Функция нервной системы. направляет импульсы к скелетным мышцам.
Информация
Полная нейронная клеточная диаграмма Нервная регуляция Регуляция органов и тканей в организме человека происходит рефлекторно. Рефлекс — это ответная реакция организма человека на раздражитель, который происходит под воздействием нервных импульсов. Путь, проходимый нервными импульсами при осуществлении рефлекса, называется рефлекторной дугой. Они состоят из нескольких звеньев: Рецептор. Нервное окончание, которое распознает раздражитель. Чувствительный нейрон.
Передает информацию в ЦНС. Вставочный нейрон. Распространяет информацию по звеньям. Исполнительный нейрон. Передает импульс к нужному органу или железе.
Рефлекторная дуга отвечает не только за возбуждение импульса, но и за его торможение. Нервная ткань.
Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык. На вопросы могут отвечать также любые пользователи, в том числе и педагоги. Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.
К центральной нервной системе относят спинной и головной мозг, к периферической — нервы, нервные узлы и нервные окончания. Нервы — пучки длинных отростков, покрытые общей оболочкой, выходящие за пределы головного и спинного мозга. Если информация по нерву идет от рецепторов в головной или спинной мозг, то такие нервы называют чувствительными, центростремительными или афферентными.
Эти нервы состоят из дендритов чувствительных нейронов. Если информация по нерву идет из центральной нервной системы к исполнительным органам мышцам или железам , то нерв называется двигательным или эфферентным. Двигательные нервы образованы аксонами двигательных нейронов. В смешанных нервах проходят как чувствительные, так и двигательные волокна. Нервные узлы — это скопления тел нейронов вне ЦНС. Нервные окончания — разветвления отростков нейронов, служат для приема или передачи сигналов. Классификация нервной системы по функциям По функциям нервная система подразделяется на соматическую и вегетативную автономную. Соматическая нервная система от греческого «сома» — «тело» регулирует работу скелетных мышц.
Благодаря ей организм через органы чувств поддерживает связь с внешней средой. С ее помощью мы можем произвольно по собственному желанию управлять деятельностью скелетной мускулатуры. Деятельностью внутренних органов, реакциями обмена веществ, поддержанием постоянства внутренней среды организма человека управляет автономная или вегетативная нервная система. Ее название происходит от греческого слова «автономия» — самоуправление. Работа этой системы не подчиняется воле человека. Нельзя, например, по желанию ускорить процесс пищеварения или сузить кровеносные сосуды. Автономная нервная система Автономная система представлена двумя отделами — симпатическим и парасимпатическим. Симпатический отдел система сложных ситуаций включается во время интенсивной работы, требующей затраты энергии что-то услышал неожиданное — расширяются зрачки, возрастает частота сокращений сердца, замедляется деятельность пищеварительной системы, учащается дыхание.
Парасимпатический отдел можно назвать системой отбоя.
Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса. Схема Рецептор чувствительный Нейрон. Схема спинного мозга чувствительный Нейрон.
Рефлекс ЕГЭ рефлекторная дуга. Строение рефлекторной дуги схема. Схема отделов рефлекторной дуги анализаторов. Вегетативная нервная система, дуга вегетативного рефлекса 8 класс. Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов.
Нейроны головного мозга строение. Регулирует все процессы в организме. Направление движения нервного импульса. Процессы нервной ткани. Нервных процессов в организме. Строение спинного мозга Нейроны. Нейроны спинного мозга схема.
Двигательный Нейрон в заднем корешке спинного мозга. Спинной мозг строение рефлекторная. Коленный рефлекс физиология. Коленный рефлекс спинного мозга. Эффектор коленного рефлекса. Коленный рефлекс ответная реакция. Строение нерва дендрит.
Нервная ткань Аксон дендрит. Начальный сегмент аксона функции. Аксон и дендрит строение и функции. Связь между нейронами. Нейронные механизмы. Взаимосвязь между нейронами. Нейрон физиология.
Нейропластичность мозга. Нейроны мозга человека. Нейронные процессы головного мозга. Концепция нейропластичности мозга. Схема сложной рефлекторной дуги спинномозгового рефлекса. Схема дуги соматического спинального рефлекса. Строение рефлекторной дуги спинного мозга.
Регуляция работы сердца схема. Схема регуляции сердечной деятельности. Нервная регуляция работы сердца. Влияние нервной системы на деятельность сердца. Нейронные импульсы в мозгу. Синапсы головного мозга. Афферентные и эфферентные нервные пути.
Афферентный путь и эфферентный путь. Проводящие пути афферентные и эфферентные. Афферентные двигательные пути. Структура и функции рефлекторной дуги. Строение рефлекторной дуги мигательного рефлекса. Общая схема строения рефлекторной дуги. Рефлекторная дуга безусловного мигательного рефлекса.
Нервная система Нейрон. Структура двигательного нейрона. Нейроны центральной нервной системы. Нервная регуляция. Нервная регуляция жизнедеятельности организма. Система органов нервной регуляции. Нервная регуляция осуществляется.
Механизм передачи возбуждения в возбуждающих синапсах, медиаторы.. Синапс и нейромедиаторы. Медиаторы синапсов.
Похожие презентации
- нейроглия (глия)
- Нервные импульсы поступают непосредственно к железам по 1) аксонам…
- Как устроена периферическая нервная система человека? | Биология с Марией Семочкиной | Дзен
- Ответы на вопрос
- Регуляция желудочной секреции.
Нервные импульсы поступают непосредственно к мышцам и железам по
2280 ответов - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. В эти центры поступают все нервные импульсы и протягиваются все афферентные чувствительные пути, которые (за немногими исключе-ниями) предварительно проходят через один общий центр – таламус. Нервные импульсы передаются в мозг по нейронам.
Регуляция желудочной секреции.
Высшая нервная деятельность | По какому нейрону нервные импульсы поступают из ЦНС к рабочему органу? |
Человек и его здоровье (стр.51-75) | Если нервная система посылает свои импульсы по нервам, точно к определённым органам, и быстро изменяет их работу, то поступившие в кровь гормоны достигают цели медленнее, но зато они охватывают сразу больше органов и тканей. |
Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных
Тест «Нервная система» — 4ЕГЭ | От него по волокнам симпатической нервной системы импульсы идут к мышцам сосудов и вызывают их сокращение, вследствие чего наступает сужение сосудов. |
Высшая нервная деятельность | В нейроне нервные импульсы по дендритам проходят к соме клетки. |
Анатомия: Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон. | 2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. |
Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных | Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. |
Нервная система
- Строение головного мозга
- Нервная система. Общие сведения
- Нервная система. Общие сведения
- Нервные импульсы поступают непосредственно к железам по
- Человек и его здоровье (стр.51-75)
- нейроглия (глия)
КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по
Слайд 6 Нервные импульсы поступают непосредственно к железам по. Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга. 2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга. Импульсация в симпатической нервной системе уменьшается и меньше импульсов поступает к сердцу, сосудам и надпочечникам, что приводит к падению АД.
Как нервная система регулирует работу эндокринной системы?
Получается такая последовательность прохождения нервного импульса в анализаторе: 213. Рефлекторная дуга – это путь, по которому проходит нервный импульс во время осуществления рефлекса. ответ: 7. чем питается кит? 1) планктоном 2) придонными организмами 3) крупными рыбами 4)морскими млекопитающими 8. нервные импульсы, 919107520220418, Відповідь:Тіршіліктің пайда болуының алғышарттарыҒылыми деректер бойынша Күн жүйесіне жататын Жер. Чем сложнее и разветвлённее дендриты, тем больше входных нервных импульсов может получить нейрон. Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь.
Нервные импульсы поступают непосредственно к железам по...?
Тест «Нервная система» | Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных. |
Человек и его здоровье (стр.51-75) | Импульсация в симпатической нервной системе уменьшается и меньше импульсов поступает к сердцу, сосудам и надпочечникам, что приводит к падению АД. |
Задание 15 ОГЭ по биологии с ответами, ФИПИ: организм человека | Нервные импульсы поступают непосредственно к железам по. |
Остались вопросы?
проведение нервного импульса в ЦНС. 1. Нервные импульсы поступают непосредственно к железам по. Получается такая последовательность прохождения нервного импульса в анализаторе: 213. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов.
Остались вопросы?
Чувствительный Нейрон вставочный Нейрон двигательный Нейрон. Дыигалетные, чувствительные вставочнвставочные Нейроны. Чувствительный вставочный и двигательный Нейроны функции. Мембрана нервной клетки схема. Схема передачи импульса нейрона. Распределение зарядов и ионов на мембране нервной клетки. Схема проведения импульса в нейроне.
Рефлекторная дуга чувствительный Нейрон. Рецепторная рефлекторная дуга. Рефлекторная дуга вставочный Нейрон чувствительный Нейрон. Коленный рефлекс вставочный Нейрон. Строение рефлекторной дуги кратко. Строение рефлекторной дуги чувствительности.
Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Схема сложной рефлекторной дуги соматического рефлекса. Рефлекторная дуга сгибательного рефлекса схема. Структура и функции рефлекторной дуги. Схема рефлекторной дуги соматического рефлекса.
Нейрон структурная и функциональная единица нервной системы. Нейроны центральной нервной системы. Нервная клетка Нейрон. Строение рефлекторной дуги строение. Рефлекс ЕГЭ рефлекторная дуга. Строение двухнейронной рефлекторной дуги.
Соматическая рефлекторная дуга схема. Нейроны спинного мозга схема. Строение спинного мозга Нейроны. Двигательный Нейрон в заднем корешке спинного мозга. Спинной мозг строение рефлекторная. Схема сложной рефлекторной дуги спинномозгового рефлекса.
Схема рефлекторной дуги головного мозга. Схема дуги соматического спинального рефлекса. Строение рефлекторной дуги схема. Двигательные ядра переднего рога спинного мозга. Функция нейронов боковых Рогов спинного мозга. Рефлекторная функция отделов спинного мозга.
Рефлекторная дуга ЦНС. Центральная и периферическая рефлекторные дуги. Нервно-рефлекторный метод. Рефлекторная дуга периферической нервной системы. Строение рефлекторной дуги анализатора. Двигательный анализатор рефлекторная дуга.
Аксон двигательного нейрона в рефлекторной дуге. Общая схема строения рефлекторных дуг анализаторов.. Чувствительные Нейроны спинного мозга расположены. Где располагаются чувствительные Нейроны. Тело чувствительного нейрона Аксон чувствительного нейрона. Где находится первый чувствительный Нейрон.
Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса. Связь между нейронами. Нейронные механизмы.
Схема рефлекторной дуги. Рефлекторная дуга структура двигательной нервной клетки. Строение рефлекторной дуги спинного мозга. Схема Рецептор чувствительный Нейрон. Рецептор чувствительный Нейрон ЦНС схема. Схема спинного мозга чувствительный Нейрон.
Тип нейрона 1 двигательный 2 вставочный. Чувствительный Нейрон ЦНС вставочный. Схема передачи двигательных импульсов между нейронами. Нейромедиаторы стресса. Нейротрансмиттеры и нейромедиаторы. Нейромедиаторы нервная клетка.
Строение нерва дендрит. Дендрит тело нейрона Аксон синапс. Нервная ткань Аксон дендрит. Начальный сегмент аксона функции.
Строение рефлекторной дуги кратко. Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Схема сложной рефлекторной дуги соматического рефлекса.
Рефлекторная дуга сгибательного рефлекса схема. Структура и функции рефлекторной дуги. Схема рефлекторной дуги соматического рефлекса. Нейрон структурная и функциональная единица нервной системы. Нейроны центральной нервной системы. Нервная клетка Нейрон. Строение рефлекторной дуги строение. Рефлекс ЕГЭ рефлекторная дуга. Строение двухнейронной рефлекторной дуги.
Соматическая рефлекторная дуга схема. Нейроны спинного мозга схема. Строение спинного мозга Нейроны. Двигательный Нейрон в заднем корешке спинного мозга. Спинной мозг строение рефлекторная. Схема сложной рефлекторной дуги спинномозгового рефлекса. Схема рефлекторной дуги головного мозга. Схема дуги соматического спинального рефлекса. Строение рефлекторной дуги схема.
Двигательные ядра переднего рога спинного мозга. Функция нейронов боковых Рогов спинного мозга. Рефлекторная функция отделов спинного мозга. Рефлекторная дуга ЦНС. Центральная и периферическая рефлекторные дуги. Нервно-рефлекторный метод. Рефлекторная дуга периферической нервной системы. Строение рефлекторной дуги анализатора. Двигательный анализатор рефлекторная дуга.
Аксон двигательного нейрона в рефлекторной дуге. Общая схема строения рефлекторных дуг анализаторов.. Чувствительные Нейроны спинного мозга расположены. Где располагаются чувствительные Нейроны. Тело чувствительного нейрона Аксон чувствительного нейрона. Где находится первый чувствительный Нейрон. Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс.
Рефлекторная дуга гемодинамического рефлекса. Связь между нейронами. Нейронные механизмы. Схема рефлекторной дуги. Рефлекторная дуга структура двигательной нервной клетки. Строение рефлекторной дуги спинного мозга. Схема Рецептор чувствительный Нейрон. Рецептор чувствительный Нейрон ЦНС схема. Схема спинного мозга чувствительный Нейрон.
Тип нейрона 1 двигательный 2 вставочный. Чувствительный Нейрон ЦНС вставочный. Схема передачи двигательных импульсов между нейронами. Нейромедиаторы стресса. Нейротрансмиттеры и нейромедиаторы. Нейромедиаторы нервная клетка. Строение нерва дендрит. Дендрит тело нейрона Аксон синапс. Нервная ткань Аксон дендрит.
Начальный сегмент аксона функции. Рефлекс отдергивания руки от горячего предмета рефлекторная дуга. Схема рефлекторной дуги отдергивания руки от горячего предмета. Схема рефлекторной дуги отдергивания руки. Схема рефлекторной дуги двигательного рефлекса. Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов. Нейроны головного мозга строение.
Звенья рефлекторной дуги 5 звеньев. Рефлекс звенья рефлекторной дуги. Рефлекторная дуга 5 звеньев рефлекторной дуги.
Нервные сети. Соединение нервов между собой синапсы. Нейроны, как отдельные единицы нервной системы, функционируют не изолированно. Они соединены между собой и образуют единую сеть, которая передает возбуждение от рецепторов в ЦНС и от нее в различные органы рис. Специализированные контакты нейронов между собой, а также нейронов с клетками исполнительных органов, называются синапсами. Несмотря на разнообразие синапсов, в их строении имеются общие черты.
В синапсе выделяют пресинаптическую и постсинаптическую мембраны и пространство между ними - синаптическую щель шириной от 2 до 30 нм. Толщина каждой мембраны не превышает 5-6 нм. Пресинаптическая мембрана является продолжением поверхностной мембраны аксонального окончания. Она не сплошная, в ней имеются отверстия, через которые цитоплазма аксонального окончания сообщается с синаптическим пространством. Постсинаптическая мембрана менее плотная, в ней отсутствуют отверстия. Синаптические входы нейрона. Синаптические бляшки окончаний пресинаптичесиих аксонов образуют соединения на дендритах и теле соме - постсинаптического нейрона. Схема выброски медиатора и процессов, происходящих в гипотетическом центральном синапсе. Конечные участки аксонов и дендритов в области синапса не имеют мякотной оболочки и расширены в пресинаптический мешочек.
Мешочек характерен для синаптических пузырьков, имеющих диаметр 40-59 нм. В них содержится медиатор. В зависимости от типа выделяемого медиатора различают синапсы: а холинэргические — выделяют ацетилхолин; б адренэргические — выделяют норадреналин, дофамин катехоламины ; в серотонинэргические — выделяют серотонин; г пептидэргические — выделяют пептиды эндорфины, энкефалины и аминокислоты глицин, глутамат, ГАМК. В таких синапсах передача нервного импульса осуществляется при помощи химического вещества — медиатора. Такие синапсы называются синапсами с химической передачей. При изменении мембранного потенциала в терминалях нейромедиаторы выходят в синаптическую щель через поры диаметром 4-5 нм, имеющиеся в пресинаптической мембране экзоцитоз и связываются со своими рецепторами в постсинаптической мембране, вызывая изменение мембранного потенциала постсинаптического нейрона. Основными медиаторами являются: 1. Ацетилхолин — один из первых выявленных медиатора. Он известен как «вещество блуждающего нерва» из-за своего воздействия на сердечную деятельность.
Представляет собой наиболее распространенный медиатор ЦНС. Аминокислота глицин, оказывающая тормозное действие на мотонейроны. Кислая аминокислота глутамат, является самым распространенным возбуждающим медиатором ЦНС. Адреналин, норадреналин и дофамин — представляют собой семейство медиаторов, передающих возбуждение или торможение в ЦНС, так и в периферической нервной системе. В пресинаптической части расположены синаптические пузырьки и митохондрии. Синаптические пузырьки содержат нейромедиатор. Постсинаптическая мембрана располагает рецепторами нейромедиатора и ионными каналами. Синаптическая передача — сложный каскад событий. Она возможна при реализации ряда последовательных процессов: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора из нервной терминали, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или захват его нервной терминалью.
Многие неврологические и психические заболевания сопровождаются нарушениями синаптической передачи. Медиаторы связываются со специфическими рецепторами постсинаптической мембраны. Вокруг рецептора формируется область высокой концентрации вещества того или иного медиатора. Соответственно повышается или понижается вероятность открывания ионного канала, так как изменяется его проводимость. В синапсах возбуждение проводится только в одном направлении, но гораздо медленней, чем по нервному волокну. Однако передача информации осуществляется исключительно точно. В некоторых синапсах синаптическая щель отсутствует и его структурной основой является плотный контакт. В таком синапсе возбуждение может передаваться без участия медиатора, так как мембраны клеток соприкасаются. Эти синапсы называются синапсами с электрической передачей.
В синапсах такого строения пресинаптическая мембрана также имеет поры, но они в 5 раз меньше, чем в синапсах с химической передачей возбуждения. Поры электрических синапсов являются межклеточными диффузионными каналами, соединяющими соприкасающиеся клетки. По структуре и локализации синапсы подразделяются на 3 группы: межнейронные, рецепторно — нейрональные и нейроэффкторные. Межнейронные синапсы подразделяются на аксодендритические, аксосоматические и аксо-аксональные. Межнейронные синапсы являются синапсами между двумя нейронами. Если аксон одного нейрона контактирует с дендритом другого постсинаптического нейрона, то такие синапсы называются аксодендритическими. Аксодендрическая связь представлена синапсами двух типов. Один тип — это синапсы с широкой синаптической щелью и сами мембраны более утолщены. Такие синапсы характерны для возбуждающих нейронов.
Другие синапсы принадлежат тормозным нейронам. Если аксон одного нейрона контактирует с перикарионом другого постсинаптического нейрона, то такой синапс называется аксосоматическим. Если же аксон одного нейрона контактирует с аксоном другого постсинаптического нейрона, то такой синапс называется аксо-аксональным. Межнейронные синапсы очень многочисленны. На поверхности перикариона и отростков одного пирамидного нейрона в коре больших полушарий головного мозга имеется около 104 синапсов. Рецепторно — нейрональные рецепторно - дендритные синапсы являются синапсами между рецепторными клетками, сходными с нейронами, специализированными эпителиальными, нейроглиальными клетками, с одной стороны, и дендритами чувствительных нейронов — с другой. Примером синапсов такого типа у позвоночных являются синапсы вкусовых сосочков, боковой линии рыб, внутреннего уха, кожи, соединительной ткани. Нейроэффкторные аксоэффекторные синапсы являются контактами между аксоном двигательных эффекторных нейронов и клетками, не принадлежащими к нервной системе. У человека и млекопитающих хорошо изучены двигательные и секреторные нейроэффекторные синапсы, или эффекторные нервные окончания.
Первые представляют собой синаптические соединения между аксоном двигательного нейрона и поперечнополосатыми мышечными волокнами, поперечнополосатыми и гладкомышечными клетками, а вторые — между аксонами двигательного нейрона с секреторными клетками. Существуют многочисленные синапсы между аксоном эфферентного нейрона и другими клетками — жировыми, ресничными и др. Для того чтобы мозг нормально функционировал, потоки нервных сигналов должны находить надлежащие пути среди клеток различных функциональных систем и межрегиональных объединений. Однако до сих пор остается загадкой, каким образом аксоны и дендриты той или иной нервной клетки растут именно в том направлении, чтобы создавались специфические связи, необходимые для ее функционирования. Высокая специфичность структуры мозга имеет важное значение. Общий диапазон связей для большинства нервных клеток, по-видимому, предопределен заранее, причем эта предопределенность касается тех клеточных свойств, которые ученые считают генетически контролируемыми. Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети. Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона, например к используемому им медиатору, к размерам и форме клетки. Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки.
Типы нервных сетей. Существуют три генетически детерминированных типа нервных сетей. Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток см. Это абсурдное упрощение поможет нам проявляется в наличии трех основных типов сетей, которые встречаются повсюду, — иерархические, локальные и дивергентные с одним входом. Иерархические сети. Наиболее распространенный тип межнейронных связей встречаются в главных сенсорных и двигательных путях. В сенсорных системах иерархическая организация носит восходящий характер. В нее включаются различные клеточные уровни, по которым информация поступает в высшие центры — от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т. Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь — определенным группам мышечных клеток.
Иерархические системы обеспечивают очень точную передачу информации. В результате конвергенции когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня или дивергенции когда контакты устанавливаются с большим числом клеток следующего уровня информация фильтруется и происходит усиление сигналов. Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети. Локальные сети. Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они, по всей видимости, широко распространены во всех мозговых сетях.
Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации. Дивергентные сети с одним входом. В некоторых нервных сетях имеются скопления или слои нейронов, в которых один нейрон образует выходные связи с очень большим числом других клеток в таких сетях дивергенция доведена до крайних пределов. Изучение сетей такого типа начато лишь недавно, и единственные места, где они встречаются насколько нам сейчас известно , — это некоторые части среднего мозга и ствола мозга. Преимущества подобной системы в том, что она может оказывать влияние на множество нейронов сразу и иногда осуществлять связь со всеми иерархическими уровнями, нередко выходя за пределы специфических сенсорных, двигательных и других функциональных объединений. Сфера воздействия таких сетей не ограничена какой-либо системой с определенными функциями. Дивергирующие пути этих сетей иногда называют неспецифическими и поэтому такие сети могут влиять на самые различные уровни и функции. Они играют большую роль в интеграции многих видов деятельности нервной системы.
Кроме того, медиаторы, используемые в дивергентных системах с одним входом, — это медиаторы с «условным» действием: их эффект зависит от условий, в которых он осуществляется. Подобные воздействия весьма важны и для интегративных механизмов. Однако дивергентные сети такого типа составляют лишь небольшую часть всех нервных сетей. Тема 6. Концевые нервные аппараты и их классификация. Рефлекторная дуга и динамическая поляризация нейронов Связь нейронов с различными тканями и органами устанавливается при помощи нервных волокон, которые образуют в них концевые нервные аппараты нервные окончания. Окончания аксонов периферических нервов подразделяют на чувствительные афферентные и двигательные эфферентные. Приспособления, которые воспринимают раздражения, называются рецепторными аппаратами, или чувствительными нервными окончаниями, а нервы, проводящие возбуждение — чувствительными. Реализация нервных импульсов осуществляется эффекторными аппаратами двигательными нервным окончаниями , а проведения возбуждения к ним происходит по двигательным нервам.
Концевые нервные аппараты — сложные образования. В их состав входят не только нервные волокна, но и ткани, в которых они оканчиваются. Структура концевых аппаратов разнообразна, меняется в зависимости от условий, в которой они находятся. Эффекторный аппарат хорошо представлен на двигательной бляшке. Он располагается на поперечнополосатом мышечном волокне в виде разветвления осевого цилиндра мякотного нервного волокна которое теряет миелин. По данным электронной микроскопии, для двигательной бляшки характерно отчетливое разграничение нервной и мышечной частей. В гладких мышцах двигательная иннервация осуществляется безмякотными нервными окончаниями. Секреторные окончания эффекторных нейронов представлены аксонами, выступающими в Синаптический контакт с железистыми клетками. Концевые разветвления аксона либо подходят вплотную к секреторной клетке, либо глубоко вдавливаются в нее.
Нейролемма аксона и плазмалемма секреторной клетки образуют соответственно пресинаптическую и постсинаптическую мембраны, разделенные узкой синаптической щелью. Холинрецепторы присутствуют также в мембране мышечного волокна вне синапса, но здесь их концентрация на порядок меньше, чем в постсинаптической мембране и обозначаются они как холинрецепторы. Рецепторные аппараты рецепторные нервные окончания. Рецепторные воспринимающие нервные окончания у позвоночных представляют собой концевые аппараты дендритов чувствительных нейронов, тела которых располагаются чаше всего в спинальных ганглиях и их аналогах — черепномозговых чувствительных узлах или в периферических вегетативных ганглиях. В зависимости от того, откуда они воспринимают раздражение, различают экстерорецепторы и интерорецепторы. Первые воспринимают раздражения из внешней среды, вторые — из внутренних органов. Кроме того, с учетом специфичности раздражителя различают тактильные, холодовые, тепловые, болевые рецепторы, барорецепторы, хеморецепторы, механорецепторы. По морфологическим особенностям рецепторные окончания могут быть свободными, располагающимися между клетками иннервируемой ткани, и несвободными, инкапсулированными заключенными в особые соединительнотканные капсулы. Свободные нервные окончания — наиболее распространенный тип сенсорных рецепторов.
Большинство свободных нервных окончаний — механорецепторы. Распространены в прослойках соединительной ткани внутренних органов, а также в соединительнотканной основе кожи. Свободные нервные окончания эпидермиса расположены в базальном и шиповатом слоях. В области кожи с высокой тактильной чувствительностью пальцы рук терминали достигают зернистого слоя. Некоторые окончания в эпидермисе специализированы для регистрации изменений температуры. Свободные нервные окончания имеются и в других органах чувств слуха, равновесия, вкуса , закладывающихся из эктодермы. В многослойном эпителии локализованы чувствительные осязательные клетки Меркеля, имеющие округлую или удлиненную форму. Они соединены с эпителиоцитами при помощи десмосом и формируют контакт с нервными терминалями. В клетках Меркеля обнаружены пептиды и нейроспецифические вещества, что свидетельствует об их эндокринной функции.
Это позволяет рассматривать их как компонент диффузной нейроэндокринной системы. Капсулированные чувствительные нервные окончания построены по единому плану и наблюдаются в соединительной и мышечной тканях. Эти рецепторные нервные окончания имеют соединительнотканные капсулы различного строения. К капсулированным рецепторам мышечной ткани относятся нервно-мышечные веретена и капсулированные кустики. Они являются специфическими рецепторами соматической мускулатуры, воспринимающие ощущение растяжения мышечного волокна. Одним концом они прикреплены к перимизию мышечного волокна, а другим - к сухожилию. В гладкой мускулатуре внутренних органов находятся кустиковидные свободные рецепторные окончания. Строение инкапсулированных рецепторных окончаний изучены на примере осязательных телец телец Мейсснера и пластинчатых телец телец Фатер - Пачини. Осязательные тельца расположены в сосочковом слое кожи и являются механорецепторами.
Тельце имеет удлиненную форму. Внутренняя часть тельца состоит из уплощенных нейроглиальных клеток, окружающих дендрит и образующих вместе внутреннюю колбу тельца. С внешней стороны тельце покрыто соединительнотканной капсулой и образует наружную колбу. В теле человека наиболее распространены пластинчатые тельца, или тельца Фатер — Пачини, которые являются механорецепторами. Они встречаются в глубоких слоях кожи, на брыжейке, в молочной железе, кишечнике, поджелудочной железе, соединительной ткани внутренних органов, около кровеносных сосудов. Тельце имеет овальную форму, и его размеры колеблются в пределах 0,5- 1,0 мм. Внутренняя колба, наружная капсула и терминальное нервное волокно — основные компоненты тельца. Внутренняя колба тельца содержит нейроглиальные клетки. Вокруг внутренней колбы находится мощная соединительнотканная капсула, состоящая из плоских серповидных соединительнотканных клеток.
Формировать и отправлять эти импульсы может не только головной мозг, так как в головной мозг часто приходят сигналы. Нервный импульс может быть сформирован раздражением нерва или действием некоторых специфичных факторов на рецептор организма. К железам нервные импульсы поступают по нервным нитям.
ГДЗ по биологии 8 класс Драгомилов | Страница 47
Какая железа относится к железам внутренней секреции? нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам вставочных нейронов 3)серому веществу спинного морга 4)белому веществу спинного мозга. 2. Нервные импульсы поступают непосредственно к железам по. Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. 1. Нервные импульсы поступают непосредственно к железам по. Железы внутренней секреции не имеют протоков, поэтому гормоны поступают непосредственно в кровь.
Роль гипоталамуса
- Роль гипоталамуса
- ГДЗ Стр. 47 Биология 8 класс Драгомилов | Учебник
- Физиология мышечного сокращения
- нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам
- Тест «Нервная система» — 4ЕГЭ
Нервные импульсы поступают непосредственно к железам по
Возбуждение нервной клетки. Проведение возбуждения в нервной клетке. Строение чувствительного нейрона. Двигательная нервная клетка. В нейроне различают. Вставочный Нейрон. Роль нейронов. Нейроны различаются по форме. Синапс место контакта между двумя нейронами. Нейрон передача импульса. Передача импульса между нейронами.
Передача импульса между нервными клетками. Передача импульса в нервной системе. Передача нервного импульса от нейрона к нейрону. Функции нервной клетки. Распространение нервного импульса по аксону. Нервные импульсы от тела. Нервные импульсы к телу нейрона идут по. Импульс нейрона. Ветвящийся отросток нейрона. Нервные импульсы передаются в мозг по нейронам.
Передача нервного импульса с нейрона. Передача нервных импульсов по волокнам нервной системы. Схема строения двигательного нейрона. Структурно-функциональной единицей нервной ткани является. Схема проведения нервного импульса. Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Рефлекторная дуга периферической системы. Рефлекс вставочные Нейроны.
Функции вставочного нейрона рефлекторной дуги. Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Вставочные Нейроны нервные импульсы. Нейрон состоит из аксона и дендритов. Строение нейрона тело Аксон дендрит. Строение нейрона. Строение нефрона Аксон дендрит. Синапс механизм синаптической передачи импульса. Механизмы модуляции эффективности синаптической передачи. Механизм межнейронной синаптической передачи.
Синапс этапы синаптической передачи. Путь нейрона по рефлекторной дуге. Последовательность нервного импульса в рефлекторной дуге. Путь передачи нервного импульса рефлекторная дуга. Рефлекторная дуга по порядку нервного импульса. Передача нервного импульса. Рефлекторная дуга рвотного рефлекса схема. Структура трехнейронной рефлекторной дуги.. Схема трехнейронной рефлекторной дуги соматического рефлекса. Схема трехнейронной рефлекторной дуги двигательного рефлекса.
Аксонный холмик строение. Проведение нервного импульса по нейрону. Нервно мышечное сокращение. Передают нервные импульсы в ЦНС. Проведение нервного импульса в ЦНС. Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса. Схема Рецептор чувствительный Нейрон.
Схема спинного мозга чувствительный Нейрон. Рефлекс ЕГЭ рефлекторная дуга. Строение рефлекторной дуги схема. Схема отделов рефлекторной дуги анализаторов.
При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие.
Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП. Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора — АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса. Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода.
МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках. При изучении возникновения постсинаптического потенциала концевой пластинки ПКП многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП. Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона. Обнаружено существование низко- и высокоамплитудных МПКП, которые возникали в той же самой концевой пластинке. Анализ встречаемости обоих видов МПКП в односекундные и 100миллисекундные непрерывающиеся интервалы показал, что имеются существенные отклонения от пуассоновского распределения, тем большие, чем меньше диаметр волокна и частота МПКП. Этот статистический подход представляет интерес, поскольку позволяет подтвердить предположение о квантовом характере освобождения медиатора. Библиографическая ссылка M.
Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг. Рефлекс — это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями — рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др.
Гормоны — биологически активные вещества, которые соединяются с клетками различных органов и могут изменять их работу, ускорять или замедлять биохимические процессы в организме. Чтобы понимать, какая нервная система регулирует работу эндокринной системы, нужно отследить взаимосвязь. Она носит название «нейроэндокринная регуляция» и заключается в контроле выработки гормонов эндокринными железами. Этот процесс обеспечивается благодаря работе нескольких структур: гипоталамуса, гормонами-нейромедиаторами, а также мозговым слоем надпочечников.
Роль гипоталамуса Гипоталамус — небольшой участок промежуточного мозга, который считается центром нейроэндокринной регуляции. Он связан с другими отделами нервной системы, головным и спинным мозгом. Вместе с гипофизом он образует гипоталамо-гипофизарную систему и регулирует интенсивность выработки его гормонов. Гипоталамус получает сигналы от следующих структур: базальных ядер ганглиев — скоплений серого вещества в белом веществе головного мозга; спинного мозга; отделов головного мозга: продолговатого, среднего, таламуса, а также некоторых участков больших полушарий. Гипоталамус — это центр, который накапливает данные из всего организма, а также из внешней среды. Нервные клетки гипоталамуса способны вырабатывать несколько типов нейроэндокринных трансмиттеров — биологически активных веществ, которые влияют на интенсивность синтеза тропных гормонов гипофиза: Либерины — группа соединений, которые стимулируют гормональный синтез.
Но сперва давай вспомним, что вообще такое нервная система, дадим определения связанных с ней понятий и перечислим основные функции. Поехали : Как устроена периферическая нервная система человека Как устроена периферическая нервная система человека Нервная система человека — это совокупность анатомически и функционально связанных между собой нервных структур, которые обеспечивают регуляцию и координацию деятельности всех систем организма, а также реакцию на изменение условий окружающей среды. Проще говоря, нервная система отвечает за обработку и обмен информацией в организме человека. Она образована нервной тканью, основной структурно-функциональной единицей которой является нервная клетка — нейрон. Разберём подробнее, как он устроен. Строение нейрона Нервная клетка состоит из тела — оно называется «сома» — и многочисленных отростков. В теле нейрона содержится одно-единственное ядро и «стандартный» набор органоидов, как у любой другой клетки. Исключение — специфические органоиды: тигроиды тельца Нельсона и нейрофибриллы. Тигроиды нужны для синтеза особых, специфических белков. Нейрофибриллы выполняют транспортную функцию: помогают перемещать вещества по аксонам. Кстати, вот тебе ещё несколько важных определений, которые обязательно нужно знать для ЕГЭ по биологии: Аксон — длинный не ветвящийся отросток нейрона, который служит для передачи нервного импульса от тела нейрона к другим клеткам. Как правило, аксоны покрыты специальной миелиновой оболочкой, которая выполняет примерно ту же функцию, что и изоляция в электрических проводах. Оболочка защищает аксон от внешних воздействий, обеспечивает его прочность и ускоряет прохождение нервного импульса. Дендриты — короткие и сильно разветвлённые отростки нейрона, по которым нервный сигнал передаётся от других клеток к телу нейрона. Чем сложнее и разветвлённее дендриты, тем больше входных нервных импульсов может получить нейрон. Синапс — место контакта между аксоном одного нейрона и дендритом или телом другого нейрона. Также синапс может соединять нейрон непосредственно с клеткой рабочего органа так называемо эффекторной клеткой, получающей сигнал.