Исследователи разработали и внедрили «мозго-спинномозговой интерфейс» (BSI), который образует неврологическую связь с использованием беспроводного цифрового моста между спинным мозгом и головным мозгом человека. Дмитрий Усачов, директор Центра нейрохирургии им. Бурденко, академик РАН, президент Ассоциации нейрохирургов России: «В России выполняется 190 тысяч нейрохирургических операций, из них 95 тысяч — на спинном мозге. Исследователи из Калифорнийского университета (University of California) опубликовали результаты своих экспериментов — им удалось восстановить целостность спинного мозга крыс с помощью нейронов, полученных из стволовых клеток. Ученые Курчатовского института с коллегами из Казанского федерального университета разработали модель, которую можно использовать для создания нейропротезов для пациентов с повреждением спинного мозга.
Технологии позволяют опытным хирургам справляться с патологиями позвоночника и спинного мозга
MedAboutMe Новости. Целью исследователей было заставить расти в нужном направлении аксоны – отростки нервных клеток, которые и составляют спинной мозг. Российские учёные работают над особым типом клеток, на основе которых может быть создан инновационный клеточный продукт, который поможет пациентам с травмами спинного мозга, особенно в ситуациях, когда сформировались постравматические кисты. Суть заключается в многоуровневой стимуляции спинного мозга в сочетании со специальными упражнениями.
Важная победа над природой: как скоро можно будет чинить спинной мозг
Спинной мозг. Секреты наружного строения | Шейные позвонки зажали спинной мозг. |
Спинной мозг | Работа лишь одной субпопуляции нейронов спинного мозга помогла пациентам с параличом снова двигаться. Для терапии травм спинного мозга авторы статьи, использовали электростимуляцию клеток поясничного отдела. |
Впервые в мире: ученые Университета «Сириус» разработали мягкий нейроимплант спинного мозга | Суть заключается в многоуровневой стимуляции спинного мозга в сочетании со специальными упражнениями. |
Регенерация нейронов: ученые вернули ходьбу мышам, парализованным после травмы | | Z-новости. В РФ создали препарат со стволовыми клетками для лечения травмы спинного мозга. |
Спинной мозг | 40-летний мужчина смог снова ходить благодаря "цифровому мосту", который беспроводным способом соединяет головной мозг с участком спинного мозга, сообщает Sky News. |
Починить спинной мозг: новые терапии на грани фантастики
На информационном ресурсе применяются рекомендательные технологии информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации ". Полный перечень лиц и организаций, находящихся под судебным запретом в России, можно найти на сайте Минюста РФ.
У пациентов с «мозговым туманом» ученые обнаружили в образцах повышенный уровень белка, что говорит о воспалении в мозгу. Также и в крови, и в спинномозговой жидкости исследователи нашли антитела: это говорит о том, что процесс системный, то есть протекает во всем организме. Хотя цель этих антител неизвестна, вполне возможно, что это могут быть антитела-перебежчики, атакующие сам организм. Чтобы подтвердить, что у участников эксперимента есть когнитивные нарушения, исследователи дали им стандартные тесты. Обычно их используют для определения проблем с мышлением, связанных с осложнениями при ВИЧ-инфекции.
Чаще всего для устранения боли и снятия воспаления применяются различные фармацевтические препараты, хотя не всегда они приносят облегчение пациентам. Она подчеркнула, что поскольку терапевтических методов эффективного восстановления нервной ткани спинного мозга не существует, перспективной видится разработка изделий, имплантируемых в острую фазу травмы. Сейчас авторы изделия уже создали наноструктурированные каркасы, состоящие из резорбируемого полимера. Нейроимплантаты прошли испытания и доказали эффективность на клеточных культурах. В ближайшее время разработчика нейроимпланта продолжат его исследования на лабораторных животных.
Спинной мозг расположен в позвоночном канале, образованном, соответственно, позвонками. Эти костные структуры соединены друг с другом при помощи суставов. Задачу амортизации выполняют межпозвоночные диски. В старой литературе было популярно мнение, что спинной мозг — это такой шлейф «проводов», обеспечивающих связь головы и тела. В последнее время стало понятно, что не всё так просто. Эволюционно спинной мозг неотделим от головного. В жизнедеятельности примитивных организмов именно он выполняет ведущую функцию. Многие помнят историю об американском петухе , который долгое время жил практически без головы. Конечно, человек организован куда сложнее, а потому не может отдавать витальные жизненно важные функции на такой «аутсорс». И всё-таки факт остаётся фактом. Спинной мозг обладает собственными нейронными сетями, которые выполняют просчёт движений на месте. Он сложнее, чем пучок магистральных проводов. В контексте нынешних знаний из нейрофизиологии спинной мозг будет корректнее сравнивать с цепочкой полуавтономных серверов. Спинальная травма приводит к тому, что все отделы организма, находящиеся ниже места повреждения, оказываются без координирующего влияния головного мозга. Если спинной мозг был перебит не полностью, какие-то сигналы ещё могут прорываться к телу. Тогда у человека будет некий резерв для реабилитации. В ином случае нервные сети, оставшиеся без работы, начинают деградировать. Слева изображена принципиальная схема полного перерыва спинного мозга. Справа — состояние, при котором проводящие пути частично сохранили свою целостность. При полном пересечении спинного мозга уже упомянутые «серверы» функционируют независимо от «босса» в голове. Тогда пробуждаются патологические рефлексы — набор стереотипных реакций, при которых рефлекторные дуги замыкаются на нижележащих отделах спинного мозга. Рефлексы осуществляются на основе рефлекторной дуги. Поступивший импульс регистрируется рецептором. По афферентному приносящему волокну сигнал идёт в ЦНС. Там расположены вставочные нейроны. Под вставочным нейроном понимается та нервная клетка, которая связана только с другими нейронами. В этом состоит её отличие от чувствительных и двигательных нейронов. Именно вставочные нейроны решают, отвечать ли организму на воздействие. Сформированный ими сигнал идёт на моторный нейрон. С помощью эфферентного выносящего волокна команда передаётся клеткам-исполнителям. Таким образом,у нас разгибается нога при ударе по коленной чашечке и отдёргивается рука, схватившая горячий предмет. В случае спинальной травмы неизбежно проявится дисфункция тазовых органов, выражающаяся в задержке отделения мочи и стула. Впрочем, даже парезы и плегии — меньшее зло по сравнению со спинальным шоком. При нём возникает опасное падение артериального давления. Его причина состоит в нарушении баланса между двумя отделами вегетативной автономной нервной системы: симпатики и парасимпатики. Спинальный шок «На пальцах» разницу между ними понять нетрудно. Симпатика отвечает за возбуждение и тонус. Парасимпатика — за торможение и релаксацию. На упрощённой схеме видно, что центры, отвечающие за иннервацию органов, расположены в порядке иерархичности сверху вниз. В случае спинальной травмы без нормальной иннервации остаётся всё, находящееся ниже места разрыва. Релакс может быть очень плохим, особенно когда им занимаются кровеносные сосуды. Их стенка расслабляется, падает перфузионное давление — и клетки остаются без кислорода из кровотока. Продукты распада тоже никто не выводит. Сначала клетки пытаются бороться. По мере исчерпания ресурсов они переходят на более экономный путь извлечения энергии. Детский вопрос: зачем мы дышим? И правда, зачем людям вообще нужен кислород? Биохимики знают ответ. Кислород — краеугольный камень цикла Кребса. Именно на кислороде пересекается три принципиально важных пути метаболизма: клеточное дыхание, гликолиз и электрон-транспортная цепочка. Цикл Кребса — это биохимическая топка, лежащая в основе снабжения организма энергией. Поначалу он кажется глобальным и монструозным, хотя в биохимии бывают и другие штуки, более трудные для восприятия. Например, орнитиновый цикл. Так или иначе, все пути метаболизма рано или поздно замкнутся на цикле лимонной кислоты. При отсутствии кислорода метаболизм переключается на анаэробный путь. При нём возникает меньше энергии, а ещё — изменение pH крови в кислую сторону. Показатель pH — величина логарифмическая. Это значит, что численный показатель изменяется на одну величину при увеличении или уменьшении в соответствующее количество раз. Со школьной скамьи мы знаем разницу между кислотами и основаниями. Мол, кислота — это водород с кислотным остатком, а щёлочь — металл с ним же. В биохимии всё немного иначе. Тут кислота — любой донор электронов, а основание, соответственно, будет его акцептором. Всё бы ничего, но атом, получивший положительный или отрицательный заряд становится ионом. Ионы проявляют высокую химическую активность и ведут себя крайне агрессивно, особенно в отношении клеточных мембран. Нарастающий ацидоз ломает клеточные мембраны, что приводит к выходу продуктов распада и литических ферментов. В норме литические ферменты сидят запертыми в специальных органеллах клетки. Вырвавшись наружу, эти вещества начинают переваривать всё подряд. В такой ситуации становится как-то не до гемодинамики.
Спинной мозг. Секреты наружного строения
Однако все еще остается нерешенной одна из главных задач — разработка интерфейсов электродов с оптимальными механическими, электрическими и биологическими свойствами. Нейроимплант располагается между костью, то есть жесткой тканью, и спинным мозгом — мягкой тканью, и вся эта конструкция находится еще и в движении, именно поэтому материал, из которого изготавливается нейроимплант, должен быть максимально похож на ткань нервной системы. Импланты, которые используются в медицинской практике, сейчас относительно жесткие, что со временем может привести к компрессии нервных тканей и повреждению самого импланта. Научная группа профессора Павла Мусиенко ведет уже более 5 лет исследования по созданию нейроимплантов с более высоким уровнем биоинтеграции, что требует значительного вовлечения экспертов из разных научных областей. В работе задействованы ресурсы и накопленный опыт нескольких научных центров страны — СПбГУ, Института физиологии им.
Уникальность этих экспериментов в том, что они были максимально приближены к тем условиям, что могут возникнуть в реальных случаях травм у людей. Другими словами, были взяты обычные домашние собаки, которые в различное время получили травмы позвоночника, связанные с разрывом нервных путей и потерей части нервных клеток. После травм собаки в течение 12 месяцев и более не могли использовать свои задние ноги и потеряли чувствительность задней части туловища. Надо отметить, что у такс часто возникают такие же повреждения спинного мозга, как и у людей: связанные со смещением позвонков относительно друг друга.
Для лечения собак применили перспективную технологию имплантации обкладочных нейроэпителиальных клеток OEC. Эти клетки находятся в носу и обладают свойствами нейральных стволовых клеток, то есть могут превращаться в нейроны. Впервые нейральные стволовые клетки из слизистой оболочки носа взрослого человека выделили в 2001 году, что стало важнейшим достижением, поскольку из носа добывать нейральные стволовые клетки относительно просто. Собак разделили на две группы: одной ввели стволовые клетки непосредственно в место травмы позвоночника, а вторая группа была контрольной и получила плацебо. Через месяц собак в специальном поддерживающем корсете отправили на беговую дорожку для проверки функций конечностей. Собаки, которым трансплантировали собственные нейральные стволовые клетки из слизистой оболочки носа, вновь смогли управлять задними конечностями Группа собак, получившая инъекции OEC, продемонстрировала значительные улучшения: парализованные задние конечности начали двигаться, причем начала появляться скоординированность движений с передними ногами. Это означает, что стволовые клетки восстановили часть нервных путей и через поврежденную часть спинного мозга начали проходить сигналы. К сожалению, исследования показали, что восстановление происходит только на коротких расстояниях — при небольшой ширине разрыва между участками спинного мозга.
Больше всего повезло тем собакам , у которых были нарушены связи между близкорасположенными нейронами, что соответствует тонкому хирургическому разрезу или несильному сдвигу позвонков. Тем не менее, уже это является большим достижением. Один из хозяев собаки, отмечает, что это похоже на чудо: «До инъекции наш пес Джаспер не мог ходить и ползал, волоча задние ноги, а теперь он носится вокруг нашего дома и не отстает от других собак». В настоящее время ученые работают над созданием матриц, которые «укажут» клеткам OEC куда надо расти, чтобы восстановить связь в позвоночнике. Подобная технология сможет обеспечить восстановление нейронных связей даже при потере большого количества нейронов, как бывает, например, в случае компрессионных переломов. Пока идет работа над полным излечением травм спинного мозга, ученые из Case Western Reserve University и клиники Кливленда пытаются хотя бы частично улучшить состояния людей с очень серьезными повреждениями нервной ткани. В случае с обширной потерей нейронов пока почти нет надежды на полное исцеление, но для пациентов было бы большим облегчением восстановить хотя бы частичную функциональность парализованной части туловища.
Эту гипотезу поддержали и данные, полученные учеными — в клиническом испытании терапии нейронная активность в поясничных сегментах спинного мозга падала, а не возрастала. Это позволило предположить, что восстановлением активности после паралича занимается другая группа нейронов, которая не выполняет рутинную двигательную функцию. Чтобы проверить эту гипотезу, исследователи создали мышиную модель травмы спинного мозга, а также и терапевтическую систему стимуляции и механической поддержки веса тела при ходьбе.
Чтобы исследовать, как нейроны мышей реагируют на терапию, ученые создали целый атлас клеток, основанный на экспрессии их генов и расположении в спинном мозге. Для этого биологи использовали секвенирование РНК в каждом из ядер клеток отдельно snRNA-seq и нанесли результаты секвенирования на проекцию спинного мозга. Так удалось выделить 36 субпопуляций, основанных на работе маркерных генов. Чтобы выделить ту субпопуляцию, которую исследователи искали принимающую участие в реабилитации , биологи использовали метод приоритезации. Алгоритм машинного обучения Augur выделил в построенном атласе те нейроны, экспрессия которых больше всего менялась при реабилитации.
В первом случае есть риски неточного воздействия импланта на целевые нервы, а во втором операция несет риски повреждения ткани, а также проблемы биосовместимости. Ученые из Университета Джона Хопкинса решили обе проблемы, создав вводимый через шприц имплант. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу До начала разработки импланта изначально они обнаружили новое место для стимуляции, которое располагается очень близко к важнейшим мотонейронам спинного мозга и одновременно доступно без хирургического вмешательства. Это позволило подойти к созданию импланта с другой стороны и разработать наноразмерное гибкое устройство, которое можно вводить с помощью небольшого шприца. Эксперименты показали, что стимуляция с помощью электрического тока восстанавливала подвижность конечностей мышей.
Молодой нейрохирург РКБ впервые в Татарстане провел уникальную операцию на спинном мозге
Сами имплантаты разработала Французская комиссия по атомной энергии. Как работает технология? Руководитель проекта в комиссии Гийом Шарве рассказал, что имплантаты используют "адаптивный искусственный интеллект" для декодирования намерений мозга о движении в режиме реального времени. После того как ИИ идентифицирует сигналы, они преобразуются в последовательности электрической стимуляции спинного мозга, которые активируют мышцы ног и вызывают желаемое движение. Примечательно, что у пациента наблюдались улучшения в сенсорном восприятии и двигательных навыках, которые сохранялись даже после отключения "цифрового моста", что позволило ему ходить с костылями. По словам профессора Грегуара Куртина, это говорит о том, что цифровой мост не только восстановил спинной мозг пациента, но и поспособствовал росту новых нервных связей. Оскам — пока что единственный пациент, на котором испытали "цифровой мост".
Вся система внешне не видна, так как находится под кожей и не стесняет движений пациента. Перед постановкой постоянной нейростимулирующей системы обязательно проводится тестовая стимуляция, при которой врач и сам пациент могут убедиться в эффективности стимуляции с помощью тестового электрода.
Если на этом достигнут положительный эффект, то нейростимулятор имплантируется.
Задачу амортизации выполняют межпозвоночные диски.
В старой литературе было популярно мнение, что спинной мозг — это такой шлейф «проводов», обеспечивающих связь головы и тела. В последнее время стало понятно, что не всё так просто. Эволюционно спинной мозг неотделим от головного.
В жизнедеятельности примитивных организмов именно он выполняет ведущую функцию. Многие помнят историю об американском петухе , который долгое время жил практически без головы. Конечно, человек организован куда сложнее, а потому не может отдавать витальные жизненно важные функции на такой «аутсорс».
И всё-таки факт остаётся фактом. Спинной мозг обладает собственными нейронными сетями, которые выполняют просчёт движений на месте. Он сложнее, чем пучок магистральных проводов.
В контексте нынешних знаний из нейрофизиологии спинной мозг будет корректнее сравнивать с цепочкой полуавтономных серверов. Спинальная травма приводит к тому, что все отделы организма, находящиеся ниже места повреждения, оказываются без координирующего влияния головного мозга. Если спинной мозг был перебит не полностью, какие-то сигналы ещё могут прорываться к телу.
Тогда у человека будет некий резерв для реабилитации. В ином случае нервные сети, оставшиеся без работы, начинают деградировать. Слева изображена принципиальная схема полного перерыва спинного мозга.
Справа — состояние, при котором проводящие пути частично сохранили свою целостность. При полном пересечении спинного мозга уже упомянутые «серверы» функционируют независимо от «босса» в голове. Тогда пробуждаются патологические рефлексы — набор стереотипных реакций, при которых рефлекторные дуги замыкаются на нижележащих отделах спинного мозга.
Рефлексы осуществляются на основе рефлекторной дуги. Поступивший импульс регистрируется рецептором. По афферентному приносящему волокну сигнал идёт в ЦНС.
Там расположены вставочные нейроны. Под вставочным нейроном понимается та нервная клетка, которая связана только с другими нейронами. В этом состоит её отличие от чувствительных и двигательных нейронов.
Именно вставочные нейроны решают, отвечать ли организму на воздействие. Сформированный ими сигнал идёт на моторный нейрон. С помощью эфферентного выносящего волокна команда передаётся клеткам-исполнителям.
Таким образом,у нас разгибается нога при ударе по коленной чашечке и отдёргивается рука, схватившая горячий предмет. В случае спинальной травмы неизбежно проявится дисфункция тазовых органов, выражающаяся в задержке отделения мочи и стула. Впрочем, даже парезы и плегии — меньшее зло по сравнению со спинальным шоком.
При нём возникает опасное падение артериального давления. Его причина состоит в нарушении баланса между двумя отделами вегетативной автономной нервной системы: симпатики и парасимпатики. Спинальный шок «На пальцах» разницу между ними понять нетрудно.
Симпатика отвечает за возбуждение и тонус. Парасимпатика — за торможение и релаксацию. На упрощённой схеме видно, что центры, отвечающие за иннервацию органов, расположены в порядке иерархичности сверху вниз.
В случае спинальной травмы без нормальной иннервации остаётся всё, находящееся ниже места разрыва. Релакс может быть очень плохим, особенно когда им занимаются кровеносные сосуды. Их стенка расслабляется, падает перфузионное давление — и клетки остаются без кислорода из кровотока.
Продукты распада тоже никто не выводит. Сначала клетки пытаются бороться. По мере исчерпания ресурсов они переходят на более экономный путь извлечения энергии.
Детский вопрос: зачем мы дышим? И правда, зачем людям вообще нужен кислород? Биохимики знают ответ.
Кислород — краеугольный камень цикла Кребса. Именно на кислороде пересекается три принципиально важных пути метаболизма: клеточное дыхание, гликолиз и электрон-транспортная цепочка. Цикл Кребса — это биохимическая топка, лежащая в основе снабжения организма энергией.
Поначалу он кажется глобальным и монструозным, хотя в биохимии бывают и другие штуки, более трудные для восприятия. Например, орнитиновый цикл. Так или иначе, все пути метаболизма рано или поздно замкнутся на цикле лимонной кислоты.
При отсутствии кислорода метаболизм переключается на анаэробный путь. При нём возникает меньше энергии, а ещё — изменение pH крови в кислую сторону. Показатель pH — величина логарифмическая.
Это значит, что численный показатель изменяется на одну величину при увеличении или уменьшении в соответствующее количество раз. Со школьной скамьи мы знаем разницу между кислотами и основаниями. Мол, кислота — это водород с кислотным остатком, а щёлочь — металл с ним же.
В биохимии всё немного иначе. Тут кислота — любой донор электронов, а основание, соответственно, будет его акцептором. Всё бы ничего, но атом, получивший положительный или отрицательный заряд становится ионом.
Ионы проявляют высокую химическую активность и ведут себя крайне агрессивно, особенно в отношении клеточных мембран. Нарастающий ацидоз ломает клеточные мембраны, что приводит к выходу продуктов распада и литических ферментов. В норме литические ферменты сидят запертыми в специальных органеллах клетки.
Вырвавшись наружу, эти вещества начинают переваривать всё подряд. В такой ситуации становится как-то не до гемодинамики. Падение артериального давления становится катастрофическим.
Сердце вроде бы качает кровь, лёгкие работают, но тело всё равно страдает от гипоксии.
В новом устройстве, в отличие от предыдущих экспериментальных образцов, электроды соединяют уже сам головной мозг со спинным. Пациент — мужчина 38 лет, который около 10 лет назад упал с велосипеда и оказался парализованным. Пациент, который уже год испытывает на себе изобретение, сам научился ходить по дому с костылями, садиться в машину, выходить из машины. Как отмечают ученые, пока неизвестно, сможет ли новая технология помочь больным с другими видам паралича, так как у пациента был частичный паралич например, он мог короткое время самостоятельно стоять на ногах.
Прорыв в лечении поврежденного спинного мозга
В большинстве случаев инсульт спинного мозга бывает спровоцирован нарушениями работы сосудов, а не самого позвоночника. Эти детали могут быть полезны для понимания принципов регенерации поврежденных аксонов спинного мозга", — рассказывает Роман Борисюк из Института математических проблем биологии РАН, чьи слова приводит пресс-служба заведения. Травмы спинного мозга сегодня практически не поддаются лечению, ежегодно обрекая тысячи людей на жизнь в инвалидном кресле. Все новости Лента новостей Hardware Software События в мире В мире игр IT рынок Новости сайта.
Нейрохирурги ВКО поделились опытом имплантации нейростимулятора в спинной мозг
Российский нейроимплант поможет двигаться пациентам с травмами спинного мозга | Травмы спинного мозга сегодня практически не поддаются лечению, ежегодно обрекая тысячи людей на жизнь в инвалидном кресле. |
Ученые КФУ изучают эффективные способы помощи пациентам с травмой спинного мозга | написали исследователи. |
Ученые создали имплант спинного мозга — он вылечил 80 процентов случаев хронического паралича мышей | По сути, был создан беспроводной интерфейс между головным и спинным мозгом, используя технологию интерфейса мозг-компьютер, которая преобразует мысли в действия. |
Главный онколог «СМ-Клиника» об опухолях спинного мозга | написали исследователи. |
Впервые в мире: ученые Университета «Сириус» разработали мягкий нейроимплант спинного мозга | Ученые-медики вживляют "умный" имплантат в поврежденный участок спинного мозга, из-за которого происходит паралич нижних конечностей. |
Важная победа над природой: как скоро можно будет чинить спинной мозг
Принцип такой: электроды помещают между позвоночником и спинным мозгом и с их помощью стимулируют нужные нервные окончания — то есть имитируют сигналы, которые должны поступать из головного мозга. Такая стимуляция позволяла прежде парализованным людям стоять, двигать ногами, ходить, ездить на велосипеде и заниматься греблей. Однако обычно пациентам с имплантированными в позвоночник электродами приходится носить еще и датчики движения. Эти датчики отслеживают движения мышц и помогают выбирать сигнал, который следует послать в спинной мозг дальше. Это не слишком похоже на естественный контроль движения, а ходить пациенты могут если вообще могут только с опорой и только по беговой дорожке или ровным поверхностям. Устройство испытали на мужчине 38 лет, который десять лет назад упал с велосипеда и получил неполную травму спинного мозга и перестал ходить. Несколько лет назад пациент уже участвовал в клиническом испытании: это была пятимесячная программа нейрореабилитации, основанная на все той же эпидуральной стимуляции спинного мозга. Тогда стимуляция помогла ему снова начать ходить — с помощью ходунков с колесом. Также удалось восстановить частичную подвижность без стимуляции. Еще три года мужчина применял стимуляцию дома, но ходить он мог только по плоским поверхностям, и ему было трудно останавливаться и снова начинать движение. Подниматься и спускаться по пандусам или лестницам он не мог.
Его перевели из реанимации через несколько дней, но достать он успел всех. Он, кстати, будет ещё фигурировать в моем рассказе. Поскольку принимать пищу и пить я не мог, то кормили и поили меня какой-то субстанцией через трубку в носу она была просунута в желудок. Примерно по истечении недели, врач сказал, что поражение спинного мозга настолько сильное, что дышать полностью самостоятельно я пока не смогу, поскольку сигнал до нужных мышц проходит слабо, и ещё некоторое время надо побыть в реанимации на ИВЛ. Это меня совсем не устраивало, и я решил что хрен там плавал, и все свободное время а его у меня теперь дофига , я буду стараться делать вдохи-выдохи вместе с аппаратом, и докажу всем, что меня так просто не возьмёшь. В тот же день мне сделали трахеостому дырка в трахее, под кадыком , и трубку ИВЛ переставили туда. Ничего вкуснее той воды я ещё не пил.
Ещё через какое-то время, санитары стали приподнимать изголовье кровати и кормить меня с ложечки. Ничего вкуснее той еды я ещё не ел. Затем начались просто невыносимые боли в ногах, будто ноги находятся в ведре с очень горячей водой. Тяжело только, когда нужно заснуть, приходится включать в наушниках аудиокниги, чтобы отвлечься от боли привет, мудачьё, у которого горела срака от моего поста о cgpods, в комментах к 1й части. Да-да, я ими пользовался, несмотря на болезнь, и очень огорчился, когда они предательски сломались. Горжусь, что смог решить проблему, будучи неспособным даже встать с кровати. Затем выяснилось, что из-за неподвижности у меня начались пролежни на крестце, и врачи пришли к выводу, что надо меня поворачивать с боку на бок.
Примерно в это же время ко мне прямо в реанимацию стала приходить очень милая женщина - врач ЛФК, и шевелить за меня моими ногами и руками. Спасибо ей, она помогла мне частично восстановить подвижность пальцев левой руки. Потом сняли швы, и разрешили потихоньку шевелить головой.
Разумеется, первые три механизма сочетаются при политравме и кататравме. Эти повреждения, затрагивающие несколько систем организма, характерны для высокоэнергетических травм. Например, падений с высоты и ДТП. Четвёртый и пятый виды находятся в сфере внимания не только нейрохирургии, но и криминалистики с военно-полевой медициной. Почему важен спинной мозг?
Сложный организм нуждается в аппарате, который будет обеспечивать интеграцию его частей. Нервная система человека работает в реальном времени по принципу двусторонней направленной связи. Из этого следует, что ЦНС принимает сигналы от рецепторов, сортирует электрохимические импульсы, применяя повышающие и понижающие коэффициенты, а после транслирует команду на клетки-исполнители. Большое затылочное отверстие, оно же foramen magnum — место перехода головного мозга в спинной. Спинной мозг расположен в позвоночном канале, образованном, соответственно, позвонками. Эти костные структуры соединены друг с другом при помощи суставов. Задачу амортизации выполняют межпозвоночные диски. В старой литературе было популярно мнение, что спинной мозг — это такой шлейф «проводов», обеспечивающих связь головы и тела.
В последнее время стало понятно, что не всё так просто. Эволюционно спинной мозг неотделим от головного. В жизнедеятельности примитивных организмов именно он выполняет ведущую функцию. Многие помнят историю об американском петухе , который долгое время жил практически без головы. Конечно, человек организован куда сложнее, а потому не может отдавать витальные жизненно важные функции на такой «аутсорс». И всё-таки факт остаётся фактом. Спинной мозг обладает собственными нейронными сетями, которые выполняют просчёт движений на месте. Он сложнее, чем пучок магистральных проводов.
В контексте нынешних знаний из нейрофизиологии спинной мозг будет корректнее сравнивать с цепочкой полуавтономных серверов. Спинальная травма приводит к тому, что все отделы организма, находящиеся ниже места повреждения, оказываются без координирующего влияния головного мозга. Если спинной мозг был перебит не полностью, какие-то сигналы ещё могут прорываться к телу. Тогда у человека будет некий резерв для реабилитации. В ином случае нервные сети, оставшиеся без работы, начинают деградировать. Слева изображена принципиальная схема полного перерыва спинного мозга. Справа — состояние, при котором проводящие пути частично сохранили свою целостность. При полном пересечении спинного мозга уже упомянутые «серверы» функционируют независимо от «босса» в голове.
Тогда пробуждаются патологические рефлексы — набор стереотипных реакций, при которых рефлекторные дуги замыкаются на нижележащих отделах спинного мозга. Рефлексы осуществляются на основе рефлекторной дуги. Поступивший импульс регистрируется рецептором. По афферентному приносящему волокну сигнал идёт в ЦНС. Там расположены вставочные нейроны. Под вставочным нейроном понимается та нервная клетка, которая связана только с другими нейронами. В этом состоит её отличие от чувствительных и двигательных нейронов. Именно вставочные нейроны решают, отвечать ли организму на воздействие.
Сформированный ими сигнал идёт на моторный нейрон. С помощью эфферентного выносящего волокна команда передаётся клеткам-исполнителям. Таким образом,у нас разгибается нога при ударе по коленной чашечке и отдёргивается рука, схватившая горячий предмет. В случае спинальной травмы неизбежно проявится дисфункция тазовых органов, выражающаяся в задержке отделения мочи и стула. Впрочем, даже парезы и плегии — меньшее зло по сравнению со спинальным шоком. При нём возникает опасное падение артериального давления. Его причина состоит в нарушении баланса между двумя отделами вегетативной автономной нервной системы: симпатики и парасимпатики. Спинальный шок «На пальцах» разницу между ними понять нетрудно.
Симпатика отвечает за возбуждение и тонус. Парасимпатика — за торможение и релаксацию. На упрощённой схеме видно, что центры, отвечающие за иннервацию органов, расположены в порядке иерархичности сверху вниз. В случае спинальной травмы без нормальной иннервации остаётся всё, находящееся ниже места разрыва. Релакс может быть очень плохим, особенно когда им занимаются кровеносные сосуды. Их стенка расслабляется, падает перфузионное давление — и клетки остаются без кислорода из кровотока. Продукты распада тоже никто не выводит. Сначала клетки пытаются бороться.
По мере исчерпания ресурсов они переходят на более экономный путь извлечения энергии. Детский вопрос: зачем мы дышим? И правда, зачем людям вообще нужен кислород? Биохимики знают ответ. Кислород — краеугольный камень цикла Кребса. Именно на кислороде пересекается три принципиально важных пути метаболизма: клеточное дыхание, гликолиз и электрон-транспортная цепочка. Цикл Кребса — это биохимическая топка, лежащая в основе снабжения организма энергией. Поначалу он кажется глобальным и монструозным, хотя в биохимии бывают и другие штуки, более трудные для восприятия.
Например, орнитиновый цикл. Так или иначе, все пути метаболизма рано или поздно замкнутся на цикле лимонной кислоты. При отсутствии кислорода метаболизм переключается на анаэробный путь. При нём возникает меньше энергии, а ещё — изменение pH крови в кислую сторону. Показатель pH — величина логарифмическая. Это значит, что численный показатель изменяется на одну величину при увеличении или уменьшении в соответствующее количество раз. Со школьной скамьи мы знаем разницу между кислотами и основаниями.
Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.
Впервые в мире с помощью стволовых клеток восстановили спинной мозг
После нанесения этим подопытным мышам травм с повреждением спинного мозга в их эпендимальных клетках включалась программа превращения в олигодендроциты, которые затем мигрировали в места демиелинизации аксонов и ремиелинизировали их. Вести с полей: спинной мозг и движение. Спинной мозг обладает собственными нейронными сетями, которые выполняют просчёт движений на месте.