Новости гольфстрим течение на карте мира

По последним спутниковым данным, Гольфстрим больше не существует. Как только Лабрадорское течение сравняется по плотности с Гольфстримом, оно перестанет «подныривать» под Гольфстрим, поднимется на поверхность океана и перекроет движение Гольфстрима на север. Двигаясь со скоростью примерно 2 м/с, Гольфстрим является одним из самых больших и быстрых течений в океане.

Гольфстрим может перестать существовать в 2025 году

Остановка течения Гольфстрим, являющегося частью более широкой системы течений, называемой Атлантической меридиональной опрокидывающей циркуляцией (AMOC) может перестроить всю климатическую систему. На карте мира маршрут Гольфстрима обозначается как сильное течение, проходящее вдоль побережья Северной Америки и приближающееся к Британским островам. Океанографы из института в Вудс-Хоуле (США) выявили изменения в крупном течении Гольфстрим. Гольфстри́м — тёплое морское течение в Атлантическом океане. В узком смысле Гольфстримом называют течение вдоль восточного побережья Северной Америки от. Образовавшееся Лабрадорское течение было значительно холоднее, чем Гольфстрим, и начало его потихонечку оттеснять», — отметил Фролов.

Остров Крым и замерзающая Европа: какие климатические изменения ждут человечество

Смотрите видео онлайн «Течение Гольфстрим поменяло свое направление. Предположения о том, что Гольфстрим — тёплое океаническое течение, поддерживающее мягкий климат Европы, — ослабевает, появились более десяти лет назад (см. Именно поэтому ученых так обеспокоила потенциальная остановка Гольфстрима — самого быстрого течения на планете.

Эксперты: Гольфстрим меняет направление,что нас ждет..

Об этом со ссылкой на данные нового научного исследования пишет газета The Guardian. Сообщается, что из-за глобального потепления АМОЦ находится в своем самом слабом состоянии за последние 1600 лет. При этом исследователи обнаружили признаки приближения к точке невозврата еще в 2021 году. Согласно проведенному анализу, решающие изменения могут произойти в промежутке с 2025 по 2095 годы. Причем, если мировые выбросы углерода не будут снижены, вероятнее всего катастрофа наступит к 2050 году.

А океанские течения уже останавливались. В последний раз это произошло 13 000 лет назад. Люди тогда еще не изучали климат. Теперь, все это повторяется снова. И это должно нас насторожить. Если все эти события повторятся сегодня, наша планета изменится до неузнаваемости. Как тающий лед может изменить мир? И почему океанские течения погружают нас в новый ледниковый период? Океанские течения определяют климат Земли. Они толкают горячие экваториальные воды к полюсам и возвращают холодные полярные воды к экватору. В северном полушарии эту работу выполняет Гольфстрим. Он несет теплую морскую воду от Мексиканского залива до восточных берегов США, затем через Атлантический океан, где он разделяется на два рукава — переход в Северную Европу и рециркуляция от Западной Африки. Гольфстрим является частью мирового океанического конвейера. Но какое отношение ко всему этому имеет лед?

Но есть еще одна вещь, которая определяет плотность воды — количество соли в ней. И вот тут-то в игру вступают ледяные шапки Антарктиды. Полярный лед состоит из пресной воды. По мере того как он тает, он добавляет больше пресной воды в мировой океан, делая воду в Северной Атлантике менее плотной. В какой-то момент холодная вода уже не сможет опуститься на дно. И конвейерная лента Мирового океана перестанет циркулировать. Это будет конец Гольфстрима и начало чего-то еще. Наступит новый ледниковый период. Мы можем нагревать планету год за годом, но климат не так прост, как кажется. Гольфстрим - это теплое течение. Именно поэтому зимы на западном побережье Европы такие мягкие. Он также сохраняет зимние температуры теплее, а летние - прохладнее на восточном побережье Флориды. Так что же произойдет, если этот теплоноситель будет отключен? Ну, тогда он перестанет приносить теплые воды в эти районы.

Глобальный поток тепла с океана на сушу в декабре и в январе достигает шести петаваттов что сопоставимо с максимумом меридионального переноса тепла. Более того, теплый океан , горные хребты и остывание заснеженной поверхности зимой приводят к более частому образованию на одних и тех же местах циклонов и антициклонов. Если их осреднить за зиму, то может показаться, что циклоны над Атлантикой и Тихим океаном Исландский и Алеутский минимумы и антициклоны над материками Канадский и Сибирский максимумы стоят на месте. В итоге воздух движется уже не строго с запада на восток, а приобретает меридиональную составляющую: к западным побережьям материков он приходит с юго-запада, со стороны теплого океана, а к восточным побережьям — с северо-востока, из центральных холодных районов материков. В начале этого века британский метеоролог Ричард Сигер и его коллеги задались вопросом: нужен ли Гольфстрим, чтобы в Европе была теплая погода? И попробовали проверить это при помощи идеализированных экспериментов, в которых выключали все течения в Атлантике. Выяснилось, что даже если океан «плоский», то есть не переносит тепло, то Европа все равно остается существенно теплее восточного побережья США. А критически важными для температурного режима Европы оказались конфигурация атмосферного переноса и обмен теплом и влагой между океаном и атмосферой. То есть в «отоплении» Европы океан выступает аккумулятором, который заряжается теплом Солнца за лето и отдает его зимой. А заслуги внутренних течений в этом аккумуляторе перед европейским климатом явно переоценены. Можно, конечно, сказать, что это всего лишь данные моделирований. А что говорят наблюдения? Ученые использовали метод обратных траекторий для исследования зимней погоды в четырех европейских городах — Дублине, Париже, Лиссабоне и Тулузе. Выяснилось, что турбулентные потоки тепла и влаги от океана действительно насыщают воздушные массы, проходящие над морской поверхностью. Однако погода в изучаемых городах в первую очередь реагировала не на температуру поверхности океана, а на температуру и влажность воздушных масс. Более того, в годы, когда западные ветра проходили над Гольфстримом и его продолжением, они не становились теплее и влажнее, чем обычно. В других работах было показано , что резкие границы температуры воды в районе Гольфстрима приводят к возникновению здесь же мощных восходящих движений воздуха конвекции , сильным осадкам и образованию высоких холодных облаков. Это в свою очередь запускает волнения в атмосфере, которые чувствуются в удаленных районах. Например, положение Гольфстрима влияет на интенсивность антициклонов над Гренландией: чем севернее путь течения, тем интенсивнее антициклоны. Также сдвиг Гольфстрима влияет на температуру в Баренцевом море. Но и это не может объяснить теплые европейские зимы. Более того, ряд работ 1 , 2 , 3 на основе сдвиговой корреляции показал, что положение Гольфстрима само находится в зависимости — от циркуляции воздуха в Северном полушарии. Впрочем, известно , что потоки между океаном и атмосферой на коротких временных интервалах до десяти лет регулируются изменениями в атмосфере, а вот на длинных — уже в океане. К тому же, если приглядеться к результатам моделирования Сигера и его коллег, можно увидеть, что на температуру севера Европы включение-выключение течений влияет существенно. То есть Норвегию и Мурманск Гольфстрим все же обогревает? Здесь важна общая циркуляция в Атлантике. Гольфстрим является лишь ее частью — самой видимой и наиболее известной, но не определяющей. Более того, связь Гольфстрима со своими продолжениями не так очевидна. Неудивительно, что наши знания об этом гиганте не полны. Некоторые процессы в океане известны зачастую лишь в общих чертах, практически каждый год то или иное явление уточняется. Первые наблюдения за океаном производились на морских судах — сначала как сопутствующие, с конца XIX века они стали уже специализированными про историю судовых наблюдений можно, например, почитать здесь. Сейчас наблюдательная система за океаном включает гораздо больше компонентов: помимо научных и коммерческих судов это мареографы, специализированные заякоренные и дрейфующие буи, глайдеры, трекеры на животных, высокочастотные радары, пассивное и активное спутниковое зондирование. Важны не только наблюдения, но и растущие мощности наших вычислительных машин, которые позволяют численно моделировать океан со все более высоким разрешением. Высокое разрешение для моделирования океана даже важнее, чем для работы с атмосферой. Тропические циклоны имеют характерное разрешение в несколько сотен километров, привычные нам циклоны до двух тысяч километров, а размеры вихрей в океане — лишь десятки километров, при этом они переносят существенную долю тепла в первую очередь вблизи экватора. Впрочем, сами по себе новые наблюдательные системы и возросшие вычислительные мощности к открытиям не приводят. Важнейшим звеном остаются ученые и их догадки. Так, на основе всего лишь одного измерения вертикального профиля температуры воды в Атлантике, произведенного в 1750 году капитаном работоргового судна и показавшего, что под слоем теплых поверхностных вод на глубине находятся гораздо более холодные водные массы, выросла идея глобальной циркуляции океана. Циркуляции, которая не ограничивается поверхностными течениями. Через полвека после этого граф Рамфорд предположил, что теплая вода от экватора по поверхности океана течет к полюсам, а холодная наоборот — течет в глубинах океана от полюсов в сторону экватора. Русский физик Эмиль Ленц развил эту идею в 1845 году, предположив, что теплая вода «опрокидывается» в районе полюсов, а холодная поднимается на поверхность в районе экватора — тем самым, по сути, впервые описав схему атлантической меридиональной опрокидывающей циркуляции АМОЦ. В начале XX века немецкий океанограф Бреннеке объединил АМОЦ и поверхностные течения в единую схему, в которой сохранялся подъем воды на экваторе. Следующий шаг был сделан в 1925—1927 годах после исследований немецких океанографов на судне «Метеор»: в схеме Георга Вюста пропадает подъем воды на экваторе, появляются различные уровни, где поток воды направлен на юг или на север. А в середине XX века американский океанограф Генри Стоммел показал, что опрокидывание теплой воды происходит в узких зонах, где она охлаждается и за счет активного испарения становится более соленой — поэтому тяжелеет и опускается вниз. Причем в схеме Стоммела вода к югу течет в узкой зоне на западе океана. И Вюст и Стоммел показали, что в Атлантике поток тепла направлен через экватор в Северное полушарие. В итоге температура воды на севере Атлантики выше, чем на севере Тихого океана. Но различается не только температура: на севере Атлантики выше соленость, а уровень воды наоборот, ниже, чем на севере Тихого океана — почти на метр! Эти отличия связаны с разностью в осадках и в меньшей степени с испарением : в силу атмосферной циркуляции и размеров океанов испаряющаяся над Тихим океаном влага по большей части над ним же и выпадает, а из Атлантики — переносится на материк. Все это независимо привело в начале 1980-х двух океанологов — американца Уоллеса Брокера и россиянина Сергея Сергеевича Лаппо — к одной и той же догадке: существует глобальная термохалинная циркуляция то есть определяемая разностями плотности вследствие разной температуры и солености , связывающая между собой все океаны. В 1982 году Брокер сравнил такую циркуляцию с лентой конвейера, а в 1987 году иллюстратор журнала Natural History Джо ле Моньер нарисовал ее каноническую схему. В 2001 году для третьего отчета IPCC на эту же схему были добавлены зоны формирования глубинных вод — ключевые зоны океанической конвекции, изменения в которых могут тормозить конвейер кстати, именно в этом отчете возможная остановка конвейера была оценена как маловероятное событие со значительными последствиями, но об этом чуть позже. Для сравнения, крупнейшая река в мире — Амазонка — переносит 0,2 свердрупа, а самое сильное течение в океане, Антарктическое циркумполярное, опоясывающее шестой континент — 130 свердрупов. Гольфстрим не так уж сильно ему уступает: он переносит от 85 до 105 свердрупов. То есть в пять раз больше, чем АМОЦ! Почему же для переноса тепла на север Атлантики важна именно последняя, а не Гольфстрим?

Течение Гольфстрим на карте мира

А колебания парниковых газов в атмосфере во время ледниковых эпох сама же АМОЦ и модулировала, запуская таким образом свои переходы от холодной к теплой фазам. Впрочем, все это относится к условиям ледниковых эпох, где уровень океана низок, континенты покрыты ледниками, а концентрация CO2 в атмосфере невысока. В современном климате остановка АМОЦ крайне маловероятна, хотя ослабление вполне возможно. Чем это может нам аукнуться на фоне глобального потепления?

Глобальное потепление vs. Модели предсказывают, что холодная аномалия в Северной Атлантике тот самый warming hole сохранится в ближайшие десятилетия — из-за ослабления конвекции в субполярном круговороте 9 моделей из 40 предсказывают достаточно резкое похолодание, остальные 31 более плавное. Повлияет ли это на климат Европы?

Для ответа на этот вопрос надо вычленить эффект ослабления АМОЦ на температуру воздуха. В 1988 году Манабе и Стоуфер показали, что в климатической модели океан-атмосфера могут формироваться два устойчивых состояния — с термохалинной циркуляцией в Атлантике и без неё в продолжении гипотезы Стоммела-Брокера. Без циркуляции на севере Атлантики становится холоднее на 7-9 градусов.

Это похолодание затрагивает и Европу. Поздние эксперименты 1, 2, 3 проверили степень похолодания для сценария заметно ослабленной но не остановленной АМОЦ. Оно составило 5—8 градусов Цельсия.

Разница среднегодовой приповерхностной температуры воздуха в экспериментах с выключенной сверху или ослабленной снизу АМОЦ и контрольным экспериментом Эти сценарии выглядят внушительно, но есть одно важное «но»: АМОЦ в этих экспериментах ослабляли, добавляя в модель поток пресной воды. А результаты экспериментов сравнивались с контрольными экспериментами, в которых парниковый эффект соответствовал доиндустриальному уровню. Но ведь сейчас концентрация СО2 в атмосфере растет!

Так что надо провести обратный эксперимент, что недавно и сделали ученые из США и Франции. Они взяли проекцию климата на XXI век с учетом антропогенного влияния, взяв самый агрессивный сценарий — Атлантика опреснялась, АМОЦ ослабевала на 30 процентов. И сравнили этот сценарий с ситуацией, в которой при потеплении АМОЦ не ослабевает для этого из модели убрали пресную воду из Северной Атлантики.

Что в результате? Ослабевание АМОЦ приводит к тому, что в Европе потепление из-за глобального изменения климата будет ощущаться не так сильно. Основной эффект «непотепления» будет проявляться к югу от Гренландии — в районе той самой warming hole.

Изменение среднегодовой приповерхностной температуры воздуха в XXI веке в 2061—2080 гг. Снизу показана разница между экспериментами Но ослабление АМОЦ, само по себе вызванное потеплением, не перевернет это потепление вспять. На похолодание в Европе рассчитывать не стоит, в XXI веке точно.

Не замерзнет и Мурманск. Более того, ряд новых данных говорит о том, что приток тепла в Арктику может только усиливаться. Недавно было обнаружено статистически значимое увеличение кинетической энергии океана с начала 1990 годов, приводящее к ускорению океанической циркуляции, причем и на больших глубинах.

Основная причина — усиление ветра в приземном слое и в меньшей степени изменение его направления , особенно в тропиках Южного полушария Тихого океана. Как повлияет это усиление на глобальный океанический конвейер и АМОЦ — пока непонятно. Изменение работы ветра на поверхности океана красная линия и глобальной кинетической энергии океана синяя линия Может помочь и атмосфера: ученые рассмотрели большой ансамбль современных моделей от максимума оледенения до учетверения СО2 и показали, что общий меридиональный поток тепла от экватора к полюсам меняется слабо разве что в максимуме оледенения он был на 4 процента больше , однако то, каким путем он идет — в атмосфере или в океане — существенно зависит от внешних условий.

Работает так называемая компенсация Бьеркнеса: в приближении слабых изменений радиационного баланса на верхней границе атмосферы климатическая система продолжит тем или иным путем доставлять тепло из перегретых тропиков к холодным полюсам, а значит, если ослабеет один поток в океане или в атмосфере , то усилится другой. Компенсация атмосферой ослабления потока в океане за счет АМОЦ была показана в ряде модельных работ 1, 2. Впрочем, при усилении парникового эффекта поток именно в Северный Ледовитый океан только усиливается.

Так, модельные эксперименты с различным содержанием парниковых газов от одной четвертой до учетверенной концентрации СО2 показывают, что перенос тепла океаном в Арктику увеличивается при росте концентрации CO2, в основном — через северо-восточные моря Атлантики. Ученые показали, что океанический перенос тепла усиливается в результате ветрового воздействия и переноса тепла поверхностными течениями и обычной теплопередачей, а вот АМОЦ отходит на второй план. Пожалуй, это можно сравнить с гидромассажной ванной: в одном случае ванна наполнена холодной водой и с боков бьют струи очень теплой воды, в другом — струи уже не такие теплые, но зато и вся остальная вода в ванной уже не такая холодная.

А теплее вода в этой ванной, то есть в мировом океане, становится из-за антропогенной деятельности. Человечество, увеличивая концентрацию парниковых газов в атмосфере, живет сейчас в эпоху разбаланса радиационных потоков на верхней границе атмосферы: приходит к нашей планете по-прежнему около 340 Ватт на квадратный метр, но вот уходит в космос уже около 339. В итоге в земной климатической системе копится избыточное тепло.

Причем, около 90 процентов избыточного тепла уходит в океан: каждый год сюда добавляется около 9 зеттаджоулей 1021 джоулей — это примерно в 15 раз больше, чем вся энергия, которую производит человечество за год. Результаты наблюдений и реанализов показывают, что океан становится все теплее. Тренды температуры воды в верхнем 2-километровом слое океанов в 1960—2019 гг.

Потепление и осолонение в верхнем километровом слое происходит в Северной Атлантике как минимум с середины XX века а вот на глубине вода становится более холодной и пресной, из-за усиления таяния льда Гренландии и морских льдов в Арктике. Палеоданные показывают, что температура поверхности океана в Северной Атлантике сейчас самая высокая за последние 3000 лет. Исключением является тот самый warming hole.

Но и с ним все в итоге не так просто. Реконструкция температуры поверхности Северной Атлантики с годовым разрешением черное , красным показано 30-летнее среднее, серым — диапазон неопределенности. Указаны также исторические периоды региональных и глобальных похолоданий и потеплений Например, в 2015 году похолодание в Северной Атлантике было вызвано в первую очередь атмосферными процессами, которые привели к аномальным потерям тепла океаном.

Свежее исследование европейских климатологов показало, что в формировании подобных холодных аномалий участвует сразу несколько игроков: это и охлаждающий эффект облаков, и ослабление притока тепла из низких широт как раз то самое ослабление АМОЦ , и, что самое важное, усиливающийся отток тепла из субполярного круговорота в полярные широты, в сторону Норвежского моря. Это усиление потока ученые достаточно уверенно атрибутировали к антропогенному усилению парникового эффекта. Кроме того, в 2018 году две независимые группы ученых показали 1, 2 , что существенным образом отличается климатический отклик на ослабление АМОЦ, которое вызвано внутренней изменчивостью и внешним воздействием усилением парникового эффекта.

В экспериментах без внешнего воздействия усиление АМОЦ хорошо коррелирует с притоком тепла в Арктику за счет конвергенции тепла, то есть за счет узких теплых струй и росту температуры в Северной Европе. А в экспериментах с антропогенным воздействием наблюдается одновременное ослабление АМОЦ и рост притока тепла в Арктику — за счет адвекции прогретых поверхностных вод, то есть за счет прогрева всей «ванной». Приток теплой воды в Арктику только растет — ученые говорят об усилении притока воды в Баренцево море на один свердруп.

Поступающая вода примерно на градус теплее, чем раньше. Происходит самая настоящая «атлантификация» Арктики. Температура воды на Кольском меридиане среднее для профиля 0-200 метров по меридиональному разрезу через Баренцево море Итак, замерзнет ли Европа?

Моделирование показывает, что сильные холодные аномалии в районе warming hole приводят к своеобразной фиксации положения струйных течений и блокирующих антициклонов. Таким образом над Европой наоборот, возникают аномально сильные волны жары. Именно о жарком лете, как о следствии замедления АМОЦ, говорит в своем интервью газете Zeit Штефан Рамсторф, чье свежее исследование всколыхнуло в феврале общественность.

Все три работы используют один подход: берут общие климатические модели с современным климатом и «разбавляют» воды Атлантики пресной водой от тающих льдов та, в модели, замедляет атлантические течения. А чтобы понять, насколько меняется от этого температура атмосферы в Европе, ее сравнивают с температурами в Европе в той же модели, но без добавления пресной воды. Есть нюанс: климатическая «контрольная группа», без «просто добавь пресной воды», рассчитывается для уровней СО2 около 280 частей на миллион. А в современном мире углекислого газа в воздухе в полтора раза больше. Но там получились совсем иные результаты: даже сильное замедление Атлантического меридионального опрокидывающего течения не ведет к похолоданию для европейцев. Они всего лишь начинают чувствовать глобальное потепление слабее — не более. Согласитесь, есть серьезная разница между превращением Москвы или Воронежа в тундру — как в работах с нереалистичным уровнем СО2 — и «просто слабее станет теплеть», как в работе с реалистичным уровнем СО2 в воздухе. Возникает нехорошее ощущение, что климатические модели работают подобно моделям в других отраслях науки: если в них что-то из исходных факторов заложили или учли не так, то на выходе получится нечто, не имеющее отношение к реальности. Но ведь речь идет о том, жить нам в тундре или все-таки нет. Нельзя ли ради такого важного случая как-то подстраховаться и надежно определить, вызовет ли остановка Гольфстрима тундризацию европейской России?

Что ж, такой метод есть. Не в первый раз Дело в том, что за последние миллионы лет глобальное потепление на Земле происходило не один раз, не десять, и даже не двадцать. Причем периодически теплело куда серьезнее, чем в обозримом будущем может дать антропогенное глобальное потепление. Два миллиона лет назад на крайнем севере Гренландии росли тополя и тому подобные леса, а в воде рядом с ними росли кораллы. И даже 120 тысяч лет назад средняя температура планеты была на градус выше современной. Следовательно, перспективы остановки Гольфстрима из-за потепления тогда были никак не ниже, чем сегодня, а точнее даже выше. В конце концов все, кто прогнозирует его остановку, списывают ее именно на глобальное потепление.

Североатлантический Гольфстрим и циркуляция теплого течения играют главную роль в образовании комфортного климата. В данном процессе важен регулярно дующий западный ветер, приносящий тепло с моря на территорию континентальной Европы. Неустойчивость В Северной Каролине, на крайней точке мысе Хаттерас холодное экваториальное течение встречается с теплым и это способствует образованию очень больших штормов. Сильное влияние на климатический фон полуострова Флорида может оказывать океаническое течение. Одной из важнейших составляющих струйного течения считается неустойчивость Гольфстрима около западного побережья, она напрямую связана с гидродинамическими причинами. Общеизвестно, что севернее мыса Гаттерас Гольфстрим теряет устойчивость. Здесь наблюдаются квазипериодические колебания с периодом 1,5-2 года, аналогичные колебаниям струйного течения в атмосфере, известными как цикл индекса. Гипотезы Течение Гольфстрим является важной составляющей для глобального изменения климатических условий планеты. Даже незначительное повышение температуры воды, буквально на 1 градус, сильно влияют на растения и животных. В результате этого может меняться поведение млекопитающих и рыбы, произойдет обесцвечивание кораллов и резко изменятся погодные условия вдоль всего побережья Гольфстрима.

Гольфстрим же — лишь малая часть этой системы. Это кусочек общей циркуляции океанов. Земля беспрерывно движется вокруг своей оси, а вода, следуя за ней, отстает, поэтому верхний слой океана дрейфует к Америке, и так рождается Гольфстрим, — рассказала эксперт. Чубаренко отметила, что изменения в движении Гольфстрима вызывают опасения, потому что они могут изменить климатические условия на планете. Благодаря этому в Европе сохраняется мягкий климат или, например, вся Скандинавия этим обогревается.

Гольфстрим может перестать существовать в 2025 году

Объединенные данные по ряду предыдущих исследований впервые позволили нарисовать последовательную картину эволюции течения Гольфстрим за последние 1600 лет. Новое исследование предполагает, что Гольфстрим может разрушиться уже в 2025 году. «В истории Гольфстрима довольно часто наблюдались аномалии как с температурой, так и со скоростью его течения. ГОЛЬФСТРИМ (англ. Gulf Stream, букв. – течение залива), одно из самых мощных тёплых течений Мирового ок. The Guardian: течения системы Гольфстрим могут исчезнуть уже в 2025 году и это приведет к катастрофе.

Что с Гольфстримом? Немного истории

The Guardian: течения системы Гольфстрим могут исчезнуть уже в 2025 году и это приведет к катастрофе. Жизненно важная система океанских течений, которая оказывает большое влияние на климат Северного полушария, может остановиться в любое время начиная с. Учёные отмечают, что AMOC — Атлантическая меридиональная обратимая циркуляция, которая включает в себя и Гольфстрим, — обеспечивает не только циркуляцию мирового океана, но и смягчает значительную часть климата. Как только Лабрадорское течение сравняется по плотности с Гольфстримом, оно перестанет «подныривать» под Гольфстрим, поднимется на поверхность океана и перекроет движение Гольфстрима на север. Остановка течения Гольфстрим, являющегося частью более широкой системы течений, называемой Атлантической меридиональной опрокидывающей циркуляцией (AMOC) может перестроить всю климатическую систему. Течение Гольфстрим – самый известный теплый поток воды на планете, который находится в Атлантическом океане.

Ученые снова предупреждают об опасности остановки Гольфстрима

Анализ основан на росте выбросов парниковых газов, как это было на сегодняшний день. Если выбросы действительно начнут снижаться, как это предусмотрено текущей климатической политикой, то у мира будет больше времени, чтобы попытаться удержать глобальную температуру ниже критической точки AMOC. Самая последняя оценка, проведенная Межправительственной группой экспертов по изменению климата, показала, что AMOC не разрушится в этом столетии. Но профессор Дитлевсен сказал, что используемые модели имеют грубое разрешение и не подходят для анализа задействованных нелинейных процессов, что может сделать их чрезмерно консервативными. Потенциальный крах AMOC интенсивно обсуждается учеными, которые ранее заявляли, что этого следует избегать «любой ценой». Профессор Дэвид Торналли из Университетского колледжа Лондона согласился с тем, что в исследовании были большие оговорки и неизвестные, и сказал, что необходимы дальнейшие исследования: «Но если статистика надежна и позволяет адекватно описать, как ведет себя реальный AMOC, то это очень тревожный результат». Доктор Левке Цезарь из Бременского университета, Германия, отмечает, что использование температуры поверхности моря в качестве косвенных данных о силе течений AMOC было ключевым источником неопределенности: «У нас есть только прямые данные наблюдений AMOC с 2004 года». По словам профессора Тима Лентона из Университета Эксетера, экстраполяция в новом анализе была разумной. Он сказал, что переломный момент может привести к частичному коллапсу AMOC, например, только в Лабрадорском море, но это все равно вызовет серьезные последствия.

Те, кто помнит новости прошлого года, добавят к этому: датчане еще оптимисты. Вот мнение российского ученого, ведущего научного сотрудника Пущинского федерального научного центра РАН Алексея Карнаухова: «Остановка Гольфстрима означает гибель цивилизации Европы. Ее северная часть покроется ледниками, южная превратится в тундру. Среднегодовые температуры там упадут на 10-20 градусов, континент станет непригодным для обитания, я не говорю уже о ведении сельского хозяйства… — Среднегодовая температура в Питере может упасть на 20-25 градусов [это ниже, чем сейчас на острове Врангеля].

Когда Гольфстрим останавливался в прошлом, а в истории человечества такое уже происходило, ледники доходили до широт Харькова и Запорожья». Чтобы понять, кто в этой истории прав, а кто нет, нам придется отправиться в прошлое даже глубже чем на год, для начала — на 20 лет назад. Миф Гольфстрима Первое, что нам надо усвоить, чтобы разобраться в теме: значительная часть того, что мы привыкли слышать о роли Гольфстрима в нашем климате а основная часть жителей России географически тоже живет в Европе — это неправда. Породил этот миф, вполне искренне и без злого умысла, американский военный моряк Мэтью-Фонтейн Мори , причем еще в середине XIX века.

По нему, вода, намного более теплоемкая чем воздух, движущаяся из тропических вод в холодные северные — и есть главная причина того, что зимы, весны и осени в Европе — теплые, а в аналогичных ей по широте районах Северной Америки или Азии — холодные. Здесь все выглядит очень логичным, но есть нюанс. Что же оказалось? Во-первых, выяснилось, что основная часть тепла, которое выделяет океан в районе Гольфстрима в холодное время года, вообще не берется им из тропических вод.

Напротив : это поглощенное им летом из атмосферного воздуха «местное» тепло. Гольфстрим в основном тепловой аккумулятор Европы, а вовсе не подводный трубопровод, согревающий ее теплом из тропиков. СМИ неизменно предупреждают, что это [остановка Гольфстрима] приведет к новому ледниковому периоду в Великобритании и Европе, показывают фотографии обледеневших берегов Лабрадора, снимают паромы, пробирающиеся через морской лед в Ла-Манше… И так цирк продолжается из года в год. Теперь мы знаем, что это миф, климатологический эквивалент городской легенды.

Ричард Зигер Во-вторых, стало понятно, что количество тепла, которое Гольфстрим все-таки реально переносит из тропиков в Европу, невелико на фоне того, что приходит в нее с ветрами.

Потенциальный крах AMOC интенсивно обсуждается учеными, которые ранее заявляли, что этого следует избегать «любой ценой». Профессор Дэвид Торналли из Университетского колледжа Лондона согласился с тем, что в исследовании были большие оговорки и неизвестные, и сказал, что необходимы дальнейшие исследования: «Но если статистика надежна и позволяет адекватно описать, как ведет себя реальный AMOC, то это очень тревожный результат». Доктор Левке Цезарь из Бременского университета, Германия, отмечает, что использование температуры поверхности моря в качестве косвенных данных о силе течений AMOC было ключевым источником неопределенности: «У нас есть только прямые данные наблюдений AMOC с 2004 года».

По словам профессора Тима Лентона из Университета Эксетера, экстраполяция в новом анализе была разумной. Он сказал, что переломный момент может привести к частичному коллапсу AMOC, например, только в Лабрадорском море, но это все равно вызовет серьезные последствия. Дитлевсен сказал, что надеется, что дискуссия подтолкнет к новым исследованиям: «Всегда плодотворно, когда вы не совсем согласны». Профессор Стефан Рамсторф из Потсдамского университета подчеркивает: «Все еще существует большая неопределенность в отношении того, где находится переломный момент AMOC, но новое исследование добавляет доказательств того, что он намного ближе, чем мы думали.

Теперь мы даже не можем исключить, что преодолеем переломный момент в ближайшие десятилетие или два».

Все вы знаете, что было такое теплое течение, проходящее через атлантический океан. Его слезы со словами «Мы все замерзнем» и побудили меня подробнее разобраться с произошедшим. Изображение Гольфстрима на тепловом снимке со спутника Так что же произошло? Изливалась она так 152 дня. Нефтяное пятно 24 мая 2010 года, вид из космоса За это время вылилось 5 миллионов баррелей 682 тысячи тонн.

Пожар на платформе длился 36 часов, после чего платформа затонула. Нефтяное пятно достигло площади 75 тысяч квадратных километров. Часть нефти была вынесена течением в океан. В США размер федерального штрафа зависит от размеров катастрофы. Администрация нынешнего президента США позволила использовать British Petroleum для уменьшения размеров штрафа диспергент корексит 9527, который в связи с токсичностью был позднее заменен на корексит 9500. Впервые он был использован в 1989 году для ликвидации последствий крушения танкера Exxon Valdez , ныне запрещен к применению в Англии и ряде стран Европы. Танкер Exxon Valdez Состав этого химиката держится в тайне, а мнения о его работе и токсичности расходятся от растворения до простого связывания и от нейтрального до жутко токсичного соответственно.

В итоге смешивание осадило огромные количества нефти на глубину, создавая шельфы. Это частично решило проблему побережья США. Собрать такое количество нефти работа трудоемкая, если не невыполнимая.

Похожие новости:

Оцените статью
Добавить комментарий