занимаемый им объем, - количество молей идеального газа, - универсальная газовая постоянная, - абсолютная температура. Физическая постоянная, эквивалентная постоянной Больцмана, но в других единицах измерения Газовая постоянная (также известная как молярная газовая постоянная, универса.
Почему газовая постоянная r называется универсальной кратко
Газовую постоянную одного моля газа называют универсальной, таккак для любого газа при одинаковых состояниях ее числовое значение одно ито же; универсальная газовая постоянная обозначается и имеет единицу измерения джоуль на моль-кельвин (дж/(моль к). В удельная газовая постоянная газа или смеси газов (рспецифический) дается делением молярной газовой постоянной на молярная масса (M) газа или смеси. Универсальная постоянная идеального газа была определена эмпирически как постоянная пропорциональности уравнения идеального газа.
Физический смысл газовой постоянной R
Газовую постоянную одного моля газа называют универсальной, таккак для любого газа при одинаковых состояниях ее числовое значение одно ито же; универсальная газовая постоянная обозначается и имеет единицу измерения джоуль на моль-кельвин (дж/(моль к). Универсальная газовая постоянная, её физический смысл, численное значение и размерность. В целом, универсальная газовая постоянная является фундаментальной константой, которая помогает нам лучше понять и описать свойства и поведение газов в различных условиях. Газовая постоянная (также известная как молярная газовая постоянная, универсальная газовая постоянная или идеальная газовая постоянная) обозначается символом R или R. Это эквивалентно постоянная Больцмана, но выраженная в единицах энергии на приращение. Численные значения универсальной газовой постоянной (далее слово универсальная опускается) в различных единицах измерения приведены ниже [c.108]. универсальная физическая постоянная R, входящая в уравнение состояния 1 моля идеального газа: pv = RT (см. Клапейрона уравнение), где р - давление, v - объём, Т - абсолютная температура.
Закон идеального газа
- Универсальная газовая постоянная — Википедия
- В чем измеряется универсальная газовая
- 9.2. Уравнения состояния и закономерности движения газа
- Что такое реальный газ
- Универсальная газовая постоянная
- чем отличается газавая постоянная от газовой универсальной? — Спрашивалка
Определение и физический смысл
- Уравнение состояния идеального газа • Джеймс Трефил, энциклопедия «Двести законов мироздания»
- Что такое реальный газ
- Уравнение состояния вещества
- Урок 15. Лекция 15. Идеальный газ
- Универсальная газовая постоянная равна в химии
- Универсальная газовая постоянная — Википедия
Чему равна константа R?
Эти изменения небольшие, так что для решения многих задач давление можно действительно считать постоянным. И остался третий параметр, который мы еще не фиксировали, — объем, при этом изменяются температура и давление. Разделим обе части уравнения Клапейрона на объем: Справа получилась константа: Теперь можно связать давление и температуру в начале и в конце изохорного процесса: Из уравнения видно: при увеличении температуры нагревании при постоянном объеме увеличивается давление газа, и наоборот. Это тоже прямая пропорциональность. И этот закон тоже сначала был получен экспериментально, французским ученым Шарлем, поэтому и назван его именем — закон Шарля: Для газа данной массы отношение давления к температуре постоянно, если объем не меняется. Для этого процесса модель точнее описывает реальный процесс: в закрытом жестком сосуде объем действительно можно считать постоянным с хорошей точностью. Пример — металлический баллон. Если газ в нем нагреть, давление увеличится, но при большой жесткости баллона он практически не деформируется по крайне мере настолько, чтобы внести заметную погрешность в расчеты.
Решение задач. Графики для описания газовых законов. Границы применимости модели Итак, какие инструменты мы получили? Основной инструмент один — уравнение состояния идеального газа. А все остальное — это запись этого же уравнения в более удобных формах для решения той или иной задачи. Если мы имеем дело с неизменной массой газа то есть нет утечек , то три параметра состояния связаны уравнением Клапейрона. А если при этом еще и остается неизменным один из параметров состояния, применяем уравнение для изотермического, изобарного или изохорного процесса, их еще называют газовыми законами.
Применим наши инструменты, решив несколько задач. Задача 2. Каково давление воздуха в конце сжатия, если в начале сжатия давление воздуха было равно атмосферному 100 кПа? Анализ условия. В задаче описано изменение состояния воздуха, будем его описывать с помощью модели идеального газа — температура сотни градусов по Цельсию это позволяет. Состояние газа описано тремя макропараметрами давлением, температурой и объемом , причем изменяются все три макропараметра, это не изопроцесс.
Содержание Общая информация [ править править код ] И. Алымов 1865 [1] [2] [3] , Цейнер 1866 [4] , Гульдберг 1867 [5] , Горстман 1873 [6] и Д.
Менделеев 1874 [7] [2] [3] пришли к выводу, что произведение индивидуальной для каждого газа постоянной в уравнении Клапейрона на молекулярный вес газа должно быть постоянной для всех газов величиной. Молекулярно-кинетическая теория, Статистическая физика, Физическая кинетика , тогда как универсальная газовая постоянная более удобна при расчетах, касающихся макроскопических систем, когда число частиц задано в молях.
Физический смысл газовой постоянной помогает нам понять, как взаимосвязаны основные параметры газа и как они изменяются при изменении одного из них.
Этот концепт особенно важен при изучении газовой теории и применении уравнения состояния идеального газа для описания поведения газов в различных условиях. Применение газовой постоянной в науке В физике и химии газовая постоянная используется для описания и расчета различных процессов, связанных с газами. Например, она применяется в уравнении состояния идеального газа, которое позволяет описывать физические свойства и поведение газов при различных условиях, таких как давление, температура и объем.
Газовая постоянная также используется в законе Бойля-Мариотта, который описывает зависимость между давлением и объемом газа при постоянной температуре. Закон Авогадро, который описывает зависимость между объемом и количеством молекул газа, также использует газовую постоянную. Благодаря газовой постоянной возможно изучение физических свойств газов и проведение экспериментов с большой точностью.
Многие научные исследования и разработки в области физики, химии и инженерии невозможны без учета газовой постоянной и ее применения в математических моделях и формулах.
Чему равна универсальная газовая постоянная. Универсальная газовая постоянная r равна. Размерность универсальной газовой постоянной.
Связь универсальной газовой постоянной и постоянной Больцмана. Связь между постоянной Больцмана и газовой постоянной. Постоянная Больцмана и универсальная газовая постоянная. Газовая постоянная углекислого газа.
Газовая постоянная диоксида углерода. Удельная газовая постоянная углекислого газа. Газовая постоянная со2. Удельная газовая постоянная таблица для газов.
Удельная газовая постоянная со2. Универсальная газовая постоянная таблица. Газовая постоянная r Размерность. Удельная газовая постоянная r газа.
Газовая постоянная 1 кг газа формула. Универсальная газовая постоянная Размерность. Молярная газопостоянная. Молярная газовая постоянная.
Уравнение универсальной газовой постоянной. Задача на уравнение Менделеева-Клапейрона с решением. Удельная газовая постоянная сухого воздуха. Удельный объем сухого воздуха.
Постоянная газовая постоянная для воздуха. Универсальная газовая постоянная для сухого воздуха. Универсальная газовая постоянная водяного пара. Удельная газовая постоянная водяного пара.
Газовая постоянная для перегретого пара. Постоянная r. Уравнение Менделеева Клапейрона. Менделеев Клайперон уравнение.
Формула Клапейрона Менделеева физика. Уравнение Менделеева-Клапейрона универсальная газовая постоянная. Газовая постоянная таблица газов. Удельная газовая постоянная таблица.
Газовая постоянная метана.
Уравнение Клапейрона-Менделеева. Единицы измерения универсальной газовой постоянной. Пример задачи
универсальная газовая постоянная это определение | Газовая постоянная, универсальная физическая постоянная R, входящая в уравнение состояния 1 моля идеального газа: pv = RT (см. Клапейрона уравнение), где р — давление, v — объём, Т — абсолютная температура. |
Глава 8. Строение вещества | Газовая постоянная — универсальная физическая постоянная R, входящая в уравнение состояния 1 моля идеального газа. |
чем отличается газавая постоянная от газовой универсальной? | Макропараметры и универсальная газовая постоянная. |
Газовая постоянная — Мегаэнциклопедия Кирилла и Мефодия — статья | универсальная газовая постоянная — Постоянная (R), входящая в управление состояния для моля идеального газа (pv = RT), одинаковая для всех идеальных газов. |
Газовая постоянная газов | Для измерения давления газа существуют различные приборы (манометры, барометры), для измерения температуры – термометры. |
School Notes
- Универсальная газовая постоянная равна в химии
- Общая информация [ править | править код ]
- В чем измеряется универсальная газовая постоянная
- Универсальная газовая постоянная - определение термина
- Уравнение состояния идеального газа • Джеймс Трефил, энциклопедия «Двести законов мироздания»
- В чем измеряется универсальная газовая
Газовая постоянная газов
Уравнение состояния вещества | ГАЗОВАЯ ПОСТОЯННАЯ универсальная (молярная, R), фундам. физич. константа, входящая в уравнение состояния 1 моля идеального газа: pv=RT. |
✅ Значение универсальной газовой постоянной | Универсальная газовая постоянная (обозначается как R или Rунив) является физической константой, которая используется в различных уравнениях газового состояния для рассчета свойств газов. |
Законы идеального газа, универсальная газовая постоянная | В результате изучения свойств идеальных газов установлено, что для любого газа произведение абсолютного давления на удельный объем, деленное на абсолютную температуру газа, есть величина постоянная, т.е. |
9.2. Уравнения состояния и закономерности движения газа | Универсальная газовая постоянная в Дж/кг к. Газовая постоянная r формула. |
Газовая постоянная газов
В результате изучения свойств идеальных газов установлено, что для любого газа произведение абсолютного давления на удельный объем, деленное на абсолютную температуру газа, есть величина постоянная, т.е. Физическая постоянная, эквивалентная постоянной Больцмана, но в других единицах измерения Газовая постоянная (также известная как молярная газовая постоянная, универса. Газовая постоянная — универсальная физическая постоянная R, входящая в уравнение состояния 1 моля идеального газа: pv = RT (см. Клапейрона уравнение), где р давление, v объём, Т абсолютная температура. Газовая постоянная газов. Единицы измерения универсальной газовой постоянной. Универсальная газовая постоянная (также — постоянная Менделеева) — термин, впервые введённый в употребление Д. Менделеевым в 1874 г. Численно равна работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К.
Что такое газовая постоянная и как она определяется
Газовая постоянная — Мегаэнциклопедия Кирилла и Мефодия — статья | Новости Новости. |
Уравнение состояния идеального газа | ГАЗОВАЯ ПОСТОЯННАЯ универсальная (молярная, R), фундам. физич. константа, входящая в уравнение состояния 1 моля идеального газа: pv=RT. |
9.2. Уравнения состояния и закономерности движения газа
Это означает, что в этой области с веществом происходит что-то необыкновенное. Что именно, не видно в уравнении Ван-деp-Ваальса. Обратимся к опыту. Обе фазы существуют одновременно и находятся в фазовом равновесии.
Минимальное давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением и обозначается рс. Объем, занимаемый одним молем газа при его критических температуре и давлении, называется критическим объемом и обозначается Vc. Значения Тс, рс и Vc для каждого газа называются его критическими постоянными. В табл. Газовые смеси, способы выражения состава смесей. Закон Дальтона. Парциальное давление-это такое давление которое создал бы данный компонент если бы он один занимал тот же объем что и все смесь.
Парциальный объем - такой объем который будет занимать данный компонент , если бы он один находился под тем же давлением которое создает вся смесь. Общее давление газов смеси равно сумме парциального давления компонентов.
Не бывает температур ниже этой, так как при абсолютном нуле полностью прекращается тепловое движение молекул хоть в газе, хоть в жидкости или твердом теле. Таким образом, шкала Кельвина - это та же шкала Цельсия, с той только разницей, что отсчет ведется от абсолютного нуля температур и, следовательно, отрицательных температур по Кельвину не бывает.
Теперь мы можем вернуться к обсуждению практических следствий, вытекающих из уравнения состояния идеального газа. В особых обстоятельствах, например, когда баллон стоит на солнцепеке в жаркий безветренный день, корпус баллона а, следовательно, и газ в нем может нагреваться до 80 и более градусов от прямого воздействия солнечных лучей, что может быть опасно для корпуса баллона, опрессованного испытанного закачкой в него воды под высоким давлением , как известно, на 225 атмосфер. Поэтому, согласно ППБ-77 правилам пожарной безопасности , места для хранения баллонов в обязательном порядке оборудуются навесом для защиты от солнечных лучей. Поведение углекислоты при повышении температуры, в целом, описывается теми же соображениями, однако в силу того, что углекислоту в условиях хранения ее в баллонах нельзя, строго говоря, считать идеальным газом, ее поведение мы обсудим в отдельной главе.
Следствие 2: при постоянной температуре давление в газе обратно пропорционально его объему, так что Для примера обсудим азот, находящийся в стандартном 40-литровом баллоне при давлении в 150 атмосфер. Спрашивается, какой объем занимает азот из этого баллона, если его выпустить в комнату, где его давление сравняется с атмосферным и станет, следовательно, равным 1атм? Газа, хранящегося в 3-4 баллонах, достаточно, чтобы полностью заполнить средних размеров комнату, а так как азот не имеет ни цвета, ни запаха, то при стравливании баллонов в закрытом помещении человек, это делающий, имеет все шансы задохнуться и не заметить. Следствие 3: Уравнение состояния можно прямо использовать для расчета давления, объема или массы газа, если известна только часть этих параметров.
Например, зададимся целью выяснить массу аргона, находящегося в стандартном 40-литровом баллоне при 150атм. Непосредственно из уравнения состояния имеем: Аргон - одноатомный в отличии от кислорода, азота, водорода в молекуле которых два атома газ с атомной массой 40 химию надо было учить! Еще раз напоминаю: в уравнении состояния использовать необходимо абсолютную температуру по шкале Кельвина! Однако, ошибка составляет менее полутора процентов, что для практических целей представляется вполне приемлемым.
Уравнение является достаточно простым и позволяет предсказывать результаты различных воздействий на газ без проведения широкомасштабных экспериментов, влекущих за собой человеческие жертвы и разрушения. Поведение углекислоты в условиях близких к условиям ожижения будет рассмотрено в отдельной главе. Уравнение состояния идеального газа к ацетилену С2Н2 в баллоне применить невозможно, так как ацетилен там находится не в виде свободного газа, а в виде раствора ацетилена в ацетоне и живет по совершенно иным законам. Последнее, что необходимо добавить в этой главе.
В левой и правой части уравнения состояния идеального газа стоит величина с размерностью энергии опустим доказательство этого факта, его можно найти в любом учебнике физики. Более того, это энергия, заключенная в газе, и есть! Причем в левой части уравнения она выражена через чисто механические величины объем и давление , а в правой - через термодинамические температуру , т. Для вашего понимания серьезности положения проведем расчет энергии, заключенной в 40-литровом баллоне с аргоном азотом, гелием, кислородом, да все равно….
Если ты не птица - отнесись к этим цифрам со всей серьезностью. Сжиженные газы и газы вблизи условий ожижения. Существуют уравнения состояния, описывающие так называемые "реальные газы", то есть, уравнения, учитывающие тот факт, что газы, на самом деле, состоят не из идеальных круглых и абсолютно упругих шариков, а из вполне конкретных молекул, обладающих при определенных условиях некоторым притяжением друг к другу и, в результате, могущих, при достаточно низких температурах и относительно высоких давлениях, переходить в конденсированные состояния жидкость, твердое тело. Однако универсальность и точность описания, которые обеспечивают эти уравнения, не слишком высока, а сложность самих уравнений выходит далеко за рамки школьного курса.
Исходя из этих соображений, приводить их здесь не представляется целесообразным. Поэтому мы ограничимся некоторыми общими соображениями и экспериментальными фактами, не тратя времени на их теоретическое обоснование. И конкретно сосредоточим усилия на практически важном для нас случае сжиженной углекислоты. Вот он: Понимать изображенное на этом рисунке надо так: в твердом состоянии мы кратко будем называть его "лед" вещество может находится лишь при совершенно определенных температурах и давлениях область "лед" на диаграмме.
Пусть вещество находится при некоторой температуре ТА и давлении РА. Тогда на диаграмме эта ситуация может быть отмечена графически точкой точка А. Надо ясно понимать, что все газы есть пары своих жидкостей. Когда газ пар охлаждается он превращается снова в жидкость.
Этот процесс называется "конденсация" капли на крышке кипящего чайника - результат этого процесса, там пар, соприкасаясь с более холодной, чем днище чайника, крышкой, превращается обратно в воду. Она изображает процесс т. Этот процесс весьма характерен для углекислоты. Глядя на диаграмму, легко заметить, что процесс возгонки может идти только при достаточно низких давлениях, а при более высоких - переход из льда в жидкость идет обязательно через промежуточную жидкую фазу.
Температура остается неизменной, а жидкость, тем не менее, испаряется. На этом, в частности, основан процесс вакуумной сушки, широко применяемый в пищевой промышленности бульонные кубики "Магги" и прочая дребедень. Этот момент важный. В реальной жизни мы, как правило, находимся в условиях постоянного атмосферного давления и, поэтому, подсознательно считаем, что процессы перехода "лед" - "жидкость" - "газ" вызваны только нагреванием чайник - на огонь, пиво - в морозилку , но, на самом деле, фазовые переходы наблюдаются в результате действия двух факторов - изменения температуры и давления.
Особый интерес представляет точка КТ на фазовой диаграмме.
Постоянная Авогадро. Следствия закона Авогадро в химии. Газовая постоянная смеси формула.
Газовая постоянная для газовой смеси. Удельную газовую постоянную смеси. Газовую постоянную смеси Rсм.. Удельная газовая постоянная кислорода равна.
Удельная газовая постоянная газа. Уравнение Клапейрона универсальная газовая. Газовая постоянная so2. Универсальная газовая постоянная 62360.
Универсальная газовая постоянная для воздуха 287. Универсальная и Удельная газовые постоянные. Азот водород уравнение. Молярный вес водорода.
Молекулярный вес водорода. Молекулярный вес кислорода. Удельная газовая постоянная смеси. Формула определения газовой постоянной смеси.
Удельная газовая постоянная. Уравнение состояния произвольной массы газа. Уравнение состояния идеального газа произвольной массы. Постоянная адиабаты воздуха.
Показатель адиабаты воздуха. Универсальная газовая постоянная для воздуха. Адиабатный показатель воздуха. Газовая постоянная азота.
Универсальная газовая постоянная для азота. Газовая постоянная r. Удельная газовая постоянная азота. Уравнение состояния для одного кг идеального газа.
Уравнение Клапейрона Менделеева газовая постоянная. Уравнение Менделеева Клапейрона 11 класс. Уравнение Клапейрона презентация. Удельная газовая постоянная смеси формула.
Индивидуальная газовая постоянная формула.
В чем измеряется универсальная газовая постоянная
КлапейронаУравнение Менделеев. R=А, то есть универсальная газовая постоянная численно равна работе расширения одного кмоль газа при изобарическом нагревании на. Газовая постоянная — универсальная физическая постоянная R, входящая в уравнение состояния 1 моля идеального газа. Другими словами, универсальная газовая постоянная количественно характеризует способность газа к тепловому расширению при постоянном давлении.
Что такое газовая постоянная и как она определяется
Физический смысл газовой постоянной. Формула Менделеева Клапейрона формула. Управление Менделеева-Клапейрона формула. Менделеев Клапейрон формула. Термодинамическая шкала температур формула. Абсолютная температура идеального газа формула. Уравнение Кельвина. Уравнение состояния идеального газа произвольной массы. Уравнение газового состояния - уравнение Клапейрона?.
Молярная масса газа. Объем газа. Объем газа формула. Формула концентрации через уравнение Клапейрона Менделеева. Формула плотности газа через Менделеева Клапейрона. Уравнение состояния идеального газа формула Менделеева Клапейрона. Уравнение Менделеева-Клапейрона для идеального газа формула. Менделеев Клапейрон уравнение.
Уравнение Менделеева-Клапейрона для идеального газа. Уравнение состояния идеального газа формула физика. Формула основного уравнения состояния идеального газа. Уравнение состояния идеального газа формулировка. Понятие идеального газа формула. Формула Менделеева Клапейрона для идеального газа. Уравнение Менделеева-Клапейрона в химии. Внению Клапейрона-Менделеева:.
R из уравнения Менделеева-Клапейрона. Уравнение Менделеева Клапейрона давление. Постоянная Больцмана вывод формулы. Постоянная Больцмана формула физика. Постоянная Больцмана единицы измерения. Постоянная Больцмана для идеального газа. Уравнение Менделеева Клайперон. Постоянная Авогадро.
Число Авогадро. Единицы измерения постоянной Авогадро. Постоянное число Авогадро. Измерение давления единицы измерения давления. Единица измерения давления 1кг. Система си давление единицы измерения в физике. Паскаль единица измерения давления. Единица измерения давления в си.
Един измерения давления. Единицы измерения. Единицы измерения плотности. Единица измерения единица. Единицы измерения измерения. Характеристики топлива. Основные виды газообразных топлив. Состав газообразного топлива.
В знак признания научных заслуг был лзбран членом-корреспондентом Петербургской АН, награждён орденами. Карно умер, так и не услышав никакого отклика па свою работу. Печальный, но не единственный в истории науки факт. В 1834 году Клапейрон4 переработал труд Карно и почти под тем же названием «Мемуар о движущей силе огня» издал в сборнике Политехнической школы в Париже.
Клапейрон использовал в своём изложении, которое носило более строгий математический характер, графическое представление тепловых процессов в диаграмме У-р. Популярные сейчас кривые — изотермы и адиабаты — ведут свою историю от работ Клапейрона. Мемуар Карно в своё время был отклонён редакцией журнала «Анналы» Поггендорфа крупнейшего физического журнала того времени. Мемуар же Клапейрона произвёл на редактора журнала Поггендорфа столь сильное впечатление, что он сам перевёл его на немецкий язык и напечатал в своём журнале в 1843 году.
Это уравнение он называет «уравнением состояния Гей-Люссака-Мариотта» и широко использует его в данной работе. Очевидно, что уравнение Клапейрона 18 тождественно уравнению Карно 17. Занимаясь в своём сочинении теорией Карно, Клапейрон нигде не говорит, что автором первого объединённого уравнения является именно Карно, правда, и себе он его не приписывает. Книга Карно быстро стала библиографической редкостью, и с ней мало кто был знаком.
Поэтому неудивительно, что уравнение объединённого закона Бойля-Мариотта-Гей-Люсса-ка стали приписывать Клапейрону. Правильнее было бы уравнение состояния идеального газа, записываемое через газовую постоянную тела, называть уравнением Карно-Клапейрона, В 1862 году Клаузиус ввёл в уравнение состояния 17 термодинамическую температуру Т.
При этом ничего об утечках воздуха из цилиндра ничего не сказано, значит, количество воздуха не изменяется. Будем применять уравнение Клапейрона. Физическая часть решения. Запишем уравнение в виде, удобном для описания перехода из состояния 1 в состояние 2: Температуры заданы нужно только перевести их в кельвины , давление тоже. Что сказано об объеме — перепишем условие в математическом виде. Объем уменьшился в 15 раз, это значит, что в состоянии 2 объем в 15 раз меньше, чем в состоянии 1: Получили простую систему уравнений, решим ее — это будет математическая часть решения.
Подставим второе давление: Выразим давление во втором состоянии: Получили ответ: 4,2 МПа или 42 атмосферы. Задача 3. Какой была начальная температура? В задаче описано изменение состояния газа. За неимением другой информации будем применять модель идеального газа. Речь идет о закрытом баллоне. Это значит, во-первых, что масса газа постоянна, а, во-вторых, баллоны обычно жесткие, значит, и объем не изменяется. Поэтому можем описать процесс как изохорный.
Запишем уравнение для изохорного процесса: Перепишем условие в математическом виде, чтобы можно было подставлять в уравнение. Температура увеличилась на 15 К, значит,. Часто бывает удобно выразить зависимость одного параметра от другого в виде графиков. Это наглядно, помогает лучше представить себе процесс, а иногда по графикам можно оценить численные значения. Начертим графики зависимостей параметров газа и разберемся, какую информацию можно из них получить. Начнем с изотермического процесса,. Чтобы начертить график зависимости давления от объема, нужно переписать уравнение в виде : Это обратно пропорциональная зависимость типа , и ее график имеет вид гиперболы см.
Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Аноним Отлично Отличный сайт Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов в подборках по авторам, читай, ВУЗам и факультетам. Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток. Аноним Отлично Маленький отзыв о большом помощнике! Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов. Хорошо Студ.