Собственные незатухающие колебания – это, скорее, теоретическое явление. Незатухающие колебания широко используются в различных областях науки и техники. Основным примером незатухающих колебаний являются механические колебания в форме маятников. Незатухающими колебаниями могут быть только те, которые совершаются под действием периодической внешней силы (вынужденные колебания).
Свободные незатухающие колебания
ударь по своему стоячему члену, вот пример колебаний которые затухают. Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение. Примерами незатухающих колебаний могут служить колебания маятника или звуковой волны, распространяющейся в открытом пространстве. Свободные незатухающие колебания или собственные характерны для идеальной системы, где отсутствует трение. Примеры незатухающих колебаний в реальной жизни Незатухающие колебания встречаются во множестве различных систем и ситуаций в реальной жизни.
Приведи пример вариантов незатухающих колебаний
Свободные колебания могут быть незатухающими только при отсутствии силы трения. Автоколебательные системы – это системы, в которых могут возникать незатухающие колебания безотносительно внешнего воздействия, а лишь за счет способности самостоятельно регулировать подвод энергии от внешнего источника. Приведи пример вариантов незатухающих колебаний Просмотров 43 Незатухающие колебания — это физический процесс, при котором система продолжает колебаться без потери энергии.
Математическое описание
- Урок 9: Гармонические, затухающие, вынужденные колебания. Резонанс (Колебошин С.В.)
- Свободные незатухающие колебания
- Свободные незатухающие колебания: понятие, описание, примеры
- Свободные незатухающие колебания
§ 27. Незатухающие электромагнитные колебания
- 3.1. Механические затухающие колебания
- Гармонические колебания и их характеристики.
- Основные понятия
- Свободные незатухающие колебания: понятие, описание, примеры
- Незатухающие колебания. Автоколебания
- Явление резонанса
Затухающие и незатухающие колебания: разница и сравнение
Затухание колебаний вызывается рассеянием запасенной энергии, то есть постепенным уменьшением амплитуды колебаний. В обычных случаях почти все колебания либо более, либо менее затухают по амплитуде, что делает обязательной компенсацию энергии. Читайте также: Пестициды против удобрений: разница и сравнение Что такое незатухающие колебания? Незатухающие колебания возникают, когда потери, возникающие в электрической системе, могут быть компенсированы, поэтому амплитуда колебаний, происходящих в это время, остается постоянной и неизменной. Проще говоря, его можно определить как незатухающие колебания, которые остаются неизменными во времени. Основным фактом незатухающих колебаний является отсутствие потерь мощности, если генератор издает такие колебания. В отличие от затухающих колебаний, если производимые колебания не затухают, потери мощности не будет, и, следовательно, не будет необходимости компенсировать энергию или любые потери, вызванные ею. В то время как в затухающих колебаниях большая часть энергии требует компенсации из-за потери мощности. Основные различия между затухающими и незатухающими колебаниями Основное различие между затухающими и незатухающими колебаниями состоит в том, что колебания, амплитуда которых с течением времени продолжает уменьшаться, являются затухающими колебаниями, а тип колебаний, амплитуда которых остается неизменной и постоянной во времени, — незатухающими колебаниями.
Кинетическая энергия:. Координата меняется по такому закону:. Скорость тоже изменяется по гармоническому закону:.
Подставим выражение для координаты и для скорости в формулы для энергий и получим закон, по которому изменяется со временем энергия потенциальная и кинетическая для пружинного маятника:. Для математического маятника формула для кинетической энергии будет идентичной, а для потенциальной, с математической точки зрения, тоже похожей, но перед значением косинуса будет стоять другой коэффициент. Так как квадрат величины всегда неотрицательная величина, то график см.
В каждый момент времени сумма кинетической и потенциальной энергии одинакова — выполняется закон сохранения энергии. В реальности энергия, конечно же, не сохраняется. Любая колебательная система тратит часть своей энергии на преодоление силы сопротивления, силы трения.
Энергия уменьшается, колебания на самом деле являются затухающими. В тех случаях, которые мы рассматриваем в 9 классе, этим затуханием можно пренебречь, но в реальной жизни это нужно учитывать. А каким же образом мы может заставить колебаться маятник гармонически?
Это можно сделать двумя способами. Вывести груз из положения равновесия и отпустить его. В этом случае график движения график x t будет иметь такой вид см.
График движения x t Второй вариант: заставить тело совершать гармонические колебания с помощью импульса например, толкнуть его. Вспомните, например, как вы раскачиваете качели: либо толкнуть их, либо вывести их из положения равновесия и отпустить. Естественно, можно вывести их из положения равновесия и сообщить некий импульс.
Превращения энергии при колебаниях. Затухающие колебания Свободные колебания могут совершаться за счет первоначального запаса энергии. Вернемся к предыдущим рассуждениям: в первом примере, который мы приводили, это была первоначальная энергия грузика, мы выводили его из положения равновесия, а потом отпускали.
А во втором случае этот первоначальный запас энергии — это кинетическая энергия в случае, когда мы толкали грузик. Согласно закону сохранения энергии в обоих случаях сумма кинетической и потенциальной энергий маятника должна оставаться неизменной с течением времени. То есть, какое бы промежуточное значение маятника мы бы ни рассмотрели, в любой из них эта сумма равна начальной энергии маятника см.
Иллюстрация закона сохранения энергии Однако на самом деле мы понимаем, что маятников, которые могли бы совершать колебания довольно долго, не существует — это какая-то абстракция. Учтём, что система маятников незамкнутая, то есть в системе присутствует сила трения. В реальных условиях мы можем взять тяжелый груз, подвесить его на очень длинную и легкую нить или проволоку, закрепить один конец на опоре и получить систему, близкую по своим свойствам к математическому маятнику.
Однако нельзя сказать, что механическая энергия такого маятника будет сохраняться — мы прекрасно знаем, что рано или поздно он остановится. В чем же наша недоработка?
Порывы ветра отклоняли мост в одну сторону, создавая колебания, которые не могло погасить сопротивление воздуха, и из-за упругости конструкции движение по ветру начиналось вновь и вновь. В конечном итоге амплитуда движения стала настолько большой, что мост не выдержал и рухнул.
Механический резонанс очень часто возникает во время строительства, когда частота колебаний частей объекта совпадает с частотой внешних сил ветра, рабочих инструментов , поэтому инженеры и строители бдительно следят за этими показателями. Амплитуда достигает максимального значения на определённой частоте, когда индуктивная и ёмкостная составляющие системы уравновешены, и энергии могут свободно циркулировать между магнитным полем катушки и электрическим полем конденсатора. Магнитное поле индуктивного элемента порождает электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в катушке. Этот процесс способен повторяться многократно.
Более подробно об этих явлениях вы можете прочитать в нашей статье «Колебательный контур». Условие возникновения резонанса в электрической цепи можно выразить формулой где — индуктивность катушки, — ёмкость конденсатора. Различают резонанс токов при параллельном соединении катушки и конденсатора и резонанс напряжений при последовательном соединении элементов. На принципах электрического резонанса функционируют такие приборы, как электрические резонансные трансформаторы, катушка Теслы и многие современные электронные устройства.
Учитывая, что , запишем второй закон Ньютона в виде:. В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:. Это линейное дифференциальное уравнение второго порядка. Уравнение затухающих колебаний есть решение такого дифференциального уравнения:. В приложении 1 показано получение решения дифференциального уравнения затухающих колебаний методом замены переменных. Частота затухающих колебаний: физический смысл имеет только вещественный корень, поэтому.
Период затухающих колебаний:. Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее:. Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении. Для механической системы пружинного маятника имеем: , , для пружинного маятника.
Механические колебания | теория по физике 🧲 колебания и волны
§ 30. Незатухающие колебания. Автоколебательные системы | Примеры незатухающих колебаний в природе 1. Плазменные колебания: В плазме, которая является четвертым состоянием вещества, происходят незатухающие колебания. |
Свободные незатухающие колебания: понятие, описание, примеры | Приведи пример вариантов незатухающих колебаний Просмотров 43 Незатухающие колебания — это физический процесс, при котором система продолжает колебаться без потери энергии. |
Вынужденные колебания. Резонанс. Автоколебания | Собственные незатухающие колебания – это, скорее, теоретическое явление. |
Гармонические колебания и их характеристики. | Незатухающими колебаниями называют гармонические колебания с постоянной амплитудой. |
Затухающие и незатухающие колебания: разница и сравнение | Примером незатухающих колебаний может служить колебание маятника с нулевым затуханием. |
Затухающие и незатухающие колебания: разница и сравнение
Характеристика затухающих колебаний, какие колебания называют затухающими | Это такие колебания при которых они исчезают, поскольку энергия колебаний преобразуется в другие формы энергии. |
§ 30. Незатухающие колебания. Автоколебательные системы | Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. |
Незатухающие колебания. Автоколебания | Основы физики сжато и понятно | Дзен | Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. |
Свободные незатухающие колебания | Главная» Новости» Незатухающие колебания это как примеры. |
Явление резонанса
В идеальных условиях, без учета потери энергии на трении и сопротивлении, колебания будут незатухающими. Еще одним примером незатухающих колебаний являются электромагнитные колебания. Электромагнитное поле может колебаться вокруг своего равновесного состояния, как, например, в случае электромагнитных волн. Электромагнитные волны могут быть представлены, например, световыми волнами, радиоволнами или микроволнами. В идеальных условиях, без учета потери энергии на поглощение или рассеяние, электромагнитные колебания будут незатухающими. Незатухающие колебательные процессы имеют множество практических применений. Например, в часах и механических часовых механизмах используются незатухающие колебания для точного измерения времени. Также незатухающие колебания находят применение в музыкальных инструментах, оптических приборах, электронных устройствах и многих других системах.
Акустический резонанс С исследования именно этого вида резонанса всё и началось! Галилео Галилей в 1602 году исследовал маятники и струны различных музыкальных инструментов. Открытия, сделанные им, позволили сделать ряд выводов и создать новую отрасль физики — учение о звуковых колебаниях.
Акустический резонанс — это явление, при котором акустическая система усиливает звуковые волны, частота которых совпадает с одной из ее собственных частот вибрации ее резонансными частотами. Благодаря акустическому резонансу музыкальные инструменты способны работать, воспроизводить звучание особенным образом. Большую роль в этом играет форма инструмента.
Звук, который издает струна, попадает внутрь корпуса и вступает там в резонанс со стенками, что в итоге многократно усиливает его. Грушевидная форма гитары, определенная длина флейты, форма барабана не являются результатом случайного выбора — с древних времен, путем проб и экспериментов, именно это строение каждого инструмента было выбрано из-за наилучшего акустического резонанса. Характеристики струны также влияют на этот показатель: акустический резонанс зависит от длины, массы и силы натяжения струны.
Формула для расчета частоты резонанса в акустике: где — сила натяжения, — масса единицы длины струны, а m — полная масса струны.
На рис. Груз висит на пружине, нижний конец которой погружается при колебаниях этого пружинного маятника в чашечку со ртутью. Один полюс батареи присоединен к пружине наверху, а другой — к чашечке со ртутью. При опускании груза электрическая цепь замыкается и по пружине проходит ток. Витки пружины благодаря магнитному полю тока начинают при этом притягиваться друг к другу, пружина сжимается, и груз получает толчок кверху. Тогда контакт разрывается, витки перестают стягиваться, груз опять опускается вниз, и весь процесс повторяется снова.
Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдает порцию энергии, часть которой идет на подъем груза. Система сама управляет действующей на нее силой и регулирует поступление энергии из источника — батареи. Колебания не затухают именно потому, что за каждый период от батареи отбирается как раз столько энергии, сколько расходуется за то же время на трение и другие потери. Что же касается периода этих незатухающих колебаний, то он практически совпадает с периодом собственных колебаний груза на пружине, т. Автоколебания груза на пружине Подобным же образом возникают незатухающие колебания молоточка в электрическом звонке, с той лишь разницей, что в нем периодические толчки создаются отдельным электромагнитом, притягивающим якорек, укрепленный на молоточке. Аналогичным путем можно получить автоколебания со звуковыми частотами, например возбудить незатухающие колебания камертона рис.
Это напряжение регулирует энергию, подводится от источника к колебательному контуру. В отрицательный полупериод когда на сетке отрицательный потенциал на катоде - положительный лампа «заперта» и источник тока не работает. Напротив, в положительную полупериод когда на сетке положительный потенциал, на катоде - отрицательный источник Ба создает анодный ток, пополняя энергию колебательного контура, которая расходуется на теплоту и электромагнитное излучение. Благодаря этому в контуре существуют незатухающие колебания. Полупроводниковые генераторы электрических колебаний Кроме генераторов на электронных лампах широко используют полупроводниковые генераторы электрических колебаний - на транзисторах. По структуре они аналогичны рис.
Мы привели схему генераторов электрических колебаний с трансформаторной обратной связью колебательного контура с лампой или транзистором.
Ликбез: почему периодические колебания затухают
Физически это означает, что в контур надо подкачать дополнительную энергию, т. Как же это сделать, не разрывая цепь? Проще всего воспользоваться магнитным полем — создать дополнительный магнитный поток, пронизывающий витки катушки контура. Для этого неподалеку от этой катушки нужно разместить еще одну катушку рис. Вся эта длинная фраза, напоминающая «дом, который построил Джек»,— просто пересказ известного вам закона Фарадея для явления электромагнитной индукции. Понятно, что для него необходим источник энергии для пополнения потерь энергии в контуре и регулирующее устройство, обеспечивающее нужный закон изменения тока со временем. В качестве источника можно использовать обычную батарейку, а в качестве регулирующего устройства — электронную лампу или транзистор. Любой полевой транзистор содержит «канал» с двумя выводами — их изобретательно называют истоком и стоком, а его проводимость регулируется подачей на третий вывод — затвор — управляющего напряжения рис. В полевом транзисторе с управляющим p—n-переходом — а мы дальше будем говорить именно о нем — затвор отделен от канала именно таким переходом, для чего область затвора делается противоположного по отношению к каналу типа проводимости.
Например, если канал имеет примесную проводимость типа p, то затвор — типа n, и наоборот. Зависимость эта почти такая же, как и у электронной лампы триода.
Так, частоты генераторов могут лежать в диапазоне от нескольких десятков герц низкие ноты в электрооргане до сотен мегагерц телевидение и даже до нескольких гигагерц спутниковое телевидение, радиолокаторы, используемые сотрудниками ГАИ для определения скорости автомобиля. Мощность, которую может отдать генератор потребителю, составляет от нескольких микроватт генератор в наручных часах до десятков ватт генератор телевизионной развертки , а в некоторых специальных случаях мощность может быть такой, что и писать нет смысла — все равно вы не поверите. Форма колебаний возможна как самая простая — синусоидальная гетеродин радиоприемника или прямоугольная таймер компьютера , так и весьма сложная — «имитирующая» звучание музыкальных инструментов музыкальные синтезаторы. Конечно, мы не будем рассматривать все это разнообразие, а ограничимся совсем простым примером — маломощным генератором синусоидального напряжения умеренной частоты сотни килогерц. Уравнение процесса легко получить, приравняв с учетом знаков напряжения на конденсаторе и на катушке — ведь они включены параллельно рис. Решение этого уравнения хорошо известно — это гармонические колебания.
Пусть, для определенности, вся неидеальность контура связана с тем, что у катушки, точнее — у провода, из которого она намотана, есть активное омическое сопротивление r рис. На самом деле, конечно, потери энергии есть и у конденсатора хотя на не очень высоких частотах сделать очень хороший конденсатор можно без особого труда. Да и потребитель отнимает у контура энергию, что также способствует затуханию колебаний. Одним словом, будем считать, что r — это эквивалентная величина, отвечающая за все потери энергии в контуре. Тогда уравнение.
В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания например, маятник настенных часов.
Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. Рисунок 2. Функциональная схема автоколебательной системы Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом рис. Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей.
Амплитуда зависит от времени. Частота и период зависят от степени затухания колебаний. Основные параметры: 1.
Скоростью затухания колебаний принято называть величину, которая прямо пропорциональна силе затухания колебаний.
Явление резонанса
Свободные незатухающие колебания: понятие, описание, примеры | Это такие колебания при которых они исчезают, поскольку энергия колебаний преобразуется в другие формы энергии. |
Характеристика затухающих колебаний, какие колебания называют затухающими | Затухающие колебания — это колебания, амплитуда которых со временем уменьшается из-за внешней силы или трения, в то время как незатухающие колебания продолжаются неопределенно долго с постоянной амплитудой. |
Характеристика затухающих колебаний, какие колебания называют затухающими
Свободные или собственные колебания - это колебание, происходящие под действием возвращающей силы. Если в системе отсутствуют силы трения, колебания продолжаются бесконечно долго с постоянной амплитудой и называются собственными незатухающими колебаниями. Пружинный маятник - материальная точка массой m, подвешенная на абсолютно упругой невесомой пружине и совершающая колебания под действием упругой силы.
А в последующем система может вести себя по-разному: как сразу вернуться в состояние равновесия, так и совершать определенное количество колебательных движений. Описанные виды колебаний носят название вынужденных и свободных. Первые совершаются под влиянием внешней силы, а вторые — под влиянием внутренних сил.
Под затуханием свободных колебаний принято понимать плавное снижение амплитуды колебаний с течением времени. Главная причина состоит в потере энергии колебательной системой. Условия возникновения свободных колебаний Чтобы возникли свободные колебания, необходимо вывести систему из равновесия, обеспечить при отклонениях действие силы, стремящейся вернуть систему в исходное состояние. При этом потери в системе должны быть минимальны, поскольку только при соблюдении этого условия возвращающая систему в состояние равновесия энергия будет теряться медленно. Свободные колебания — это раскачивающийся маятник, часовой балансир, скачущий мяч, звенящая струна.
Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее:. Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении. Для механической системы пружинного маятника имеем: , , для пружинного маятника. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить. При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.
Графики зависимости смещения от времени и амплитуды от времени представлены на Рисунках 3. Рисунок 3. Электромагнитные затухающие колебания Электромагнитные затухающие колебания возникают в электромагнитной колебательной систему, называемой LCR — контур Рисунок 3. Дифференциальное уравнение получим с помощью второго закона Кирхгофа для замкнутого LCR — контура: сумма падений напряжения на активном сопротивлении R и конденсаторе С равна ЭДС индукции, развиваемой в цепи контура: Падение напряжения: , где I — сила тока в контуре; - на конденсаторе С : , где q — величина заряда на одной из обкладок конденсатора. ЭДС, развиваемая в контуре — это ЭДС индукции, возникающая в катушке индуктивности при изменении тока в ней, а следовательно, и магнитного потока сквозь ее сечение: закон Фарадея.
Для этого неподалеку от этой катушки нужно разместить еще одну катушку рис.
Вся эта длинная фраза, напоминающая «дом, который построил Джек»,— просто пересказ известного вам закона Фарадея для явления электромагнитной индукции. Понятно, что для него необходим источник энергии для пополнения потерь энергии в контуре и регулирующее устройство, обеспечивающее нужный закон изменения тока со временем. В качестве источника можно использовать обычную батарейку, а в качестве регулирующего устройства — электронную лампу или транзистор. Любой полевой транзистор содержит «канал» с двумя выводами — их изобретательно называют истоком и стоком, а его проводимость регулируется подачей на третий вывод — затвор — управляющего напряжения рис. В полевом транзисторе с управляющим p—n-переходом — а мы дальше будем говорить именно о нем — затвор отделен от канала именно таким переходом, для чего область затвора делается противоположного по отношению к каналу типа проводимости. Например, если канал имеет примесную проводимость типа p, то затвор — типа n, и наоборот.
Зависимость эта почти такая же, как и у электронной лампы триода. Важно отметить, что управляющее напряжение — запирающее, а значит, ток в цепи управления чрезвычайно мал обычно он составляет несколько наноампер , соответственно мала и мощность управления, что очень хорошо. Для генератора существенны и отклонения от линейности, но об этом позже. Одним словом, дополнительная ЭДС должна быть такой, чтобы скомпенсировать потери энергии в контуре.
Гармонические колебания и их характеристики.
Примеры незатухающих колебаний в природе 1. Плазменные колебания: В плазме, которая является четвертым состоянием вещества, происходят незатухающие колебания. Свободные колебания могут быть незатухающими только при отсутствии силы трения. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Примеры незатухающих колебаний Незатухающие колебания встречаются в различных системах и процессах.
Гармонические колебания и их характеристики.
Знак «-» указывает, что сила упругости всегда направлена в сторону, противоположную направлению смещения, то есть к положению равновесия. При отсутствии трения упругая сила 1. Эту частоту называют собственной. Таким образом, свободные колебания при отсутствии трения являются гармоническими, если при отклонении от положения равновесия возникает упругая сила 1. Собственная круговая частота является основной характеристикой свободных гармонических колебаний. Эта величина зависит только от свойств колебательной системы в рассматриваемом случае - от массы тела и жесткости пружины. Амплитуда свободных колебаний определяется свойствами колебательной системы m, k и энергией, сообщенной ей в начальный момент времени. При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники теория этих вопросов не рассматривается рис.
В системе присутствуют различные виды трения Силы трения могут быть внутренними например, в подвесе маятника , а могут быть и внешними например, со стороны окружающего воздуха или другой среды, в которой может находиться маятник. Естественно, что силы трения зависят от свойств среды: в воде колебания будут затухать быстрее, чем в воздухе см. Затухание в воздухе и воде В итоге амплитуда колебаний будет постепенно уменьшаться, и в конце маятник остановится. На рисунке представлены смещения груза маятника от времени: видно, что амплитуда постепенно уменьшается, стремясь к нулю, такие колебания называются затухающими см. Затухающие колебания — это колебания, которые происходят в незамкнутой системе, то есть колебания, которые происходят в том числе под действием силы трения. Амплитуда таких колебаний постепенно затухает. Большинство колебаний в мире — затухающие, так как в окружающем нас мире, постоянно существуют силы трения. Итак, мы выяснили: в реальности колебания маятников механических систем затухающие, то есть их амплитуда постепенно уменьшается, стремясь к нулю. Что же нам сделать, чтоб колебания не были такими, чтоб амплитуда постоянно поддерживала свое значение? Для этого нам необходимо разомкнуть систему и подкачивать энергию извне. Таким образом, мы добьемся незатухающих колебаний. Как же разомкнуть систему? Вспомним простой пример из жизни: катание на качелях. Для того чтобы качели колебались без остановки, человек периодически толкает их, а если перевести это на язык физики, то человек действует на качели с силой, величина которой зависит от времени периодическим образом. Если построить график зависимости модуля силы от времени, то получим следующий результат: сила зависит от времени периодически см. Зависимость силы от времени Мы прекрасно понимаем, что если мы будем воздействовать на качели постоянно, то они не будут колебаться. Колебания системы, совершающие ею под действием внешней периодической силы, называются вынужденными. Силу, являющейся мерой этого внешнего воздействия, называют вынуждающей. При этом, как вы понимаете, мы уже не можем считать систему замкнутой, то есть в системе уже не совершаются свободные колебания — в системе совершаются вынужденные колебания. Примерами систем, в которых совершаются вынужденные колебания, могут быть также в полнее привычные вам часы — это могут быть настенные маятниковые часы, а могут быть и обычные пружинные механические часы. В каждом таком случае колебания совершаются за счет подвода энергии извне. Вынужденные колебания Самым простым видом колебаний являются свободные незатухающие колебания. О них подробнее мы говорили на предыдущих занятиях. Давайте поговорим о некоторых характерных особенностях затухающих колебаний и вынужденных колебаний. Начнем с затухающих колебаний. Как вы уже знаете, любая реальная колебательная система — затухающая, ведь нам всегда приходится преодолевать силу трения или силу сопротивления. Если мы говорим об электромагнитных колебаниях, то там тоже есть факторы, вызывающие их затухания, — это сопротивление проводников. Итак, как же выглядят затухающие колебания? Если вывести маятник из положения равновесия, то со временем его колебания затухают, здесь два основных фактора: сопротивление воздуха, а также трение в подвесе.
Тогда контакт разрывается, витки перестают стягиваться, груз опять опускается вниз, и весь процесс повторяется снова. Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдает порцию энергии, часть которой идет на подъем груза. Система сама управляет действующей на нее силой и регулирует поступление энергии из источника — батареи. Колебания не затухают именно потому, что за каждый период от батареи отбирается как раз столько энергии, сколько расходуется за то же время на трение и другие потери. Что же касается периода этих незатухающих колебаний, то он практически совпадает с периодом собственных колебаний груза на пружине, т. Автоколебания груза на пружине Подобным же образом возникают незатухающие колебания молоточка в электрическом звонке, с той лишь разницей, что в нем периодические толчки создаются отдельным электромагнитом, притягивающим якорек, укрепленный на молоточке. Аналогичным путем можно получить автоколебания со звуковыми частотами, например возбудить незатухающие колебания камертона рис. Когда ножки камертона расходятся, замыкается контакт 1; через обмотку электромагнита 2 проходит ток, и электромагнит стягивает ножки камертона. Контакт при этом размыкается, и далее следует повторение всего цикла. Автоколебания камертона Чрезвычайно существенна для возникновения колебаний разность фаз между колебанием и силой, которую оно регулирует. Перенесем контакт 1 с внешней стороны ножки камертона на внутреннюю. Замыкание происходит теперь не при расхождении, а при сближении ножек, т.
На рисунке 1. Период колебаний физического маятника описывается формулой где J - момент инерции тела относительно оси, m - масса, h - расстояние между центром тяжести точка С и осью подвеса точка О. Момент инерции - это величина, зависящая от массы тела, его размеров и положения относительно оси вращения. Вычисляется момент инерции по специальным формулам. Гармонические колебания и их характеристики. Колебаниями называются процессы, которые характеризуются определенной повторяемостью во времени, то есть колебания - периодические изменения какой-либо величины. В зависимости от физической природы различают механические и электромагнитные колебания. В зависимости от характера воздействия на колеблющуюся систему различают свободные или собственные колебания, вынужденные колебания, автоколебания и параметрические колебания.