Новости атомная батарейка

Про супер-долгую атомную батарейку с повышенной в 10 раз мощностью". Как будто концепции ядерных батарей недостаточно, есть и более эксцентричная идея — создавать батареи из искусственных наноалмазов. Российские учёные презентовали прототип атомной батареи, способной работать без подзарядки 80 лет.

Российские ученые создали атомную батарейку с зарядом на 20 лет

Она имеет модульную структуру, где каждый модуль состоит, по меньшей мере, из двух преобразователей и одного слоя никеля-63. В настоящее время батарея проходит стадию пилотных испытаний, а китайская компания планирует уже совсем скоро запустить её в серийное производство. Сложно сказать, насколько данный продукт обладает высокой масштабируемостью. Пожалуй, разумная цена и возможность выпускать миллионы батарей в год и определят успех данной технологии. Пока ни одна разработка, которая ранее казалась перспективной, так и не нашла путь на массовый рынок. Напомним, атомные батареи, или ядерные батареи, представляют собой устройства, использующие радиоактивные изотопы для генерации электричества. Они отличаются от обычных батарей тем, что могут работать в течение длительного времени без необходимости замены или подзарядки. Такие батареи могут быть полезными в ситуациях, где доступ к источникам энергии ограничен или затруднён. Атомные батареи действительно обладают высоким потенциалом для использования в различных областях, таких как космические исследования, военные приложения и медицинская техника. Вот только пока из-за проблем, связанных с радиацией и безопасностью, их применение требует строгого контроля и соответствия нормативам.

Устройство размерами 15х15х5 миллиметров меньше рублевой монеты способно в течение 50 лет выдавать напряжение три вольта — вдвое больше, чем стандартная пальчиковая батарейка. Ядерная батарейка работает на изотопе никель-63. Компания планирует наладить выпуск батарейки и ее модификаций для массового использования в смартфонах и даже медицинских устройствах.

Безопасность и эффективность бета-гальванической батареи подтвердили в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета. Внутренний стержень «фонит» до 28 000 лет, поэтому элементы питания будут работать гораздо дольше, чем техника, в которую они установлены. Теоретически они могут работать совместно с литий-ионными батареями, установленными на большинстве современных устройств. При работе «алмазная» батарейка будет передавать излишки электричества литиевому аккумулятору. Наша разработка полностью заряжала бы вашу батарею с нуля пять раз в час.

Представьте себе это. Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц… Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии», — рассказал о разработке NDB сотрудник стартапа Нил Найкер. Компания NDB поделилась планами наладить коммерческое производство бета-гальванических батарей к концу года.

Главной особенностью изделия является оригинальная микроканальная 3D-структура никелевого бетавольтаического элемента. Радиоактивный элемент наносится с двух сторон так называемого планарного p-n-перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадёт» мощность. Микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз.

Что еще почитать

  • Telegram: Contact @rosatomru
  • Сделано в России
  • Курсы валюты:
  • Что еще почитать
  • Последние новости
  • Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии | РБК Тренды

Российские ученые создали атомную батарейку с зарядом на 20 лет

Срок службы такой батарейки составляет не менее 50 лет, стоимость – около 4000 долларов. Российская «атомная батарейка» способна проработать 20 лет! Первую опытную партию ядерных батареек для космоса и авиации изготовил «Росатом».

День, когда появилась атомные батарейки с зарядом на 20 лет

Начнем с того, что ее корпус сделан из необычного материала — синтетических наноалмазов. Внутрь корпуса помещен радиоактивный сердечник, изготовленный из переработанных ядерных отходов, — углерода-14. Этот изотоп применяется в ядерной медицине, с его помощью диагностируют заболевания желудочно-кишечного тракта. Ядерные реакторы, использующие воду в активной зоне, также являются источником углерода-14. Дальше процитируем пресс-релиз: "Радиоизотопы выделяют большое количество тепла. Благодаря неупругому рассеянию, возникающему из-за присутствия монокристаллического алмаза, конструкция предотвращает самопоглощение тепла радиоизотопом и обеспечивает быстрое преобразование в электроэнергию". Фото: Nano Diamond Battery Тесты, проведенные в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета, подтвердили, что атомная батарейка безопасна для человека и окружающей среды: радиационный фон вокруг нее остается в норме. А алмазная оболочка выполняет дополнительную функцию — защищает устройство от возможных повреждений.

Расчеты, проведенные учеными, позволяют утверждать, что такой источник способен проработать не менее 20 лет без необходимости замены. Фото topwar. Российские исследователи предложили нанести радиоактивный элемент по обе стороны планарного p-n перехода. Это позволило сделать технологию изготовления элемента более простой. При этом появилась возможность контроля обратного тока, существенно влияющего на общую мощность батареи.

Вы можете быстро узнавать о том, что происходит в мире прямо сейчас. Своей главной задачей мы считаем представить нашим читателям последние новости на сегодня. Мы освещаем актуальные животрепещущие темы, что позволяет вам получать полноценную и объективную картину происходящего в политической, экономической сфере, шоу-бизнесе, образовании, культуре и спорта и т. Новости России. Сайты новостей. Какие преимущества предлагает наш портал? Мы может предложить вам такие преимущества: постоянные обновления.

Были вопросы и к конструкции советских космических аппаратов: ситуацию можно сравнить с водителем, выбрасывающим весь мусор которого тонны из машины в окно — чего только не оказалось на мусорной орбите вокруг Земли! Собственный опыт и опыт «коллег» подтолкнул американских инженеров к тому, чтобы разработать системы, которые активируются лишь после удаления от Земли. Это было важно, так как мощность батареек планировали нарастить. Однако особенно преуспели в этом Советы, которые быстро перешли на киловаттные установки, но уже в 1970-е. Американцы также запустили экспериментальный вариант на 500 Вт и 30—40 кВт тепловой энергии в 1975 году. В 1979 году началось частичное разрушение объекта. Причины остались неизвестны, предполагалось столкновение. Также считается, что радиоактивные элементы оказались в космосе. Фото: energy. В рамках проекта NERVA, например, были испытаны ЯРДы ядерные ракетные двигатели, относятся к радиоизотопным источникам энергии, как и РИТЭГ , способные произвести до 4500 мегаватт тепловой энергии и 1,1 млн ньютонов реактивной тяги половина тяги маршевого двигателя шаттла , работая до 90 минут. Плюс таких двигателей — в значительном сокращении времени полета. Но это другая история, которая пока не закончилась. Модификация одного из них обогревала измерительный инструмент, который взяли с собой участники миссии «Аполлон-11». И пока это так. Однако подобные системы практически незаменимы при отправке зондов на сверхдальние расстояния — туда, где солнечные батареи бесполезны. Первопроходцем в этом деле стала межпланетная станция «Пионер-10», отправленная в космос 3 марта 1972 года. Перед запуском они выдавали 155 Вт электроэнергии, но при подлете к Юпитеру показатель снизился до 140 Вт. Этого было более чем достаточно для работы систем, потреблявших 100 Вт, но к 2001 году энергии уже едва хватало на поддержание функционирования лишь некоторых модулей. До этого новые системы прошли обкатку в спутниках на околоземной орбите. Каждый из космических аппаратов получил по три РИТЭГа общей электрической мощностью 470 Вт на момент запуска с перспективой снижения электрической мощности в два раза примерно через 88 лет. Источниками энергии стали 24 спрессованные сферы из оксида плутония.

Сделано в России

От смартфона до ракеты. Учёные создали "вечную" атомную батарейку Отмечается, что ядерные батарейки работают за счет преобразования в электричество энергии распада метастабильных ядер.
Без зарядки 50 лет: в Китае разработали ядерную батарею Ученые НИТУ «МИСиС» разработали атомную батарейку с повышенной в десять раз мощностью.
Российские специалисты разработали "атомную батарейку", имеющую повышенную мощность примерно 100 лет).
В России создали «ядерную батарейку» для космоса и авиации Первую опытную партию ядерных батареек для космоса и авиации изготовил «Росатом».
Ядрена батарейка Уникальность атомной батарейки еще и в размере. В сравнении с литий-ионными аккумуляторами, батарейка на основе никеля-63 в 30 раз компактнее.

Российские учёные создали атомную батарейку повышенной мощности

  • Вечный заряд: российские ученые создают батарейку, способную работать десятилетиями
  • Американский стартап показал «вечную» ядерную батарейку — Будущее на
  • «Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты
  • «Это совершенно безопасно» — в Китае создали ядерную батарейку размером меньше монеты
  • Без зарядки 50 лет: в Китае разработали ядерную батарею

В НИЯУ МИФИ создали прототип ядерной батарейки

Петр Борисюк занимается разработкой атомной батарейки, способной работать без подзарядки порядка 80 лет. Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет. Китайский стартап Betavolt представил ядерную батарейку BV100, которая может генерировать электроэнергию в течение 50 лет без необходимости зарядки и обслуживания. Теперь пришло время рассказать о компактной атомной батарее созданной российскими учеными.

Атомная батарейка в современном мире

Новости / Батарейки и аккумуляторы. Российские ученые создали атомную батарейку, которая способна работать до 20 лет. В итоге атомная батарейка способна проработать не менее 50 лет. Ученые российской атомной отрасли вплотную приблизились к созданию так называемого бета-вольтаического источника питания на основе радиоактивного изотопа никель-63. В 1975 г. был впервые имплантирован кардиостимулятор РЭКС-А1, где источником питания служила плутониевая атомная батарейка. Про супер-долгую атомную батарейку с повышенной в 10 раз мощностью". атомная батарейка. Батарейку можно применять в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах.

Российские ученые создали уникальную атомную батарейку

Батарейка для Севморпути будет работать на плутонии-238 Атомная термоэлектрическая станция (АТСТ) малой мощности "Елена-М", разработанная в Национальном исследовательском центре "Курчатовский институт", и РИА Новости.
Атомная батарейка в современном мире Как устроена батарейка на ядерном топливе, и насколько она безопасна? Многоствольные скорострельные пулемёты.
Ученые НИЯУ МИФИ создали прототип ядерной батарейки Уникальность атомной батарейки еще и в размере. В сравнении с литий-ионными аккумуляторами, батарейка на основе никеля-63 в 30 раз компактнее.
Создана самая маленькая ядерная батарея — с ней смартфоны будут работать 50 лет без подзарядки Ученые НИТУ «МИСиС» представили инновационный автономный источник питания — компактную атомную батарейку, которая может работать до 20 лет.
Создана уникальная ядерная батарейка Первую опытную партию ядерных батареек для космоса и авиации изготовил «Росатом».

80 лет без подзарядки: в России создали атомную батарею

Принцип атомной батарейки в том, что радиоактивный изотоп, распадаясь, излучает тепло и разогревает капсулу, в которой он находится, до полутора тысяч градусов. Как будто концепции ядерных батарей недостаточно, есть и более эксцентричная идея — создавать батареи из искусственных наноалмазов. Ядерные батарейки – это источники тока, в которых энергия радиоактивного распада метастабильных ядер преобразуется в электричество. На фото: Новая российская атомная батарейка стала в десять раз мощнее и вдвое дешевле аналогов © НИТУ «МИСиС».

Российские ученые оценили созданную в Китае ядерную батарейку

Кену и Джону повезло — в их распоряжении было передовое оборудование и другие мощности, которые использовали для разработки ядерного оружия во время холодной войны. Установка работала на принципе распада радиоактивного элемента — он нагревался до высоких температур, просто существуя. Так, один грамм оксида плутония-238 238-PuO2 генерирует 0,5 ватта тепловой энергии. Если ее перевести в электрическую, то получим «батарейку». У каждого изотопа на один или несколько электронов больше, чем нужно. И они, в зависимости от своей структуры, рано или поздно стремятся «отдать» лишнее.

При этом выделяется тепло, его и переводили в электрическую энергию. Как пустить тепло по электрическим проводам? На тот момент уже были известны разные методы. Термоэлектрический — если спаять два провода из разных металлов и нагревать один из них, то по ним пойдет ток. Позже появился термофотоэлектрический — улавливать «детектором» в инфракрасном спектре фотоны.

Или даже термоэлектрический конвертер, начинка которого из расплавленных солей натрия и серы при нагреве тоже даст электричество. В общем, перевод энергии из одного вида в другую не был проблемой. Период полураспада — срок жизни изотопов. У 238-го он 87,7 лет. Через этот срок в килограмме лишь половина вещества останется изотопом, а остальная часть избавится от «лишних» электронов и в данном случае превратится в уран-234.

Через еще 87,7 лет останется лишь 250 граммов. Не получится загрузить на борт космического аппарата десяток батареек и менять их по мере надобности — они все начинают работу еще до того, как их подключают к системе. Постоянное уменьшение количества радиоактивного топлива означает и уменьшение тепла и электричества. Но не все так плохо. В космосе не только светло, но и темно В батарейках на основе диоксида плутония-238 увидели смысл в космической промышленности.

Например, на околоземной орбите спутнику достаточно солнечных батарей размером с 4 парковочных места.

Источником энергии для уникальных батареек послужил изотоп никеля-63. Сообщается, что излучение данного элемента не представляет опасности для живых организмов, его период полураспада длится приблизительно сто лет. Этой энергии должно хватить для автономного питания кардиостимулятора в течение многих лет.

Процесс создания изотопа может занимать несколько лет. Чаще всего производители ядерных батареек не готовят изотопы самостоятельно, а закупают — в России их подготовкой занимаются предприятия «Росатома». Разрабатывают полупроводниковый элемент. Для создания полупроводников могут использовать кремний, арсенид галлия, германий и другие элементы — тут всё зависит от потребностей. Фактически производитель батарейки создаёт полупроводниковый диод на основе нужного материала. Запускают в конструкцию изотоп.

Тритий — это газ, который закачивают внутрь рабочей камеры. Там он вступает в реакцию со специальной подложкой и начинает излучать бета-частицы. Твёрдые элементы вроде никеля-63 наносят на полупроводник с помощью напыления или приклеивают в виде фольги, хотя это менее эффективно. Потом из батарейки откачивают воздух, чтобы частицы не сталкивались и полезное излучение не уходило в никуда. Помещают батарейку в защитный корпус. Одна пара «изотоп — полупроводник» даёт довольно низкую энергию. Поэтому, чтобы достигнуть нужной мощности, обычно в батарейке размещают несколько десятков или даже сотен таких пар. Потом конструкция помещается в герметичный защитный корпус, который не выпускает наружу радиационное излучение и защищает саму батарейку от внешних воздействий. Чем больше пар «изотоп — полупроводник» в батарейке, тем крупнее она в итоге оказывается. Маленькие батарейки, работающие со слабыми токами, могут помещаться, например, в кардиостимулятор — такой проект действительно существовал в США.

А вот чтобы собрать батарейку, способную питать условный компьютер, уже нужна конструкция весом как минимум в несколько килограммов. Примерно как десять смартфонов, сложенных друг на друга. А ещё защитный корпус с толщиной стенки около сантиметра». Если используемый изотоп более мощный и выдаёт больше энергии, с ним можно сделать более компактную батарейку. Скажем, элементы питания для тех же кардиостимуляторов делались на основе более активного плутония и потому занимали очень мало места. Но и защита у мощных изотопов должна быть сложнее, а ещё интенсивное излучение изнашивает элементы батарейки. А это надёжно? Защитный корпус батарейки проектируют с учётом условий эксплуатации. А ещё учитывают, какой именно изотоп используется внутри. Например, тритий даёт довольно слабое излучение, поэтому делать огромный корпус с толстыми стенками для него не нужно.

А вот для плутония нужна куда более серьёзная защита: его рекомендуют применять только там, где минимален риск потенциальной аварии. А для гипотетического бытового применения можно использовать изотопы с низкими энергиями, например тритий или никель-63. Защитные корпуса для них могут быть тоньше и меньше, ведь глубина проникновения излучения очень низкая. Даже если человек случайно возьмёт в руки никель-63, ему будет достаточно просто помыть руки, чтобы избежать негативного влияния». Корпус разрабатывают так, чтобы он мог выдерживать большие нагрузки: перепады давления вплоть до полного вакуума, повышенные и пониженные температуры, удары и катаклизмы.

Отмечается, что по мере совершенствования разработки мы вскоре можем увидеть батареи для смартфонов, которые не требуют подзарядки.

Как разработка приблизит появление отечественного квантового компьютера Зимой прошлого года китайские ученые заявили, что изобрели новый двигатель для дронов, который поможет устройствам находиться в воздухе на протяжении долгого времени. В частности, специалисты из Северо-Западного политехнического университета Китая изобрели модуль, который преобразует энергию света в электричество и позволяет заряжать дроны в воздухе. Создатели не раскрывают деталей проекта, чтобы избежать его использования в военных целях, однако заверяют, что с таким двигателем дрон сможет подниматься на высоту небоскреба.

В России создана миниатюрная и долговечная атомная батарейка

Области применения ядерных батарей разнообразны: в ближайшем будущем ядерные батарейки станут незаменимы на территориях, удаленных от инфраструктуры, например. Российская «атомная батарейка» способна проработать 20 лет! В России создали прототип атомной батареи, которая может работать без подзарядки 80 лет. Первую опытную партию ядерных батареек для космоса и авиации изготовил «Росатом».

Поделиться

  • Делаем электричество из изотопов
  • От смартфона до ракеты. Учёные создали "вечную" атомную батарейку
  • Российские ученые оценили созданную в Китае ядерную батарейку
  • Регистрация

Батарейка для Севморпути будет работать на плутонии-238

Источник изображения: Betavolt Компания Betavolt утверждает, что созданный ею 3-вольтовый прототип атомной батарейки меньше монеты будет работать 50 лет. Батарея якобы уже передана клиентам для изучения, а по-настоящему мощный 1-Вт элемент будет представлен в 2025 году. Сообщается, что аккумулятор будет полностью безопасным, так как на него не будут влиять температура воздуха и другие факторы. Также отмечается, что проблем с утилизацией быть не должно — к концу эксплуатации почти все радиоактивные элементы попросту распадутся. Эта разработка, как и множество других подобных в США, России и в других странах, использует источник изотопов, который выделяет энергию при радиоактивном бета-распаде. У таких батарей низкий КПД на уровне единиц процентов, но работать они могут десятилетиями, поэтому, например, нашли применение в качестве бортовых систем питания межпланетных станций, которые направляются вглубь Солнечной системы.

Это открытие позволяет в дальнейшем разрабатывать носители энергии маленького размера, но с большими мощностями. Ядерные батарейки представляют собой источник тока, который преобразовывает электричество из энергии радиоактивного распада метастабильных ядер. Такие источники энергии могут работать без подзарядки в течение нескольких лет. Об этом пишет издание Applied Physics Letters.

Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный многократными соударениями излучаемых изотопом бета-частиц. Эта система является относительно простой, она представляет собой ансамбль плотно упакованных нанокластеров никеля, наночастицы которого осаждены на поверхности диэлектрика — оксида кремния. Ключевая особенность предложенной системы заключается в том, что наночиастицы никеля распределены по размерам, средний размер частицы постепенно изменяется в выделенном направлении.

И в этом же направлении происходит увеличение электрических зарядов. Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада в электрический ток без использования дополнительных сложных полупроводниковых систем. Задачей ученых НИЯУ МИФИ сейчас является исследование электрофизических свойств формируемой нанокластерной пленки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада в электричество. Первичные результаты, подтверждающие возможность реализации такой системы, ранее были опубликованы в престижном журнале AppliedPhysicsLetters. Открытие, сделанное в ходе разработки Кроме прочего, оказалось, что данные наноструктурированные пленки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределенным спектром излучения в заданном диапазоне.

Уникальность бристольской концепции заключается в том, что проблема ядерных отходов решается путем переработки их в ядерные батарейки. Если внимательно прослушать и перевести текст этого ролика, то открывается гораздо больше интересной информации. Сначала подробно рассказывается о происхождении изотопа С14 С 1940 Англия сделала много ядерных реакторов научного, военного и гражданского назначения. Все эти реакторы используют уран как топливо, а внутри реактор сделан из графитовых блоков.

Эти графитовые блоки используются в процессе ядерного расщепления, позволяя контролировать цепную реакцию, которая даёт постоянный источник тепла. Это тепло потом используется, чтобы превратить воду в пар, которое потом крутит турбины, чтобы сделать электричество. Ядерные электростанции производят ядерные отходы, которые необходимо безопасно утилизировать. Надо просто подождать, чтобы эти отходы перестали быть радиоактивными. К сожалению, это занимает тысячи и миллионы лет. Это также требует очень много денег, чтобы контролировать безопасность в течение этих многих лет. Так как мы используем графитовые реакторы, Англия создала 95000 тон графитовых блоков содержащих радиацию. Этот графит только один из форм углерода, простой и стабильный элемент, но если положить эти блоки в высоко радиоактивное место, то тогда часть углерода превращается в углерод14. Углерод14 может превратиться обратно в обычный углерод12 когда её дополнительная энергия уйдет.

Но это очень долгий процесс потому что период полураспада углерода14 составляет 5730 лет. Это значит, что возможно убрать большинство радиации нагревая их - большинство радиации выходит как газ, который потом может быть собран. Оставшиеся графитовые блоки все-равно радиоактивны, но не так сильно, это значит, что утилизировать их будет проще и дешевле.

Похожие новости:

Оцените статью
Добавить комментарий