Гелий-3 заносился на Луну солнечным ветром миллиарды лет и считается самым перспективным источником дешевой энергии благодаря способности вступать в термоядерную реакцию с дейтерием.
Российские ученые обнаружили на Луне почти 1,5 млн тонн гелия-3, которого нет на Земле
эта добыча природных ископаемых на Луне может решить энергетический кризис, обеспечив человечество энергией на 10 000 лет впере. После объявлений Changesite-(Y) и гелия-3 Китайское национальное космическое управление объявило о полном государственном одобрении следующих трех лунных миссий фазы 4. Запасы гелия-3 на Луне исследователи оценили в около 1,3 млн тонн.
» Сокровище Луны – гелий-3
Европейские ученые объявили о планах начать добычу гелия-3 на Луне уже в 2025 году. пишет Times, со ссылкой на китайского ученого. Что касается доставки гелия-3 на Землю, то в этом могут помочь SpaceX или Blue Origin, которую ранее возглавлял Мейерсон. Однако появление гелия-3 на этой шахматной доске открывает нам наводящую на размышления и странную картину: Луна может стать Персидским заливом этого столетия. Согласно э.в. википедии на Луне запасы указанного изотопа восполняются за счёт облучения солнечным ветром, который земная атмосфера не пропускает, поэтому на Земле его гораздо меньше. При этом общие запасы гелия-3 на Луне составляют около 1,3 млн тонн, а гелия-4 — 3,6 млрд тонн.
Что такое гелий-3 и где его искать
- Навигация по записям
- Космонавтика
- Ответы : ..ваше мнение.. . зачем инопланетянам понадобился Гелий-3 на Луне?
- Почему невозможна колонизация Луны и добыча там гелия-3
- Changesite, Helium-3 и будущие разработки
Российские учёные оценили запасы изотопов гелия на Луне
- Китай будет добывать гелий-3 на Луне
- Гелий-3: новый источник энергии для космических путешествий
- Китай проанализировал количество гелия-3 на Луне
- Редкий изотоп: как Росатом создаёт Гелий-3 из жидкого гелия
СМИ: Россия планирует добывать полезные ископаемые на Луне
Ресурс, на который она нацелена, гелий-3, может использоваться на Земле для таких приложений, как квантовые вычисления, медицинская визуализация и, возможно, когда-нибудь в будущем в качестве топлива для термоядерных реакторов. Гелий-3 переносится на Луну солнечным ветром и, как полагают, остается на поверхности, застряв в грунте, тогда как при достижении Земли он блокируется магнитосферой. Interlune стремится выкапывать огромные количества лунного грунта или реголита , обрабатывать его и извлекать гелий-3, который затем будет отправлять обратно на Землю.
Один литр изотопа оценивается в несколько тысяч долларов. Мейерсон утверждает, что в ближайшем будущем появится значительный спрос на гелий-3 в индустрии сверхпроводящих квантовых компьютеров и в медицинской визуализации. В более долгосрочной перспективе существует потенциал для эксплуатации термоядерного реактора с гелием-3 в качестве топлива. Однако в научном сообществе существуют серьёзные сомнения по поводу жизнеспособности этого подхода. По словам Мейерсона, одна из причин того, что использование гелия-3 в коммерческих целях не получило широкого распространения, заключается в его недоступности в коммерческих объёмах. Стабильные поставки изотопа будут стимулировать новые бизнес-планы и разработки.
Компания планирует в 2026 году получить образцы лунного реголита, измерить содержание в нём гелия-3, и освоить извлечение изотопа из лунного грунта. Эта миссия, скорее всего, будет выполняться в рамках одной из программ NASA по предоставлению коммерческих лунных услуг. Транспортировкой гелия-3 могут заняться SpaceX или бывшая компания Мейерсона Blue Origin, которая разрабатывает многоразовые лунные посадочные модули и системы транспортировки между лунной орбитой и Землёй.
Таким образом, выбор стоит между получением солнечного или реликтового изотопов гелия-3. Однако то, что планеты гиганты способны удержать реликтовый гелий, делает задачу его добычи там проблематичной из-за высоких космических скоростей, к тому же очень велико еще и расстояние от них до Земли. Вторая космическая скорость для Юпитера, Сатурна, Урана и Нептуна — соответственно: 60. Время полета по гомановским траекториям в годах : 2. Левантовский Учитывая, что минимальное требование для подобных проектов — это ГфЯРД уместнее рассматривать время полета по параболическим траекториям.
Поэтому после создания необходимого производства расходы на добычу и эксплуатацию соответствующей инфраструктуры должны быть умеренными. По расчетам американского астронавта Харрисона Шмитта, по профессии геолога, побывавшего в 1972 г. По мнению Шмитта, предварительные расходы на стадии исследований их, очевидно, должно взять на себя государство составят около 15 млрд. Затем ранее небывалый энергетический проект станет привлекательным для частных инвестиций, поскольку перейдет в разряд прибыльных. При переработке грунта и десорбции гелия выделяться будет не только последний, но в еще больших объемах другие элементы, в том числе водород и углерод. Нетрудно также наладить получение кислорода из силикатов. Это значит, что непосредственно на Луне можно организовать синтез топлива и окислителя для ракет-носителей. Лунный грунт богат титаном. Выплавка его позволит изготовлять тяжелые фрагменты конструкции и корпусов ракет прямо на Луне. С Земли придется доставлять только высокотехнологичные элементы. Необходимую для жизнедеятельности людей и некоторых технологических процессов воду также можно получать на Луне. Упомянутый Х. Шмитт описал спроектированный в США комбайн, предназначенный для извлечения 3He и других летучих компонентов из поверхностного слоя лунного фунта. Развертывание постоянных баз на спутнике откроет возможность использовать пребывание человека не только для добычи гелия-3, но и для иных целей. Луна - самый экономичный космодром, который сделает доступным крупномасштабное исследование Солнечной системы. Там могут и должны быть развернуты системы контроля астероидной опасности, мониторинга и раннего предупреждения катастрофических явлений и событий на Земле, изучения дальнего космоса и многое другое, что сейчас даже трудно предвидеть. Повторю: прежде всего нужно осознать, что нехватка энергии в ближайшие десятилетия - реальная проблема для всех землян, от которой не спрятаться, не уйти. Во-вторых, очевидно: единственным тотальным и долговременным ее решением, одновременно удовлетворяющим условиям энергетической эффективности и экологической безопасности, является термоядерный синтез на базе использования 3He. В-третьих, освоение нового источника энергии - не очередной проект, реализуемый как бы между делом. Речь идет о гигантской промышленной революции, полное осуществление которой может занять целое столетие. Одновременно в нашем мышлении поэтический образ далекой Луны должен смениться представлением о ней как об объекте практической экономики. Словом, после великих географических открытий прошлых веков наш спутник станет следующим объектом приложения изыскательского духа, свойственного человечеству. По последствиям для развития цивилизации его освоение будет аналогично освоению новых континентов на Земле. Луна и есть новый континент, отделенный от нас океаном космического пространства, который сегодня, однако, легче пересечь, чем Атлантику во времена Христофора Колумба. Однако несмотря на все рассмотренные перспективы, приходится возвращаться к факту: пока мы еще очень далеки от их реализации. Когда можно ожидать построения установок термоядерного синтеза на основе 3He? По данным американских источников, возможно, через 15 - 20 лет, если на этом будут сфокусированы усилия общества и соответствующие инвестиции. Вероятно, решение нужно искать на пути синтеза с инерционным удержанием плазмы, а не с магнитным, которое используют в токамаках и заложено в основу проекта ИТЭР. Как уже упоминалось, в июне нынешнего года гостем нашего института был профессор Джералд Калсински - один из пионеров в исследовании проблемы термоядерного синтеза на 3He. На семинаре с участием российских экспертов ученый рассказал о состоянии исследований этой проблемы в США, в частности, об экспериментах на установках с инерционным электростатическим синтезом или инерционным электростатическим удержанием плазмы. Суть процесса состоит в том, что между двумя концентрическими сферическими сетками прилагается сверхвысокое напряжение порядка 100 кВ. Под действием разности потенциалов ионы устремляются от периферии к центру и сталкиваются с энергией, достаточной для возбуждения термоядерной реакции. Построены опытные установки нескольких типов. Выход термоядерной энергии при этом еще очень мал по сравнению с подводимой для зажигания. В случае описанных Калсински экспериментов Q составляет пока ничтожную величину порядка 10-5. Правда, как считает исследователь, нет фундаментальных трудностей для решения проблемы. Они в основном носят инженерный характер, причем разрешение их в рамках последовательных проектов вплоть до построения реактора, дающего полезную энергию, потребует не столь значительных средств. Речь идет о 10 - 15 годах и 6 - 8 млрд. А в проекте ИТЭР предполагают получить уже полезный выход энергии. Ведь реактор типа токамак в рамках ИТЭР представляет собой весьма массивное сооружение, а выделяющийся поток нейтронов довольно быстро приведет к разрушению материалов, образующих внутреннюю часть конструкции. При эксплуатации возникнет не только необходимость захоронения радиоактивных отходов, но и проведения громоздких, дорогостоящих и неизбежно частых каждые несколько лет восстановительных работ. Впрочем, с такими утверждениями не все согласятся. Безусловно, этой категоричной точке зрения можно противопоставить контраргументы. Многие известные физики, с которыми я затрагивал эту тему, проявляют изрядный скептицизм в отношении термоядерной энергетики на 3He. Вместе с тем нельзя не учитывать, что научная карьера большинства крупнейших специалистов в области термоядерного синтеза связана с исследованием процессов магнитного удержания плазмы и традиционными установками типа токамак. Да и в изысканиях, связанных с термоядерным оружием, вопрос о 3He не был актуален, поскольку решались другие задачи. Здесь нужно, по-видимому, прежде всего серьезное внимание к проблеме и адекватное наращивание экспериментальных и теоретических работ. Глобальная энергетика, основанная на 3He, возможна только при доставке его с Луны. Но акцентирую: для экспериментов и даже для достаточно мощного опытного термоядерного генератора гелий оттуда не потребуется. На Земле накоплены значительные количества этого элемента, используемого в термоядерном оружии. Только за счет естественного распада запасенного трития образуется 15 - 20 кг 3He в год. В распоряжении России и США в общей сложности имеется несколько сот килограммов искусственно полученного 3He.
Вы точно человек?
В настоящее время гелий-3 не добывается из природных источников, а создаётся искусственно, при распаде трития. Последний производился для термоядерного оружия путём облучения бора-10 и лития-6 в ядерных реакторах. Дополнен 12 лет назад На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год. Другое дело — Луна, у которой нет атмосферы. В результате, этого ценного вещества там находится до 10 млн тонн по минимальным оценкам — 500 тысяч тонн [4]. При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн тонн нефти однако на настоящий момент не изучена техническая возможность осуществления данной реакции. Следовательно, населению нашей планеты лунного ресурса гелия-3 должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся реальность добычи гелия из лунного реголита.
Поэтому для добычи тонны этого изотопа следует переработать не менее 100 млн тонн грунта. Существование гелия-3 было предположено австралийским ученым Марком Олифантом во время работы в Кембриджском университете в 1934. Окончательно открыли этот изотоп Луис Альварес и Роберт Корног в 1939.
В этом случае с Земли придется доставлять только высокотехнологичные элементы ракет, приборы и компьютеры. Это открывает второе перспективное направление лунной экономики — строительство самого экономичного космодрома, базы для исследования Солнечной системы, космоса и грозящих Земле угроз. Так, в 2029 году близ Земли пролетит астероид Апофис диаметром до 700 метров, а в 2036 году теоретически не исключено его столкновение с нашей планетой.
Валентин Смирнов обращает внимание на то, что, в случае если гелиевая энергетика начнет работать, резко изменится не только энергетическая карта планеты страны — поставщики и потребители энергоносителей , но и вся мировая табель о рангах. Государствами первого ряда станут страны, обладающие собственными технологиями строительства термоядерных реакторов и имеющие независимую транспортную систему для добычи и доставки сырья на Землю. Эти два ключевых аспекта обуславливают, по словам ученого, то, что круг лидирующих стран будет довольно узок, а разница между гелиевыми державами и негелиевыми будет куда больше, чем существовавшая в начале атомной эры дистанция между ядерными и неядерными странами. Это означает закрепление статуса сверхдержавы или центра силы экономического, военного, политического на долгий срок. Страна, которая опередит другие в освоении Луны, станет лидером в мировой экономике», — говорит Эрик Галимов. Американцы одними из первых осознали эти перспективы.
Таким образом, США намерены выстроить свою систему энергетической безопасности, основанную на строительстве собственных термоядерных реакторов и обеспечении их собственным сырьем. Его председателем является доктор Харрисон Шмитт, а поддержку ему оказывает член совета профессор Джералд Калсински. Профессор разработал опытные установки в Висконсинском университете на основе нового принципа удержания плазмы в реакторе, на которых много раз успешно произвел синтез дейтерий-гелий-3. Как заявляет Калсински, все принципиальные трудности для построения промышленного гелиевого реактора устранены, и необходимо решить только инженерные проблемы. Сотрудник лаборатории университета Висконсина Джон Сантариус пишет, что «гелий-3 — это будущее американской энергетики, ведь в нем содержится вся энергия, которая может понадобиться США в следующем тысячелетии». Несмотря на то, что подготовка к освоению Луны и отработка управляемого синтеза с участием гелия-3 практически начались, пока ни Россия ни Америка не обсуждают проблему раздела лунной территории для промышленного освоения.
С учетом того, что самые перспективные участки — лунные «моря», вопрос о дележе участков богатого гелием-3 реголита может стать очень острым — колышки забить дело не долгое. Читайте новости «Свободной Прессы» в Google. News и Яндекс. Новостях , а так же подписывайтесь на наши каналы в Яндекс. Дзен , Telegram и MediaMetrics.
Этот редкий изотоп способен обеспечить потребность в чистой энергии и заложить основу многомиллиардной промышленности. В недавнем пресс-релизе стартап Interlune заявляет , что обладает технологией, позволяющей добывать гелий-3 эффективно и бережно. Впрочем, Interlune — не единственная организация, положившая глаз на лунные запасы гелия-3. Добыча природных ресурсов — составная часть лунной программы «Артемида». В 2015 году в США был принят закон, поощряющий американские компании вести добычу ресурсов на внеземных объектах, включая воду и минералы. Другими словами, граждане Соединенных Штатов получили право оставить себе все, что привезли из космоса, если это не живое существо.
Существует несколько проектов и исследований, направленных на поиск возможностей использования гелия-3 в термоядерном синтезе. Одним из наиболее известных проектов является ITER Международный экспериментальный термоядерный реактор , в рамках которого строятся установки для термоядерного синтеза на основе плазмы, использующие гелий-3 в качестве топлива. Таким образом, добыча гелия-3 на Луне может стать важным источником топлива для термоядерной энергетики в будущем.
Для продолжения работы вам необходимо ввести капчу
- Энергетика на Гелие-3
- Космонавтика
- Российские учёные оценили запасы изотопов гелия на Луне
- Американцы займутся добычей гелия-3 на Луне
- Стартап Interlune планирует к 2030 году начать добычу гелия-3 на Луне / Хабр
Выходцы из Blue Origin собрались добывать гелий-3 на Луне в скором будущем
По предварительным оценкам, на Луне около 1,2 млн тонн гелия-3. Этот редкий изотоп способен обеспечить потребность в чистой энергии и заложить основу многомиллиардной промышленности. В недавнем пресс-релизе стартап Interlune заявляет , что обладает технологией, позволяющей добывать гелий-3 эффективно и бережно. Впрочем, Interlune — не единственная организация, положившая глаз на лунные запасы гелия-3. Добыча природных ресурсов — составная часть лунной программы «Артемида».
В 2015 году в США был принят закон, поощряющий американские компании вести добычу ресурсов на внеземных объектах, включая воду и минералы.
С тех пор проводилось несколько миссий космических аппаратов для более детального изучения данного ресурса. Результаты исследований показали, что запасы редкого гелия-3 на Луне достаточно велики, чтобы использовать в термоядерной энергетике на протяжении нескольких столетий.
Также этот элемент может быть использован для создания эффективных реакторов, которые могут стать ключевыми в будущем энергетическом секторе. Поиски гелия-3 на Луне: технологии и препятствия Поиск редчайшего гелия-3 на Луне является одной из самых интересных задач современной космической науки. Так как гелий-3 не выделяет радиацию и не производит опасных отходов, он может стать ключевым компонентом в новых проектах ядерной энергетики.
Поиск этого элемента на Луне осложняется техническими и экономическими препятствиями. Добыча гелия-3 требует использования специализированного оборудования и технологий, которые еще не разработаны. Кроме того, доставка оборудования и персонала на Луну также представляет значительные трудности и затраты.
Несмотря на эти сложности, некоторые страны уже начали работу по поиску гелия-3 на Луне.
Ученые нашли на Луне элемент, который может изменить будущее энергетики и надолго обеспечить людей теплом и светом. Расскажем, что он собой представляет, как его используют и почему добывать его будут именно на спутнике Земли. Что такое гелий-3 и для чего он используется сейчас Гелий-3 — это один из изотопов гелия. Большая его часть сохранилась в недрах Земли со времен ее образования и постепенно высвобождается. Однако этот процесс очень долгий, а газ быстро улетучивается, поэтому в атмосфере его крайне мало. В основном, гелий-3 используют в лабораториях. Он хорошо улавливает нейтроны, поэтому им наполняют детекторы ионизирующего излучения.
С помощью таких детекторов можно вычислить незаконно перевозимые радиоактивные вещества, предотвращать ядерный терроризм.
Но эта большая мечта так и осталась нереализованной. Какое же топливо идеально для термоядерной электростанции? Поэтому практическое значение может иметь только синтез с участием самых легких ядер», — поясняет директор Института ядерного синтеза, председатель ученого совета Курчатовского центра Валентин Смирнов. Поэтому сегодня наиболее близка к требованиям промышленного использования реакция дейтерий — гелий-3.
В результате этой реакции выделяются не нейтроны, а положительно заряженные протоны и инертный гелий-4. Плюсы применения гелия-3 в электростанциях весьма существенны: исходное сырье и продукты реакции, в отличие от вариантов с другим сырьем, не обладают радиоактивностью. А, кроме того, идет прямое преобразование энергии реакции в электрическую минуя тепловой цикл превращения воды в пар с присущими ему потерями, снижающими КПД станции. Ведь продукты реакции протоны и ядра гелия можно тормозить в электрическом поле и напрямую возбуждать ток в нагрузке. Еще один плюс — экономия на системах защиты.
В случае выхода термоядерной реакции из-под контроля человека, температура реакции в силу законов физики неизбежно упадет в миллиардные доли секунды, и реакция прекратится сама собой. Таким образом, термоядерный реактор даже теоретически не сможет превратиться в водородную бомбу: «в худшем случае оплавится верхний слой металлических стенок реактора на глубину до 1 миллиметра, но и для этого требуется очень редкое стечение неблагоприятных факторов», — говорит Валентин Смирнов. Таким образом, термоядерная электростанция будет куда безопаснее атомной, не говоря о том, что отсутствие огромных расходов на эксплуатацию многоуровневых систем защиты сделает их более дешевыми по сравнению с АЭС. Остается решить вопрос с поставкой сырья. Где же можно недорого взять гелий-3?
Ученые полагают, что часть гелия могла возникнуть во время Большого взрыва, однако его большая часть образуется из дейтерия во время термоядерного синтеза на звездах. Поэтому практически весь доступный нам гелий-3 произведен на Солнце. Впрочем, лететь за ним на само светило отнюдь не обязательно — вместе с другими элементами потенциальное сырье для электростанций разносит солнечный ветер. Вот только на Земле этого изотопа крайне мало, всего несколько сот килограмм, что делает невозможным промышленную эксплуатацию «домашнего» сырья. Самая близкая к нам кладовая этого вещества — Луна.
Гелий-3 в виде мелких частиц льда распределен на ее поверхности почти равномерно, однако в районах «лунных морей» его концентрация превышает средние показатели в 5 раз, говорит директор Института геохимии и аналитической химии ГЕОХИ им.
Колонизация Луны и добыча там гелия-3? Пока это фантастика из далекого будущего
Стоит отметить, что ещё в 2006 году в ракетно-космической корпорации "Энергия" говорили, что главной целью России на Луне будет разработка гелия-3. Основанная в 2022 году в США компания Interlune планирует заняться добычей изотопа гелий-3 на поверхности Луны с целью транспортировки на Землю и последующей продажи на коммерческих условиях. Основанная в 2022 году в США компания Interlune планирует заняться добычей изотопа гелий-3 на поверхности Луны с целью транспортировки на Землю и последующей продажи на коммерческих условиях. «Гелий-3 — единственный ресурс, цена которого достаточно высока, чтобы обеспечить полет на Луну и возвращение его на Землю, — заявил он.
На Луне ищут замену нефти
В 2030-е годы на Луне планируют разместить ещё три космических аппарата: многоразовый корабль для поддержки пилотируемых миссий, модули для строительства лунного полигона и технику для связи и навигации. Как ранее писал Лайф, в течение ближайших пяти лет на Луну собираются отправить три аппарата. Один из них — "Луна-25" — займётся поисками водяного льда на южном полюсе, ещё один — "Луна-27" — возьмёт пробы грунта.
Учёные взялись за детальное исследование возможностей данного изотопа гелия. Подписывайтесь на наш Телеграм Что такое ядерный синтез Для человечества в современном его виде добыча энергии является основополагающим фактором для комфортного существования.
Из химических процессов наиболее эффективной в качестве получения энергии является реакция взаимодействия с кислородом — горение, которая сегодня служит основным источником энергии на электростанциях, транспорте и в быту. Ядерные реакции в этом смысле подобны химическим, только энергия связи протонов и нейтронов в ядре значительно больше, чем та, что связывает атомы в молекулы. Поэтому одна тонна ядерного топлива может легко заменить миллионы тонн нефти. Но для выделения из него энергии нужно приложить немало сил нагреть его до сотен миллионов градусов, чтобы запустить термоядерную реакцию.
В природе подобные процессы происходят в недрах звёзд. Солнце — пример космического объекта, где происходят природные термоядерные реакции Люди подобную реакцию могут повторить пока только в военных целях водородная бомба. Чтобы удержать такую энергию в каком-нибудь месте и использовать в своих целях, нужны более сложные технологии. Одним из теоретических вариантов являются термоядерные реакторы токамаки , в которых изначально планировалось синтезировать гелий из дейтерий-тритиевой смеси.
Главный недостаток системы — высокая радиоактивность трития, период полураспада которого составляет всего 12,5 лет. В промышленном реакторе внутренние стенки камеры сгорания необходимо будет менять через каждые несколько лет из-за радиационного разрушения материала. Кроме того, выделяемую энергию уносят в основном нейтроны, не имеющие электрического заряда и плохо взаимодействующие с веществом, что усложняет её сбор. Одним из лучших альтернатив является замена трития на гелий-3.
Реакции дейтерий-гелиевой смеси практически радиационно безопасны, так как в них используются только стабильные ядра, и не производят неудобные нейтроны.
Китайский лунный пробоотборник. Гелий-3 очень важен, поскольку он является многообещающим кандидатом на роль топлива для ядерного синтеза. Он известен как единственный стабильный изотоп, в котором протонов больше, чем нейтронов. Что особенно важно, ни гелий-3, ни продукты его реакции не являются радиоактивными, поэтому при его использовании у людей не будет болеть голова о том, как утилизовать отходы.
Разумеется, у такого замечательного изотопа есть и свои недостатки: термоядерный реактор с гелием-3 должен работать при гораздо более высоких температурах, чем тритиевый реактор, а сам изотоп чрезвычайно редок.
Это очень романтично. Вместе с тем прагматики понимают, что перспектива освоения Луны возрастает с каждым годом. Действительно, какие полезные ископаемые есть на Луне? Какова вообще ценность и цена Луны?
Китай находит гелий-3 на Луне: начинается великая гонка
Проекты добычи гелия-3 Реголит покрывает Луну слоем толщиной в несколько метров. Реголит лунных морей богаче гелием, чем реголит плоскогорий. Следовательно для того, чтобы добыть драгоценный изотоп, необходимо переработать огромное количество рассыпчатого лунного грунта. С учетом всех особенностей технология добычи гелия-3 должна включать следующие процессы: 1.
Добыча реголита. Специальные «комбайны» будут собирать реголит с поверхностного слоя толщиною около 2 м и доставлять его на пункты переработки или перерабатывать непосредственно в процессе добычи. Выделение гелия из реголита.
При нагреве реголита до 600? С — почти весь гелий. Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами.
Доставка на Землю космическими кораблями многоразового использования. При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, — которые могут быть полезны для поддержания лунного промышленного комплекса. Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж.
В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну. Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу для обслуживания всего комплекса оборудования , космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей уголь, нефть, природный газ придется отказаться.
Главная технологическая проблема На пути к созданию энергетики на основе гелия-3 есть одна немаловажная проблема. Дело в том, что реакцию дейтерий-гелий-3 осуществить гораздо сложнее, чем реакцию дейтерий-тритий. В первую очередь, необычайно трудно поджечь смесь этих изотопов.
Расчетная температура, при которой пойдет термоядерная реакция в дейтерий-тритиевой смеси, — 100-200 миллионов градусов.
Одновременно в нашем мышлении поэтический образ далекой Луны должен смениться представлением о ней как об объекте практической экономики. Словом, после великих географических открытий прошлых веков наш спутник станет следующим объектом приложения изыскательского духа, свойственного человечеству. По последствиям для развития цивилизации его освоение будет аналогично освоению новых континентов на Земле. Луна и есть новый континент, отделенный от нас океаном космического пространства, который сегодня, однако, легче пересечь, чем Атлантику во времена Христофора Колумба. Однако несмотря на все рассмотренные перспективы, приходится возвращаться к факту: пока мы еще очень далеки от их реализации. Когда можно ожидать построения установок термоядерного синтеза на основе 3He? По данным американских источников, возможно, через 15 - 20 лет, если на этом будут сфокусированы усилия общества и соответствующие инвестиции.
Вероятно, решение нужно искать на пути синтеза с инерционным удержанием плазмы, а не с магнитным, которое используют в токамаках и заложено в основу проекта ИТЭР. Как уже упоминалось, в июне нынешнего года гостем нашего института был профессор Джералд Калсински - один из пионеров в исследовании проблемы термоядерного синтеза на 3He. На семинаре с участием российских экспертов ученый рассказал о состоянии исследований этой проблемы в США, в частности, об экспериментах на установках с инерционным электростатическим синтезом или инерционным электростатическим удержанием плазмы. Суть процесса состоит в том, что между двумя концентрическими сферическими сетками прилагается сверхвысокое напряжение порядка 100 кВ. Под действием разности потенциалов ионы устремляются от периферии к центру и сталкиваются с энергией, достаточной для возбуждения термоядерной реакции. Построены опытные установки нескольких типов. Выход термоядерной энергии при этом еще очень мал по сравнению с подводимой для зажигания. В случае описанных Калсински экспериментов Q составляет пока ничтожную величину порядка 10-5.
Правда, как считает исследователь, нет фундаментальных трудностей для решения проблемы. Они в основном носят инженерный характер, причем разрешение их в рамках последовательных проектов вплоть до построения реактора, дающего полезную энергию, потребует не столь значительных средств. Речь идет о 10 - 15 годах и 6 - 8 млрд. А в проекте ИТЭР предполагают получить уже полезный выход энергии. Ведь реактор типа токамак в рамках ИТЭР представляет собой весьма массивное сооружение, а выделяющийся поток нейтронов довольно быстро приведет к разрушению материалов, образующих внутреннюю часть конструкции. При эксплуатации возникнет не только необходимость захоронения радиоактивных отходов, но и проведения громоздких, дорогостоящих и неизбежно частых каждые несколько лет восстановительных работ. Впрочем, с такими утверждениями не все согласятся. Безусловно, этой категоричной точке зрения можно противопоставить контраргументы.
Многие известные физики, с которыми я затрагивал эту тему, проявляют изрядный скептицизм в отношении термоядерной энергетики на 3He. Вместе с тем нельзя не учитывать, что научная карьера большинства крупнейших специалистов в области термоядерного синтеза связана с исследованием процессов магнитного удержания плазмы и традиционными установками типа токамак. Да и в изысканиях, связанных с термоядерным оружием, вопрос о 3He не был актуален, поскольку решались другие задачи. Здесь нужно, по-видимому, прежде всего серьезное внимание к проблеме и адекватное наращивание экспериментальных и теоретических работ. Глобальная энергетика, основанная на 3He, возможна только при доставке его с Луны. Но акцентирую: для экспериментов и даже для достаточно мощного опытного термоядерного генератора гелий оттуда не потребуется. На Земле накоплены значительные количества этого элемента, используемого в термоядерном оружии. Только за счет естественного распада запасенного трития образуется 15 - 20 кг 3He в год.
В распоряжении России и США в общей сложности имеется несколько сот килограммов искусственно полученного 3He. Кстати, мы продаем его американцам по 1000 дол. Нам он не нужен, а они почему-то покупают. Лунный гелий-3 потребуется не раньше, чем через 20 лет. Но еще до первой его доставки предстоит проделать грандиозную работу. Начать нужно с геологоразведки. Она включает картирование лунной поверхности, выявление и оконтуривание участков с максимальным содержанием полезных компонентов, оценку удобства их эксплуатации. Работа должна сопровождаться исследованием геологического строения Луны, выявлением ресурсов для развития локального производства.
В этой связи большое значение имеет ответ на вопрос о наличии там воды. В замороженном состоянии она может присутствовать в затененных кратерах на полюсах. Свидетельства тому есть. Необходима организация экспедиций и исследование образцов с соответствующих участков. Следующий шаг - проведение экспериментальных вскрышных работ и по десорбции летучих компонентов из реголита в условиях Луны. Далее - обустройство базы. Проектирование и испытание устройств, предназначенных для производства гелия-3. Чтобы обеспечить хотя бы подготовительную стадию всех работ, понадобится доставить на Луну сотни тонн машин и материалов.
Полное обеспечение потребностей землян в энергии потребовало бы порядка 20 млрд. Конечно, эти объемы представляются фантастическими. Однако сравнивать следует с теми, что проводятся в интересах энергетики на Земле. Сегодня тут добывают около 5 млрд. Объемы вскрышных работ на порядок больше.
Однако его поступление из мантии в атмосферу через вулканы и разломы в коре оценивается всего в несколько килограмм в год. Некоторая часть гелия-3 возникает при распаде трития, в реакциях скалывания на литии под действием альфа-частиц и космических лучей , а также поступает из солнечного ветра. На Солнце и в атмосферах планет-гигантов первичного гелия-3 значительно больше, чем в атмосфере Земли. В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром.
Физические свойства Атомная масса гелия-3 равна 3,016 у гелия-4 она равна 4,0026, ввиду чего их физические свойства весьма отличаются. Гелий-3 кипит при 3,19 К гелий-4 — при 4,23 К , его критическая точка равна 3,35 К у гелия-4 — 5,19 К. Дополнен 12 лет назад Жидкий гелий-3 Квантовая жидкость, существенно отличающаяся по свойствам от жидкого гелия-4. Жидкий гелий-3 удалось получить только в 1948 году. В 1972 году в жидком гелии-3 был обнаружен фазовый переход в сверхтекучее состояние при температурах ниже 2,6 мК и при давлении 34 атм. Ранее считалось, что сверхтекучесть, как и сверхпроводимость — явления, характерные для бозе-конденсата, то есть кооперативные явления в среде с целочисленным спином объектов. За открытие сверхтекучести гелия-3 в 1996 г.
Ведь реактор типа токамак в рамках ИТЭР представляет собой весьма массивное сооружение, а выделяющийся поток нейтронов довольно быстро приведет к разрушению материалов, образующих внутреннюю часть конструкции. При эксплуатации возникнет не только необходимость захоронения радиоактивных отходов, но и проведения громоздких, дорогостоящих и неизбежно частых каждые несколько лет восстановительных работ. Впрочем, с такими утверждениями не все согласятся. Безусловно, этой категоричной точке зрения можно противопоставить контраргументы. Многие известные физики, с которыми я затрагивал эту тему, проявляют изрядный скептицизм в отношении термоядерной энергетики на 3He. Вместе с тем нельзя не учитывать, что научная карьера большинства крупнейших специалистов в области термоядерного синтеза связана с исследованием процессов магнитного удержания плазмы и традиционными установками типа токамак. Да и в изысканиях, связанных с термоядерным оружием, вопрос о 3He не был актуален, поскольку решались другие задачи. Здесь нужно, по-видимому, прежде всего серьезное внимание к проблеме и адекватное наращивание экспериментальных и теоретических работ. Глобальная энергетика, основанная на 3He, возможна только при доставке его с Луны. Но акцентирую: для экспериментов и даже для достаточно мощного опытного термоядерного генератора гелий оттуда не потребуется. На Земле накоплены значительные количества этого элемента, используемого в термоядерном оружии. Только за счет естественного распада запасенного трития образуется 15 - 20 кг 3He в год. В распоряжении России и США в общей сложности имеется несколько сот килограммов искусственно полученного 3He. Кстати, мы продаем его американцам по 1000 дол. Нам он не нужен, а они почему-то покупают. Лунный гелий-3 потребуется не раньше, чем через 20 лет. Но еще до первой его доставки предстоит проделать грандиозную работу. Начать нужно с геологоразведки. Она включает картирование лунной поверхности, выявление и оконтуривание участков с максимальным содержанием полезных компонентов, оценку удобства их эксплуатации. Работа должна сопровождаться исследованием геологического строения Луны, выявлением ресурсов для развития локального производства. В этой связи большое значение имеет ответ на вопрос о наличии там воды. В замороженном состоянии она может присутствовать в затененных кратерах на полюсах. Свидетельства тому есть. Необходима организация экспедиций и исследование образцов с соответствующих участков. Следующий шаг - проведение экспериментальных вскрышных работ и по десорбции летучих компонентов из реголита в условиях Луны. Далее - обустройство базы. Проектирование и испытание устройств, предназначенных для производства гелия-3. Чтобы обеспечить хотя бы подготовительную стадию всех работ, понадобится доставить на Луну сотни тонн машин и материалов. Полное обеспечение потребностей землян в энергии потребовало бы порядка 20 млрд. Конечно, эти объемы представляются фантастическими. Однако сравнивать следует с теми, что проводятся в интересах энергетики на Земле. Сегодня тут добывают около 5 млрд. Объемы вскрышных работ на порядок больше. Выходит, это сопоставимо с гипотетическим масштабом на Луне. А ведь энергетическая, экологическая и экономическая эффективность сходных по масштабу работ в итоге окажется там гораздо выше. Их организация - вполне в пределах современных экономических и технических возможностей человека. Но поскольку потребуются десятки лет целенаправленного труда, начинать нужно сейчас. Интенсивность полетов по трассе Земля-Луна должна уже составлять несколько в год. А сегодня у нас в программе только один запуск аппарата "Луна-Глоб", запланированный на 2012 г. В настоящее время на предприятиях Российского космического агентства разрабатывают проекты исследования Луны. В частности, в Ракетно-космической корпорации "Энергия" им. Королева проектируют летательный аппарат многоразового использования "Клипер". По мнению президента, генерального конструктора корпорации Николая Севастьянова, с 2015 г. В НПО им. Лавочкина генеральный директор, генеральный конструктор Георгий Полищук интенсифицируют проектирование соответствующих космических аппаратов, имеющих как орбитальные, так и посадочные модули. К сожалению, Совет по космосу РАН стоит пока в стороне от этих инициатив. Мы в России должны понять, что наши американские коллеги серьезно работают над реализацией проекта, связанного с использованием лунного гелия-3. В проектировании горных работ на Луне, как и в экспериментальных исследованиях термоядерного синтеза на 3He, американцы заметно продвинулись вперед. Его председателем весной нынешнего года назначен доктор Х. Шмитт, а в состав входит и профессор Калсински. Страна, которая опередит другие в освоении Луны, станет лидером в мировой экономике. И у нас есть уникальные шансы: мы имеем космическую индустрию и опыт освоения спутника Земли автоматическими космическими аппаратами.
На Луну спешим летим!:-) ГЕЛИЙ-3 забрать хотим!:-)
«Гелий-3 — единственный ресурс, цена которого достаточно высока, чтобы обеспечить полет на Луну и возвращение его на Землю, — заявил он. Согласно э.в. википедии на Луне запасы указанного изотопа восполняются за счёт облучения солнечным ветром, который земная атмосфера не пропускает, поэтому на Земле его гораздо меньше. Стартап Interlune, основанный экс-сотрудниками Blue Origin, рассчитывает в ближайшие годы запустить на Луне добычу гелия-3. пишет Times, со ссылкой на китайского ученого. Гелий-3: Как Луна могла бы решить все энергетические проблемы Земли. Китай не сообщил, когда он планирует начать добычу гелия-3 на Луне.
Новые сверхдержавы родятся на Луне
найти ему применение. гелий-3 - космическое топливо будущего. Индия, испытывающая нехватку энергоносителей, может начать удовлетворять энергетические потребности благодаря Луне к 2030 году.