Метка: катод. Литий-металлические аккумуляторы сохраняют 80% емкости после 6 000 циклов заряда-разряда – исследование. Инженеры из США разработали литий-ионную батарею с катодом из органики вместо кобальта или никеля — она может снять зависимость индустрии электротранспорта от редких металлов. Инженеры из США разработали литий-ионную батарею с катодом из органики вместо кобальта или никеля — она может снять зависимость индустрии электротранспорта от редких металлов. В данном разделе вы найдете много статей и новостей по теме «катоды». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых.
Химики впервые перезарядили тионилхлоридный аккумулятор
Аккумуляторы будущего | В описанном процессе заряда полимерное покрытие катода остается стабильным во всем диапазоне рабочих потенциалов. |
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов - Eham | Они показали, что такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. |
Группа "Катод" усиливает заряд | История «Катода» — это история развития наукоемкого бизнеса в России, который, несмотря на внутренние и внешние проблемы, все же достиг успеха и мирового признания. |
Новые материалы для катодов ускорят зарядку в 3-4 раза | Главная» Новости» Катод имеет заряд. |
Создан уникальный катод для металл-ионных аккумуляторов | Исследователи из Токийского столичного университета разработали новый квазитвердотельный катод для твердотельных литий-металлических батарей со значительно сниженным. |
Из полимеров сделали катоды для литиевых аккумуляторов
Они нашли широкое применения в современной промышленности, электроники и других сферах. В статье будет подробно рассказано о том, что такое Анод и катод, а также для чего именно они нужны и какие физические законы за ними стоят. Анод и катод Анод и катод Процессы, протекающие при электролизе Электролиз получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путем электролиза. Кроме того, электролиз используется для рафинирования очистки меди, никеля, свинца, а также для получения водорода, кислорода, хлора и ряда других химических веществ. Сущность электролиза заключается в выделении из электролита при протекании через электролитическую ванну постоянного тока частиц вещества и осаждении их на погруженных в ванну электродах электроэкстракция или в переносе веществ с одного электрода через электролит на другой электролитическое рафинирование. В обоих случаях цель процессов — получение возможно более чистых незагрязненных примесями веществ. Любой электровакуумный прибор имеет электрод, предназначенный для испускания эмиссии электронов. Этот электрод называется катодом. Электрод, предназначенный для приема эмиттированных катодом электронов, называется анодом. На анод подают более высокий и положительный относительно катода потенциал.
В отличие от электронной электропроводности металлов в электролитах растворах солей, кислот и оснований в воде и в некоторых других растворителях, а также в расплавленных соединениях наблюдается ионная электропроводность. Электролиты являются проводниками второго рода. В этих растворах и расплавах имеет место электролитическая диссоциация — распад на положительно и отрицательно заряженные ионы. Химия электролиза. Если в сосуд с электролитом — электролизер поместить электроды, присоединенные к электрическому источнику энергии, то в нем начнет протекать ионный ток, причем положительно заряженные ионы — катионы будут двигаться к катоду это в основном металлы и водород , а отрицательно заряженные ионы — анионы хлор, кислород — к аноду. У анода анионы отдают свой заряд и превращаются в нейтральные частицы, оседающие на электроде. У катода катионы отбирают электроны у электрода и также нейтрализуются, оседая на нем, причем выделяющиеся на электродах газы в виде пузырьков поднимаются кверху. Электрический ток во внешней цепи представляет собой движение электронов от анода к катоду. При этом раствор обедняется, и для поддержания непрерывности процесса электролиза приходится его обогащать. Так осуществляют извлечение тех или иных веществ из электролита электроэкстракцию.
Если же анод может растворяться в электролите по мере обеднения последнего, то частицы его, растворяясь в электролите, приобретают положительный заряд и направляются к катоду, на котором осаждаются, тем самым осуществляется перенос материала с анода на катод. Так как при этом процесс ведут так, чтобы содержащиеся в металле анода примеси не переносились на катод, такой процесс называется электролитическим рафинированием. Если электрод поместить в раствор с ионами того же вещества, из которого он изготовлен, то при некотором потенциале между электродом и раствором не происходит ни растворения электрода, ни осаждения на нем вещества из раствора. Такой потенциал называется нормальным потенциалом вещества. Если на электрод подать более отрицательный потенциал, то на нем начнется выделение вещества катодный процесс , если же более положительный, то начнется его растворение анодный процесс. Значение нормальных потенциалов зависит от концентрации ионов и температуры. Принято считать нормальный потенциал водорода за нуль. В табл.
С электродами из таких материалов аккумуляторы могут еще быстрее заряжаться и разряжаться». Стандартный литий-ионный аккумулятор — это ячейка объем которой заполнен литий-содержащим электролитом и разделен сепаратором на две части — в одной находится анод, а в другой катод. В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счет этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития.
Открытие эффективного и стабильного полимерного фотоэлемента, о котором сообщают китайские ученые, решает эту проблему и обещает стать более чистым и жизнеспособным решением для возобновляемой энергетики. Подпишитесь , чтобы быть в курсе. Команда ученых из Университета Гонконга сосредоточилась на решении этой задачи. Они разработали новый тип молекулы-акцептора Y6, которая в случае полимеризации проявляет свойства, необходимые для получения стабильных органических фотоэлементов. Статья об открытии была опубликована в журнале Nature Communications, пишет Science Daily.
Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.
Как технологии твердотельных Ssbt-аккумуляторов изменят мир
После чего электроны переносятся на катод, где они используются вместе со свободными протонами для восстановления кислорода до воды», — пояснила Екатерина Вахницкая. Катод будет иметь чистый отрицательный заряд в электролитических элементах, таких как одноразовая батарея, и положительный заряд. Кроме того, использование связующих и несоответствие между катодом и электролитом также могут вызывать побочные реакции. Автоматическое зарядное устройство КАТОДЪ-501 здорово всем народ сегодня решила разобрать и посмотреть что с этим зарядным устройством так как он работает неправильно. В новой работе авторы также представили катоды для таких аккумуляторов на основе полимерного соединения дигидрофеназина, который призван заменить собой кобальт.
Российские ученые создали эффективную замену литию в аккумуляторах
Но у новых аккумуляторов всё же есть ряд преимуществ. Например, восполнить заряд до 80 процентов при комнатной температуре можно всего за 15 минут, а при минус 20 градусах по Цельсию батарея сохраняет больше 90 процентов ёмкости. В CATL видят несколько сценариев использования натрий-ионных источников тока: во-первых, электромобили, особенно если они эксплуатируются в регионах с холодным климатом; во-вторых, буферные накопители энергии, скажем, для солнечных батарей, где низкая масса не является важным условием. И чтобы подкрепить свои слова о перспективности разработки, компания уже приступила к промышленному внедрению натрий-ионных аккумуляторов: базовую производственную цепочку планируют полностью сформировать к 2023 году. Параллельно в CATL Research Institute продолжится работа над совершенствованием натриевых батарей: экземпляры следующего поколения будут иметь удельную ёмкость в 200 ватт-часов на килограмм и выше.
В качестве основы они выбрали полиароматическую азотсодержащую молекулу дигидрофеназина и соединяли ее с дифениламином или фенотиазином. В результате получались объемные сополимеры. Авторы проверили емкость устройства после 25 000 циклов заряда-разряда и обнаружили, что она составила треть от первоначальной. Если бы аккумулятор в телефоне был так же стабилен, его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет. Удельная емкость таких устройств варьировалась от 82 до 101 миллиампер-часа на грамм в зависимости от силы тока при заряде и разряде.
Кроме того, зарядить такие аккумуляторы ученые смогли всего за несколько секунд.
Таким образом, срок службы катода и самой батареи электрокара увеличивается. В будущем исследователи планируют экспериментировать с размером частиц в надежде добиться еще лучших результатов в сфере повышения энергоемкости батарей. Ранее «Газета. Ru» рассказывала о том, что компания XPeng представила в Дубае летающий «электрокар».
Ученые ЮФУ предложили метод получения катодного материала на основе фторида железа с использованием уникальных нанопористых веществ — метал-органических каркасных структур MIL-88. Сейчас исследования в области разработки новых, обладающих уникальными характеристиками, материалов для электрохимических систем становятся еще более актуальными в связи с лавинообразным началом замены бензиновых автомобильных двигателей на электрические, и повсеместным распространением электронных гаджетов. Александр Солдатов — научный руководитель направления ЮФУ, профессор МИИ ИМ ЮФУ Ученые Международного исследовательского института интеллектуальных материалов ЮФУ провели исследование, в ходе которого предложили новый, простой и масштабируемый метод производства конверсионного катодного материала на основе фторида железа. Благодаря конверсионной электрохимической реакции удается получить ту же величину емкости электрической энергии для значительно меньшей массы катодного материала. В отличие от ранее известных способов получения подобных материалов, разработанный в ЮФУ метод подразумевает, что один из компонентов для производства катода — металл-органический каркас MIL-88A фумарат железа — синтезируется в водной среде без каких-либо токсичных добавок, что говорит о минимальном вреде окружающей среде.
Аккумуляторы будущего
Выяснилось, что на межзёренных границах отрицательного электрода (на катоде) в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. «Сколтех» совместно с МГУ создал катод для натрий-ионных аккумуляторов на замену литию. Ученые из Университета Мэриленда и Военно-исследовательской лаборатории армии США разработали катод нового химического типа без переходного металла для литий-ионных. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод.
Новый эталон высокопроизводительных углеродных катодов в литий-кислородных батареях
Губернатор Андрей Травников во время выездного совещания на площадке АО «Катод» обсудил вопросы поддержки воинских подразделений, участвующих в СВО. Литий-ионная батарея заряжается и разряжается в процессе движения ионов лития между двумя электродами — анодом и катодом. Кроме того, использование связующих и несоответствие между катодом и электролитом также могут вызывать побочные реакции. В новых батареях ионы натрия заменяют ионы лития в катоде, а соли лития в электролите (жидкость, которая помогает переносить заряд между электродами батареи) заменяются.