоха. Он говорит, что существует компромисс между интенсивностью и длительностью вспышки света, длящейся менее 100 мс. У вас может быть наносекунда невероятно яркого света, и она будет такой же, как десятая часть секунды тусклого света. Это немного похоже на взаимосвязь между выдержкой и диафрагмой в камере: если впустить много света с широкой диафрагмой и установить короткую выдержку, ваша фотография будет также хорошо экспонирована, как и фотография, сделанная при небольшом количестве света. Но, хотя нам трудно различать интенсивность вспышек света менее 10 мс, мы можем воспринимать артефакты невероятно быстрого движения. Специфика связана с тем, как мы воспринимаем различные типы движения.
Если вы сидите неподвижно и наблюдаете за тем, как что-то движется перед вами, это совсем другой сигнал, чем то, что вы получаете, когда идете. Но периферией наших глаз мы невероятно хорошо обнаруживаем движение. Когда периферийное зрение заполняет экран с частотой обновления 60 Гц или более, многие люди сообщают, что у них есть сильное ощущение, что они физически движутся. Отчасти именно поэтому VR-гарнитуры, которые могут работать с периферийным зрением, обновляются так быстро 90 Гц. Также стоит подумать о некоторых вещах, которые мы делаем, когда играем, скажем, в шутер от первого лица.
Форма верхней части колбочки напоминает коническое дно колбы, при этом эффект Стайлса-Кроуфорда связан с формой. Потому что если рецептор может отбросить лишний свет, то можно разглядеть больше деталей.
Возможно, что форма также позволяет игнорировать преломленный свет, чтобы картинка не выглядела размытой. Таким образом, если взять ширину в 30-60 арксекунд и разделить на 3, то мы и получим фактическую остроту восприятия колбочки. Более или менее. Другими словами, получается, что в изображении должны быть пробелы. Ведь "сенсоры" не смогут определить расстояние, потому что их ширина того же размера. Постоянное движение Однако в отличие от сенсоров камер, наша сетчатка не зафиксирована. Существует феномен, который называется тремор глаз — когда мышцы незначительно вибрируют, с частотой 83.
Рамки же составляют от 70 до 103 Гц. Благодаря этим движениям свет может падать на разные колбочки. При помощи временной выборки и пост-обработки мозг может генерировать картинку гораздо большего изображения от одного зафиксированного на месте рецептора. Если учесть, что наши глаза еще и наполнены "желе", которое и так меняет форму при движении, то почему бы не использовать лишнюю информацию для чего-то полезного. Области распознания Чувствительное поле сенсорного нейрона разделено на две части — центральную и окружную, что выглядит примерно вот так: Благодаря такому разделению получается с высокой эффективностью распознавать границы объектов. Если симулировать картинку, то получается примерно так: Таким образом, если присутствуют колебания, то чувствительные клетки будут регистрировать свет при пересечении границ. В результате формируется картинка с разрешением как минимум в два раза выше.
Похожие методы формирования изображений высокого качества используются и в различных технологических системах. Самый простой пример — формирование панорамы при помощи камеры смартфона. Достаточно включить функцию, провести по заданной линии и получается панорама, которую нельзя добиться путем стандартной съемки. Как все это связано с частотой кадров? Предположим, если все что мы видим постоянно меняется и "шумит", то мозг эффективно регистрирует информацию. Мозг способен проводить суперсэмплинг повышать разрешение и получать в два раза больше данных. И это действительно так.
Более того, для получения лучших результатов сигнал должен быть "шумным" — этот феномен известен как Стохастический резонанс. Более того, допустив, что колебания с частотой 83.
Важно учитывать и частоту обновления — сколько новых изображений появляется на экране за 1 секунду.
Если частота обновления монитора составляет 60 Гц что является стандартным , это означает, что он «обновляется» 60 раз в секунду. Один FPS примерно соответствует 1 Гц. При 60 Гц мозг обрабатывает свет от экрана как один непрерывный поток, а не как серию постоянных мерцающих огней.
Более высокая частота обычно означает меньшее мерцание. Больше 60 FPS — фантастика? Однако современные научные работы показывают, что мы можем видеть больше.
Почему так происходит? Потому, что на любом этапе восприятия особенно зрительного мозгу не хватает полученной информации, и он в процессе обработки вносит необходимые коррективы для того, чтобы убрать негативные некомфортные эффекты, например: эффект слепого пятна, недостаточная цветокоррекция и т. Более подробно можете прочитать в той же Википедии. Так вот восприятие информации по кадрам является некомфортным для нашего мозга, если так можно выразиться. Поэтому, когда мы смотри не на экран монитора, а на любое другое естественное природное явление, то изображение всегда плавное, оно не дергается, не прерывается и т. С изображением на экранах мониторов ситуация немного другая. Если верить Википедии, то изображение, полученное глазным яблоком, хранится в зрительной коре головного мозга около 66. Исходя из этого, можно сделать простой логический вывод, что для того, чтобы воспринимать набор различных изображений как самую простую анимацию, нашему глазу необходимо, как минимум 16 отличных друг от друга кадров в секунду. Вспоминаем школьные уроки.
В одной секунде 1000 миллисекунд. Таким образом, при 16 кадрах в секунду предыдущий кадр не успевает исчезнуть, а уже появляется новый. Это и создает иллюзию анимации. Это необходимый минимум для комфортного восприятия, идущего друг за другом ряда кадров. То есть, всё, что меньше 16 кадров будет восприниматься нашим мозгом как слайд шоу. Но что же касается максимума? После какого значения глаз будет пропускать кадры в силу своей биологической неспособности увидеть больше? И сейчас я попробую объяснить, почему именно. Сможете ли вы ответить мне на следующие вопросы: какая скорость реакции является самой быстрой среди зафиксированных человеком результатов?
Или сколько максимум отжиманий может сделать человек? Или на какое время максимум можно задержать дыхание? Безусловно, на каждый из этих вопросов можно дать ответ, который очень просто найти в гугле. Но все эти ответы будут показывать результаты какого-то конкретного человека на данный момент.
Сколько всё же кадров в секунду способен воспринимать человеческий глаз?
120 кадров видит муха, глаз человека так не может. Человеческий глаз может видеть со скоростью около 60 кадров в секунду и потенциально немного больше. В четвертых, нельзя установить цифру сколько кадров глаз в состоянии разделить. Если человеческий глаз видит только 24 кадра в секунду, то почему видео в 60 fps кажутся нам плавнее? В заключение, можно сказать, что вопрос о том, сколько кадров в секунду видит человеческий глаз, не имеет однозначного ответа. Глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным.
Сколько FPS видит человек? Сколько FPS нужно для игр?
сколько кадров видит человеческий глаз | Смотрите видео онлайн «Сколько FPS видит человек? |
Сколько FPS видит человек? Сколько FPS нужно для игр? | Ирландские ученые провели исследование, в рамках которого выяснилось, что некоторые люди способны видеть больше кадров в секунду, чем остальные. |
Мифы про FPS и зрение человека, в которые уже можно не верить | Сколько там этих воображаемых кадров видит человек,никто не в состоянии во-первых. |
До 60 fps: исследование наглядно показало возможности человеческого глаза
СКОЛЬКО ФПС ВИДИТ ГЛАЗ? 24 30 60 144 244 ? :: STEELKOCH_TV | Больше 24 кадров – человеческий глаз не видит. |
FPS человеческого глаза [1] - Конференция | Ирландские ученые провели исследование, в рамках которого выяснилось, что некоторые люди способны видеть больше кадров в секунду, чем остальные. |
Сколько видит человеческий глаз кадров | Поэтому часто повторяемый вопрос о том, сколько FPS видит человеческий глаз, повторяется много раз. |
Какое самое высокое разрешение телевизора может видеть человеческий глаз? | Биологический факт в том, что человеческий глаз видит мир с частотой выше 24 fps. |
До 60 fps: исследование наглядно показало возможности человеческого глаза - Hi-Tech | обо всем этом читайте в нашей статье. |
Сколько FPS видит человек? Сколько FPS нужно для игр?
Какова максимальная частота кадров, которую видит человеческий глаз? Автор, человеческий глаз может воспринимать и анализировать только 24 кадра в секунду! Ирландские ученые провели исследование, в рамках которого выяснилось, что некоторые люди способны видеть больше кадров в секунду, чем остальные. Какое количество кадров в секунду воспринимает человеческий глаз. Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа. Значит, в человеческом глазу 127 Мегапикселей, так?
Сколько кадров видит человеческий глаз в секунду - 80 фото
В звуковом кинематографе совпадение этих частот обязательно из-за недопустимости искажения синхронной фонограммы. Showscan [13]. Телевидение[ править править код ] В телевизионных стандартах частота кадров так же, как в кинематографе, выбрана постоянной. Частота смены кадров в телевидении является частью стандарта разложения изображения и при его создании выбиралась исходя из уже существующей частоты смены кадров кинематографа, физиологических критериев, а также была привязана к частоте промышленного переменного тока. Физиологическим пределом заметности мерцания изображения при средних значениях его яркости считается частота в 48 Гц [14]. В кинематографе для сдвига мерцаний выше физиологического предела с 1902 года применяется холостая лопасть обтюратора кинопроектора , перекрывающая изображение одного неподвижного кадрика вторично [2] [15]. В телевидении для этих же целей при сохранении близкой к кинематографу кадровой частоты применяется чересстрочная развертка. Изображение целого кадра строится дважды — сначала чётными строками, а затем нечётными. Кроме того, кадровая частота телевидения изначально для упрощения конструкции приёмника привязывалась а именно, в точности соответствовала к частоте местных электросетей [14]. При этом, по понятной причине, работоспособными были только телеприёмники, питающиеся от того же первичного генератора, что и передатчик. В дальнейшем, при появлении в телесигнале специальных управляющих синхроимпульсов, равенство кадровой частоты и частоты питающего напряжения стало вредным, оно приводило к появлению медленно плывущих по экрану участков разной яркости и другим проблемам у первых поколений телевизионных приёмников.
С появлением цветного телевидения стандарта NTSC полукадровая частота была изменена с 60 на 59,94 Гц из-за технических особенностей модуляции цветовой поднесущей. Поэтому при телекинопроекции кадровая частота стала кратной — 23,976 Гц. В разных телевизионных стандартах HDTV применяются чересстрочная и прогрессивная построчная развертки, поэтому изображение может передаваться как полями, так и целыми кадрами. Но в конечном счете, максимальная частота смены изображений по-прежнему равна 50 Гц в Европе и 60 Гц в странах, использующих американскую систему США , Канада , Япония и т.
Кадровая частота или FPS от англ.
Frames per Second — это количество сменяемых кадров за единицу времени в телевидении и кинематографе. Впервые это понятие было использовано фотографом Эдвардом Майбриджем. Человеческий глаз сам по себе непрерывно воспринимает информацию, а не через кадры, то есть он способен «собирать» несколько кадров и «превращать» их в движение. Наиболее подходящей и комфортной частотой смены кадров принято считать 24 кадра. Это, к слову, общемировой стандарт частоты киносъемки и проекции.
Если на экране выпадет картинка на 3мс, мозг её не успеет обработать, увидишь резкое изменение и все. А вот плавность перехода от 1 картинки к другой заметна, и чем больше картинок, тем плавнее. Как-то так. В сетевых играх от первого лица зачастую важно количество кадров в секунду. Для меня лично видно различие между 60 и 90, а не только между 30 и 60. Оно не ощущается сразу, но оно очевидно в процессе игры.
Однако, смысла увеличивать частоту кадров выше 60 в практических условиях мало, так как глаз уже неспособен заметить разницу в движении.
Важно отметить, что скорость кадра является только одним из множества факторов, влияющих на визуальные возможности глаза. Качество изображения, яркость, контрастность и другие факторы также играют важную роль во восприятии и обработке визуальной информации. Количество кадров в секунду глаза На самом деле, количество кадров в секунду, которые мы видим глазами, может варьироваться у разных людей и в разных условиях. Обычно принято считать, что человеческий глаз способен воспринимать около 60 FPS. Это предел, после которого дополнительные кадры не воспринимаются человеческим глазом и не приносят заметного улучшения в качестве восприятия изображения. Однако стоит отметить, что способность воспринимать кадры с более высокой частотой может быть индивидуальной и зависеть от разных факторов, таких как возраст и зрение человека, освещение, тип контента и т. Например, в киноиндустрии применяется технология «высококадрового кино» HFR — high frame rate , которая предполагает использование кадровой частоты 48 или 60 FPS.
Некоторые люди заявляют, что HFR позволяет создать более глубокое и реалистичное восприятие изображения. Также стоит учитывать, что некоторым людям может быть неприятное ощущение от просмотра видео с высокой частотой кадров, так как это может выглядеть слишком реалистично или вызывать дискомфорт. В заключение можно сказать, что человеческий глаз способен воспринимать около 60 кадров в секунду, но это количество может варьироваться и зависеть от индивидуальных особенностей каждого человека. Как работает восприятие движения человека В основе восприятия движения лежит способность нашего зрительного аппарата обрабатывать последовательные серии изображений. Глаз состоит из ряда специализированных клеток, называемых фоторецепторами, которые реагируют на свет и отправляют сигналы в мозг для обработки. Фоторецепторы расположены по всей сетчатке глаза. Когда объект движется, фоторецепторы глаза регистрируют серию изображений в короткие промежутки времени.
Сколько кадров в секунду видит человек. Строение глаза и интересные факты
Сейчас и до этого доберёмся Значит, 130 Мп превратились в 1 Мп, и мы каждый день смотрим на мир вокруг… хорошая графика, не так ли? Есть пара инструментов, помогающих нам видеть мир вокруг почти постоянно почти чётким: 1. Наши глаза совершают микро- и макросаккады — что-то типа постоянных перемещений взгляда. Макросаккады — произвольные движения глаз, когда человек рассматривает что-то. В это время происходит «буферизация» или слияние соседних изображений, поэтому мир вокруг нам кажется чётким. Микросаккады — непроизвольные, очень быстрые и мелкие несколько угловых минут движения. Они необходимы для того, чтобы рецепторы сетчатки банально успевали насинтезировать новых зрительных пигментов — иначе поле зрения просто будет серым. Ретинальная проекция Начну с примера — когда мы читаем что-то с монитора и постепенно крутим колёсико мышки для перемещения текста, то текст не смазывается… хотя должен Это очень занятная фишка — здесь в работу подключается зрительная кора. А как же она знает, куда смещать? Очень просто — Ваше движение пальцем по колёсику уже изучено моторной корой до миллиметров… Зрительная и моторная области работают синхронно, поэтому Вы не видите смаза.
А вот когда кто-то другой крутанёт колёсико.... Потом два этих пучка попадают в левую и правую части таламуса - это такой «распределитель» сигналов в самом центре мозга. В таламусе происходит, можно сказать, первичная «ретушь» картинки — повышается контраст. Далее сигнал из таламуса поступает в зрительную кору. И здесь происходит невероятное количество процессов, вот основные: слияние картинок с двух глаз в одну — происходит что-то типа наложения 1 Мп так и остаётся , определение элементарных форм — палочек, кружочков, треугольников, определение сложных шаблонов — лица, дома, машины и т.
Как наш мозг обрабатывает реальность Во-первых, важно помнить, как вы вообще можете видеть изображения. Свет проходит через роговицу в передней части глаза, пока не попадает в линзу. Затем линза фокусирует свет на точку в самой задней части глаза в месте, называемом сетчаткой. Затем фоторецепторные клетки в задней части глаза превращают свет в электрические сигналы, а клетки, известные как палочки и колбочки, улавливают движение. Зрительный нерв передает электрические сигналы в мозг, который преобразует их в изображения. Реальность и экраны Когда вы смотрите бейсбол с трибун или наблюдаете за ребенком, едущим на велосипеде по тротуару, ваши глаза - и ваш мозг - обрабатывают визуальные данные как один непрерывный поток информации. Но если вы смотрите фильм по телевизору, смотрите видео на YouTube на своем компьютере или даже играете в видеоигру, все немного по-другому. Мы привыкли смотреть видео или шоу, которые воспроизводятся с частотой от 24 до 30 кадров в секунду. Фильмы, снятые на пленку, снимаются с частотой 24 кадра в секунду. Это означает, что каждую секунду перед вашими глазами мелькают 24 изображения. Телевизоры и компьютеры в вашем доме, вероятно, имеют более высокую «частоту обновления», что влияет на то, что вы видите и как вы это видите. Частота обновления - это количество раз, когда ваш монитор обновляет новые изображения каждую секунду. Если частота обновления монитора вашего настольного компьютера составляет 60 Гц что является стандартным , это означает, что он обновляется 60 раз в секунду. Один кадр в секунду примерно соответствует 1 Гц.
Сколько FPS видит человеческий глаз? Это необходимое количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Допустим играя в шутер вы можете воспринимать 220 кадров и более. Важным фактором в подаче изображения, естественно, является монитор.
Тест под названием «критический порог слияния мерцаний» позволил определить специалистам частоту, при которой участники исследования переставали различать мерцание. Распределение порогов слияния мерцаний у участников теста в трех различных измеренияхИсточник: PLOS ONE В итоге было выяснено, что разные люди могут видеть разное количество мерцаний в секунду. Так, некоторые переставали различать мигания света уже при 35 Гц, подавляющее большинство воспринимало от 40 до 50 Гц, а также несколько людей смогли преодолеть порог в 60 Гц.
Сколько кадров видит человеческий глаз
Сколько кадров в секунду видит человеческий глаз, количество фпс (fps), которое воспринимает глаз, принцип восприятия. Количество кадров, которые человек может видеть, зависит от его возраста, физического состояния и других факторов. Больше 24 кадров – человеческий глаз не видит.
Глаза и мозг работают в тандеме
- FPS и человеческий глаз | Пикабу
- Сколько FPS видит человеческий глаз?
- Сколько FPS видит человек? Сколько FPS нужно для игр?
- Сколько кадров в секунду может видеть человеческий глаз?
- Какое количество кадров в секунду воспринимает человеческий глаз
- Сколько видит человеческий глаз кадров
Сколько должно быть кадров в секунду. Сколько кадров в секунду видит человеческий глаз
И еще одно: существуют естественные, физические пределы восприятия. Свету, проходящему через роговицу, требуется время, чтобы превратиться в информацию, на основе которой мозг может действовать, а мозг может обрабатывать эту информацию только с определенной скоростью. Еще одна важная концепция: целое, которое мы воспринимаем, больше, чем то, чего может достичь любой отдельный элемент нашей зрительной системы. Этот момент является основополагающим для понимания нашего восприятия зрения.
ДеЛонг — доцент кафедры психологии в колледже Святого Иосифа в Ренсселаере, и большая часть его исследований посвящена зрительным системам. Доцент Джордан ДеЛонг И наконец, мы особенные. У игроков в компьютерные игры одни из самых лучших глаз в мире.
Это объясняется тем, что зрительное восприятие можно тренировать, а игры в жанре экшн особенно хорошо тренируют зрение. Поэтому, прежде чем сердиться на исследователей, рассуждающих о том, какую частоту кадров вы можете воспринимать, а какую нет, похлопайте себя по спине: если вы играете в игры с интенсивным движением, то, скорее всего, вы воспринимаете частоту кадров лучше, чем среднестатистический человек. Восприятие движения Теперь перейдем к цифрам.
Первое, о чем следует подумать, — это частота мерцания. Большинство людей воспринимают мерцание источника света как постоянное освещение с частотой 50-60 раз в секунду, или герц. Некоторые люди могут уловить легкое мерцание люминесцентной лампы с частотой 60 Гц, а большинство людей увидят мерцающие мазки, если сделают быстрое движение глазами при взгляде на модулируемые светодиодные задние фонари, которыми оснащены многие современные автомобили.
Но это лишь часть головоломки, когда речь идет о восприятии плавных игровых кадров. Это связано с тем, что игры выдают движущиеся изображения, а значит, задействуют иные зрительные системы, нежели те, которые просто обрабатывают свет. Классический набор фотографий, используемых в дискуссиях о сохранении зрения.
По материалам Дэвида ДеФино. В качестве примера можно привести закон Блоха. Он гласит, что во вспышке света длительностью менее 100 мс существует компромисс между интенсивностью и продолжительностью.
Вы можете получить наносекунду невероятно яркого света, и он будет выглядеть так же, как десятая доля секунды тусклого света. Это похоже на соотношение между выдержкой и диафрагмой в фотоаппарате: если пропустить много света через широкую диафрагму и установить короткую выдержку, то фотография будет так же хорошо экспонирована, как и та, которая сделана при небольшом количестве света через узкую диафрагму и длинной выдержке. Но если мы с трудом различаем интенсивность вспышек света длительностью менее 10 мс, то невероятно быстрые артефакты движения мы воспринимаем.
Специфичность связана с тем, как мы воспринимаем различные типы движения. Если вы сидите неподвижно и наблюдаете за движением предметов перед собой, то это совсем другой сигнал, чем тот, который вы получаете, когда идете рядом. Но На периферии глаза мы обнаруживаем движение невероятно хорошо.
При наличии экрана, заполняющего периферийное зрение и обновляющегося с частотой 60 Гц и более, многие люди отмечают, что у них возникает стойкое ощущение физического движения.
Это и создает эффект постановки. Мы видим не образ, а сцену целиком, что едва ли возможно в реальности. В качестве наглядной демонстрации вы можете прямо сейчас провести эксперимент.
Для этого необходимо на смартфоне открыть съемку видео и в настройках выбрать частоту — 60 fps. Смотрите на экран и подвигайте перед собой камеру, получается гораздо плавнее, чем если просто подвигать головой. В итоге для получения кинематографического качества, необходимо снимать с частотой ниже 41 Гц, но выше частоты, когда движение становится рваным — от 16 Гц. А почему старые сериалы выглядели фальшиво?
Это было связано с технологиями вещания прошлого века в NTSC-регионах, когда видео показывали с частотой 59. Но суть в том, что общая частота была выше колебаний, благодаря чему возникал эффект мыльной оперы. Что все это значит для видеоигр? В отличие от кино, особенно снятого на пленку с феноменальным даже по сегодняшним стандартам разрешением, видеоигры имеют ограниченное разрешение.
Большинство из нас играет на 1080p или 1440p, лишь в последние годы 4K-матрицы стали доступнее. В таких условиях мы способны различать отдельные пиксели и они распределены в форме сетки. Поэтому проблема разрешения и частоты еще какое-то время будет компромиссом. Даже на консолях нового поколения придется искать баланс.
Однако даже 38-43 кадров в секунду, с хорошим "зерном", временным и антиалиасингом можно добиться лучших результатов. В противном случае наш мозг будет подсознательно регистрировать пиксельную сетку, а не содержание. В связи с этим, экшеновым играм с большим количеством движений важнее частота, тогда как у более статичных играм, вроде стратегий, в приоритете должно быть разрешение. Частично это объясняет использование некоторыми разработчиками динамического разрешения — когда в сценах нет экшена, можно рендерить картинку в высоком разрешении, когда экшен усиливается, разрешение уменьшается в пользу стабильной частоты.
Кроме того, чем выше частота, тем быстрее вы сможете реагировать на происходящее. Хотя выше 144 Гц позитивный эффект начинает снижаться и стоящие результаты возможны у профессиональных геймеров. Но это связано не только с рефлексами, но и с самими играми, так как чем выше частота — тем ниже задержка ввода. Заключение Это далеко не все, что можно сказать о частоте и разрешении.
В частности, заслуживает внимания проблема укачивания и головной боли при просмотре некоторых видео или во время игр, но об этом мы поговорим отдельно. Пока же, можете провести собственные эксперименты с частотой и разрешением в различных играх на PC.
Вопрос на миллион долларов, верно? С этим не согласны даже эксперты, и вот что они говорят о том, сколько FPS видит человеческий глаз: «Конечно, 60 Гц лучше, чем 30 Гц, явно лучше, и это утверждение, которое мы уже давно слышим от производителей оборудования. Поскольку мы можем воспринимать движение с более высокой скоростью, чем мерцающий источник света с частотой 60 Гц, уровень должен быть выше, но я не думаю, что он остается на определенном уровне. Я не знаю, 120 Гц это или 180 Гц. Проще говоря, точка, в которой люди замечают изменение плавности движущихся изображений, составляет около 90 Гц. Очевидно, это для обычного человека, поскольку, как мы уже говорили ранее, геймеры лучше воспринимают эти изменения ».
Иосифа в Ренсселере. Итак, в конце концов, вот какие выводы мы можем сделать: У геймеров лучше визуальное восприятие и лучшие рефлексы. Более высокие частоты уменьшают мерцание. Если мы видим монитор с частотой 60 Гц как сплошное изображение, это означает, что человеческий глаз видит менее 60 кадров в секунду. То, как мы воспринимаем статические изображения, отличается от того, как мы воспринимаем движущиеся изображения. Тот факт, что мы воспринимаем разницу в частоте кадров, не означает, что время реакции ухудшается.
И это накладывает определенные ограничения на степень реалистичности картинки. Разработчики видеоигр понимают это и поэтому придумали добавлять по краям экрана эффект размытия, этот эффект позволяет мозгу воспринимать происходящее на экране более реалистично. Соответственно для обеспечения нужного уровня реалистичности хватает меньшего FPS. Принимая во внимание чрезвычайную сложность постобработки сигналов человеческим мозгом, указать точное значение фпс, воспринимаемое нами, с точностью до единицы попросту невозможно. Можно оттолкнуться только от физического предела восприятия в 20 мс, что равнозначно 50 FPS. В тоже время учитывать, что края монитора захватываются частью периферийного зрения, где чувствительность рецепторов выше, но как мы поняли в этой области изображения разработчики игр научились обманывать зрительную систему. В итоге рациональным является остановиться на 60 FPS взяв 10 FPS про запас для просмотра видеоряда в котором нет эффекта размытия по краям. Передовая технология 3D-Vision, поддерживающая 120 Гц то есть по 60 Гц на глаз Несмотря на это повышенная частота способна действительно улучшить восприятие картинки. Почему так происходит и почему это никак не связано с FPS, который воспринимает человеческий глаз, вы можете узнать ответ дальше. Восприятие картинки на мониторах 120 Гц лучше? В интернете в последнее время стала очень популярна тема о 120 Гц мониторах. Часто в этих темах озвучивается идея о том, что на 120 Гц мониторах изображение выглядит лучше даже без 3D-очков. Действительно ли человек способен заметить разницу? Картинка на 120 Гц мониторе выглядит более плавной Как ни странно, но это действительно так. На первых взгляд можно заподозрить противоречие: в одной статье я писал, что максимум — 60 FPS А сейчас говорю, что мы замечаем разницу между 60 и 120 Гц. Как так? Дело в том, что подобные сравнения некорректны. Гц и FPS это совершенно разные величины и они не тождественны, как подразумевают многие пользователи. FPS это кадры в секунду которые отображаются матрицей монитора. Гц это количество сигналов поступающих на матрицу. Казалось бы а ни «одна ли фигня»? Нет, ни одна. Человеческий глаз воспринимает 60 FPS. Но мы забываем, что изображение, которое выводится на монитор не является «идеальным»: оно содержит артефакты. Взгляните на график ниже. На нем изображена зависимость светимости пикселя от времени. Сначала он был темным. Затем пришла команда изменить цвет 40 мс. Современные игровые матрицы заточены на максимальную скорость, которая достигается усиленным сигналом. В результате цвет пикселя «перескакивает» нужное значение и выравнивается следующие 50. Вдумайтесь, значение достаточно большое, ведь при FPS 60 на 1 кадр приходится всего 16 мс. Потому что им нужно 50 мс что бы попасть точно в заданное значение, а кадр сменится уже через 16. Иными словами формально мы можем получить 60 кадров в секунду. Но физические это не «чистые» и «четкие» 60 кадров, а кадры со «шлейфом» «промахами» и артефактами. Что происходит на 120 Гц мониторе Представим, что мы наблюдаем за движущимся слева направо прямоугольником. На 2 разных мониторах: 60 и 120 Гц соответственно. Кадры сняты с периодом 8,3 мс что соответствует 120 Гц. Естественно на 120 Гц он перемещается более плавно. А это значит, что физический размер каждого «перемещения» будет в 2 раза меньше. А ведь именно эта зона содержит артефакты, представляющие собой своеобразный шлейф, который очень негативно сказывается на восприятии картинки. Более того, так как период между сигналами 8,3 мс а не 16 мс это значит, что исчезать промахи тоже будут в 2 раза быстрее. Да и величина промахов так же сильно изменится. Это связано с тем, что изменение светимости с 0 до 160 будет происходить не единовременно за 1 сигнал, а за 2 сигнала. Если дельта меньше, то и промах будет значительно меньше. Конечно это не применимо к переходам от темного к светлому, потому что и так и так будет 1 переход, потому что промежуточных значений нет. Но в играх как мы знаем изображение не черно-белое и есть много участков с относительно плавным изменением цветов и яркости например физические тени. В результате получаем: Физический размер «шлейфа» вдвое меньше; Исчезает в 2 раза быстрее; Промах изначально меньше Отсюда вывод: изображение на 120 Гц мониторе действительно лучше и плавнее. Однако, это никак не связано с тем, что мы воспринимаем больше 60 кадров. Просто на 120 Гц динамика передается намного корректней. Намного потому, что 3 упомянутых фактора не просто складываются, а усиливают друг друга. Какое количество кадров в секунду воспринимает человеческий глаз История рождения кинематографа связана с именами Томаса Эдисона и братьев Люмьер, заложивших стандарты кино, которых на протяжении десятилетий придерживались их последователи. Постепенно с внедрением звука, появлением телевизионного вещания и цифрового видео правила и подходы трансформировались. Но неизменно каждая новая технология была вынуждена учитывать показатель кадровой частоты, который имеет огромное значение при создании и восприятии фильмов аудиторией, поскольку количество кадров в секунду, которое видит человеческий глаз ограничено. Что такое кадровая частота Принцип кино можно понять на основе работы простейшего электронно-оптического проектора. Отдельные изображения на плёнке последовательно проходят через механизм проектора. Встроенная лампа направляет на них световой поток, посредством которого оптическая система поочерёдно проецирует кадры на экран, создавая иллюзию движения.