Принцип работы. Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.
Как работает водородная бомба
Отстав на старте разработки водородной бомбы, СССР довольно быстро догнал соперника. Как работает термоядерная бомба и кто ее изобрел? Лаврентьев описал принцип действия водородной бомбы, где в качестве горючего использовался твердый дейтерид лития.
Атомная, водородная, нейтронная… Чем отличаются и как работают
Из истории создания водородной бомбы в США и СССР. Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. Пресловутая американская бомба В61 является термоядерной, или как их еще не совсем правильно, но часто, называют – водородной. Водородная бомба, также известная как термоядерная, использует ядерную реакцию слияния, которая основана на ядерном расщеплении.
Популярные
- Термоядерное оружие: Как устроена водородная бомба
- Водородная бомба
- Истинное происхождение советской водородной бомбы
- Последствия обогащения
Какую роль в истории СССР сыграло появление водородного оружия
- Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы - МК
- Как устроена водородная бомба: принцип и мощность
- Термоядерное оружие: Как устроена водородная бомба
- Комментарии
Принцип действия термоядерного синтеза
В самом начале Манхэттенского проекта Ферми поделился своими соображениями с коллегой Эдвардом Теллером, которого заинтересовала такая идея. Теллер посвятил приличное количество своего времени на обдумывание замысла Ферми. Чуть позже команда Эдварда Теллера стала предлагать практические идеи реализации термоядерного синтеза. Некий Станислав Улам выработал основные принципы, предложив разместить отдельно термоядерный заряд и атомный заряд-катализатор, при этом сжимая термоядерное топливо до начала его нагрева. Такие умозаключения позволили приступить к практическим исследованиям. Известно, что ученые в Германии также плотно занимались возможностью подобных зарядов, но, к счастью, прикладных успехов они не достигли. Начало 50-х годов охарактеризовалось динамичными успехами с водородным зарядом у американских и советских ученых.
Уже в 1952 году американцы провели первое испытание термоядерной реакции. Однако устройство заняло двухэтажное строение, что очень удаленно навевало практическое применение. Исследователи бросили весь свой интеллектуальный запал на уменьшение габаритов и веса водородного заряда. Уже в 70-х годах американские баллистические ракеты могли нести более 10 термоядерных боеголовок одновременно. Отстав на старте разработки водородной бомбы, СССР довольно быстро догнал соперника. Заслуга в такой прыти принадлежит выдающемуся физику Андрею Сахарову.
Еще в 1949 году он спроектировал первое советское термоядерное устройство, которое получило название «Слойка». Сахаров предложил принципиально новую концепцию реализации термоядерной реакции, которая в корне отличалась от раздельной схемы Теллера-Улама. Физик разработал схему чередования расщепляющегося материала со слоями топлива-зачинщика реакции.
Некоторые уважаемые физики не считали возможным такую реакцию, что ставило под сомнение правдивость информации. Еще не успело человечество прийти в себя от взрывов атомных бомб в Хиросиме и Нагасаки, как ученые взялись за новые эксперименты.
Теперь было решено использовать реакции, которые наблюдаются на Солнце и других звездах. Именно небесные светила невольно подали идею водородной бомбы. Еще в 1941 году Энрико Ферми выдвинул идею термоядерного синтеза, катализатором которого должен был стать атомный заряд. В самом начале Манхэттенского проекта Ферми поделился своими соображениями с коллегой Эдвардом Теллером, которого заинтересовала такая идея. Теллер посвятил приличное количество своего времени на обдумывание замысла Ферми.
Чуть позже команда Эдварда Теллера стала предлагать практические идеи реализации термоядерного синтеза. Некий Станислав Улам выработал основные принципы, предложив разместить отдельно термоядерный заряд и атомный заряд-катализатор, при этом сжимая термоядерное топливо до начала его нагрева. Такие умозаключения позволили приступить к практическим исследованиям. Известно, что ученые в Германии также плотно занимались возможностью подобных зарядов, но, к счастью, прикладных успехов они не достигли. Начало 50-х годов охарактеризовалось динамичными успехами с водородным зарядом у американских и советских ученых.
Уже в 1952 году американцы провели первое испытание термоядерной реакции. Однако устройство заняло двухэтажное строение, что очень удаленно навевало практическое применение. Исследователи бросили весь свой интеллектуальный запал на уменьшение габаритов и веса водородного заряда. Уже в 70-х годах американские баллистические ракеты могли нести более 10 термоядерных боеголовок одновременно.
Из-за невозможности ее размещения в бомбовом отсеке машины было разработано специальное устройство на подвеске, обеспечивавшее подъем бомбы к фюзеляжу и закрепление его на трех синхронно управляемых замках. Безопасность экипажа самолета-носителя обеспечивала специально разработанная система из нескольких парашютов у бомбы: вытяжных, тормозных и основного площадью 1,6 тыс. За это время Ту-95В успевал отлететь от места взрыва на безопасное расстояние. Руководство СССР не скрывало намерение провести испытание мощного термоядерного устройства.
О предстоящем испытании Никита Хрущев объявил 17 октября 1961 г. Скоро мы завершим эти испытания. Очевидно, в конце октября. В заключение, вероятно, взорвем водородную бомбу мощностью в 50 миллионов тонн тротила. Мы говорили, что имеем бомбу в 100 миллионов тонн тротила. И это верно. Но взрывать такую бомбу мы не будем". Генеральная ассамблея ООН приняла 27 октября 1961 г.
Ту-95В с экипажем из девяти человек ведущий летчик - Андрей Дурновцев, ведущий штурман - Иван Клещ вылетел с военного аэродрома Оленья на Кольском полуострове. Сброс авиабомбы был осуществлен с высоты 10,5 км на площадку Северного острова архипелага, в районе пролива Маточкин Шар. Взрыв произошел на высоте 3,7 км от земли и 4,2 км над уровнем моря, на 188 сек. Вспышка длилась 65-70 сек.
Рассказываем подробнее историю, возможно, самого опасного военного проекта времен второй половины 20 века. Он настаивал, что уничтожать противника нужно там, где находятся главные транспортные узлы и логистические центры. Однако в нормальном, пригодном для боевого применения виде, торпеда не появилась. Сказались и замечания моряков, и отсутствие атомных подводных лодок, проектирование и строительство которых началось ближе к середине 50-х годов. Возможный радиус поражения самой мощной бомбой в истории человечества.
Фото: nuclearsecrecy.
Принцип работы водородной бомбы
Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная? | Принцип действия «сухой» водородной бомбы открыли не Тамм, Сахаров и Гинзбург? |
Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы :: | В первую часть вошло описание принципа действия водородной бомбы с дейтеридом лития-6 в качестве основного взрывчатого вещества и урановым детонатором. |
Термоядерное оружие: Как устроена водородная бомба | Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. |
Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы | Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. |
Какая бомба мощнее: ядерная или водородная | Кстати, он привлек к работе над водородной бомбой и Гамова, который в 1948 году получил от Пентагона допуск к военным секретам. |
Какая бомба мощнее: ядерная или водородная
Цунами высотой в 50 метров. Как работала «ядерная торпеда» Сахарова - Hi-Tech | Как советские физики делали водородную бомбу, какие плюсы и минусы несло в себе это страшное оружие, читайте в рубрике «История науки». |
Принцип действия термоядерного синтеза | К истории создания водородной бомбы в СССР. |
Как работает водородная бомба » Вестник К | Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. |
Последствия взрыва водородной бомбы
Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура.
Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться.
Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит не сопоставимый ни с чем разрушительный удар, поражающий все живое.
Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии.
Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд.
Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов.
Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер.
Мне объяснили: "Вам нужно пройти на бульвар. Напротив ресторана "Узбекистан" пройдете, двор 13, в дворницкую, там вам объяснят". Пошел, прихожу туда. Открыл дверь, смотрю - газовые горелки, кирпичи на них греются, и бабка какая-то сидит. Я говорю: "Сюда я попал?
Пришел парень и говорит мне: "Вам нужно завтра с утра ехать во Внуково, встать около статуи Сталина. Там к вам подойдут, и вы дальше полетите туда, куда нужно"», - делится воспоминаниями Юрий Трутнев, первый зам. Для разработчиков супероружия были созданы самые комфортные условия. За этим лично следил Лаврентий Берия. Сахарову выделили отдельный коттедж с обстановкой, кухарку и экономку.
Создатели водородной бомбы могли позволить себе все, чего лишены были обычные граждане. Но быт их заботил мало. Все внимание уделялось работе. В августе 1953 года на Семипалатинском полигоне в центре опытного поля была построена 37-метровая испытательная вышка. На удалении были возведены гражданские и промышленные здания и сооружения, выставлены разные образцы военной техники.
В ночь перед испытаниями собранное изделие подняли на вышку. А на рассвете произвели взрыв. Многоэтажные дома на испытательном поле разлетелись как карточные домики. Грибообразное облако было видно за 170 километров.
Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии. Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. Изотопы водорода Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды H2O , было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода 2H или дейтерий , ядра которых, помимо одного протона, содержат так же один нейтрон частицу, близкую по массе к протону, но лишённую заряда. Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии радиации , в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения.
Похудение Поражающие факторы взрыва водородной бомбы. Водородная бомба 16 января 1963 года, в самый разгар холодной войны , Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения - водородной бомбой. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире - на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений : уже 5 августа 1963 г. История создания Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны что в 450 раз больше мощности бомбы, сброшенной на Нагасаки , а в 1953 году в СССР было испытано устройство мощностью 400 килотонн. Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки.
3. Водородная бомба: кто выдал её секрет
Понять, насколько термоядерная бомба сложнее атомной, можно по тому факту, что работающие АЭС давно уже стали обыденностью, а работающие и практичные термоядерные электростанции — это все еще научная фантастика. Возможность использования в качестве детонатора водородной бомбы ядерного заряда обсуждалась ещё физиками работающими в рамках Манхеттенского проекта. Принцип работы атомной бомбы основан на явлении радиоактивного распада. Чтобы разобраться, как работает водородная бомба, разберемся в устройстве атомного оружия.
Водородная бомба и ядерная бомба отличия
ВС РФ применили самый мощный неядерный боеприпас за всё время СВО - что представляет собой ОДАБ | Иллюстрация принцип работы атомной бомбы. Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. |
Как действует водородная бомба и каковы последствия взрыва? Инфографика | Статья И.И. Никитчука в газете «Правда» к 60-летию создания водородной бомбы в СССР. 2015.11.20 Новости ЦК КПРФ. |
ВОДОРОДНАЯ БОМБА | Отстав на старте разработки водородной бомбы, СССР довольно быстро догнал соперника. |
Как действует водородная бомба и каковы последствия взрыва? Инфографика | Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. |
Атомная, водородная и нейтронная бомбы
Первый советский термоядерный боеприпас был испытан в 1953 году. Американцы на атолле Бикини провели испытания тогда ещё просто взрывного устройства, не годного для практического применения. Как и в случае «космической гонки», целью которой было создание не столько ракет-носителей, сколько баллистических ракет, СССР имел очень веские основания спешить с созданием водородной бомбы. И позже у Хрущёва были не менее веские и вполне рациональные основания для создания не принятой на вооружение и изначально не предназначавшейся для этого «Царь-бомбы» потенциальной мощностью 100 Мегатонн. Прогремевший над Новой Землёй сильнейший в истории человечества взрыв, сопровождавшийся хвастовством о семи бомбах, которых достаточно, для того чтобы над Британскими островами снова плескалось море, произвёл нужный эффект. Причина, по которой без водородной бомбы СССР не мог никак, была прежде всего экономической. Уже в 50-х годах продолжение гонки вооружений по правилам «поддержания паритета» стало проблематичным ввиду банальной нехватки электроэнергии, которая для обогащения урана г азодиффузным методом требовалась в немыслимом количестве. В абсолютном исчислении СССР мог ответить лишь в 10 раз меньшим количеством киловатт, и отставал по темпам производства ядерных зарядов на порядок.
Соответственно, если США готовились к использованию тактических «пушечных» зарядов, в которых 10 кг плутония взрывались как 50-150 тонн тротилла, советские конструкторы ломали головы над тем, как выдавить лютой имплозией 50 килотонн из всего 6 кг плутония. Успехи наличествовали, но переломить ситуацию таким образом было невозможно… Другое дело, если мощность боеприпаса при прежнем расходе ядерного горючего исчисляется десятками Мегатонн. В такой ситуации отставание по количеству зарядов уже не имело значения. На это Хрущёв и намекал. Ещё в 1942 году наивные немцы пытались взорвать замороженный дейтерий, закладывая его в кумулятивную воронку.
Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии. Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки.
С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка».
Взорвалось сильно — 700 килотонн даже без капсулы. Но бомба сожрала 120 килограммов плутония — это столько, сколько Британия могла произвести за год. Термоядерный заряд должен был располагаться отдельно от инициирующего, соответственно, для осуществления радиационного обжатия требовались решения нетривиальные. В современной конструкции оба заряда — инициирующий и термоядерный — помещаются в заполненную рентгенопрозрачным пластиком общую оболочку из обеднённого урана. При подрыве ядерного заряда внешняя оболочка, в том числе и её затенённый термоядерной капсулой участок, «освещённый» благодаря рассеянию излучения в пластике, предсказуемо превращается в плазму также излучающую соответствующий своей температуре рентген. И давление направленного внутрь излучения симметрично — именно равномерное давление со всех направлений требует изощрённых методов — обжимает капсулу. Капсула, в свою очередь, для обеспечения равномерного сжатия могла представлять собой цилиндр, усеченный конус, яйцо, — лишь в 80-х удалось добиться равномерного действия излучения, позволяющего использовать капсулы в форме сферы. Внешний её слой, опять-таки, состоит из обеднённого урана, средний из термоядерного горючего, внутренний же из подкритической массы плутония. В результате обжатия плотность плутония увеличивается, критическая масса достигается и происходит второй ядерный взрыв. Термоядерная реакция начинается в момент, когда внешние слои капсулы ещё падают внутрь, а внутренние со всей ядерной силы уже стремятся наружу. На фронте столкновения ударных волн преодолевается потенциальный барьер, и ядра начинают сливаться. В качестве горючего используется дейтрид лития-6. Сам по себе литий, в действительности, не «горит».
Какая бомба мощнее: ядерная или водородная
Как работает термоядерная бомба и кто ее изобрел? Принцип работы. оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Как советские физики делали водородную бомбу, какие плюсы и минусы несло в себе это страшное оружие, читайте в рубрике «История науки».
Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?
К истории создания водородной бомбы в СССР. эдакий "дедушка" многих уникальных разработок. В термоядерных бомбах используется другой принцип — термоядерный синтез, при котором такие лёгкие элементы, как водород или литий, сливаются в более тяжёлые, за счёт чего выделяется энергия, необходимая для взрыва. Отметим, что реализация ключевого для водородной бомбы принципа сжатия термоядерной взрывчатки в «Слойке» был иным, чем в бомбе Теллера-Улама. Испытание этой термоядерной бомбы стало ключевым фактором, позволившим Советскому Союзу обеспечить ядерно-оружейный паритет с США. Принцип работы атомной бомбы основан на явлении радиоактивного распада.