Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Медицинские продукты с применением искусственного интеллекта активно разрабатывают известные компании: Microsoft, Apple, Google, IBM.
Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей
Главный редактор сетевого издания И. Адрес редакции: 125124, РФ, г. Москва, ул. Правды, д.
Мяснянкина О. Научный руководитель: к. The introduction of systems based on artificial intelligence is one of the key trends in modern healthcare. Keywords: artificial intelligence, machine learning, neural network. Внедрение систем на базе искусственного интеллекта - один из ключевых трендов современного здравоохранения. Сегодня искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения. В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей.
Ключевые слова: искусственный интеллект, машинное обучение, нейронная сеть. Рецензент: Гладских Наталья Александровна - Кандидат технических наук, ассистент кафедры медицинской информатики и статистики. ВГМУ им. Бурденко В современном мире информационные технологии затрагивают почти каждую сферу деятельности человека. И медицина тому не исключение. Искусственный интеллект ИИ - основа новых информационных технологий. ИИ в лечении и диагностике Одной из главных задач ИИ в медицине является оптимизация диагностики и лечения. В настоящее время созданы и внедрены программы, способные обрабатывать данные жалоб пациентов, осмотра, лабораторных анализов и инструментальных обследований. Так для назначения оптимального лечения используется IBM Watson for oncology, помогающий врачам-онкологам в кратчайшие сроки подобрать терапию, основываясь на большой базе данных, загруженных для обучения ИИ: более 25 тысяч историй болезней, 300 медицинских журналов и 200 учебников.
Но, несмотря на эти рекорды, с прошлого года все острее становится дискуссия о доверии и ответственном отношении всех участников сферы ИИ. Слишком много спекуляций. Большая часть ни к чему плохому не привела, однако 18 процентов причинили вред разной степени тяжести, в том числе были зафиксированы 4 смертельных случая. Будет доказанная безопасность, будет и доверие. Стандарты — залог доверия По мнению Дмитрия Павлюкова, которое он высказал на форуме, в условиях формирования доверия ключевую роль играет стандартизация в области применения ИИ. Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна. С одной стороны, высок уровень технологической зрелости, с другой — не менее высок уровень ответственности, связанной с рисками для граждан в результате некорректной работы системы. Поэтому стандарты — это инструмент нахождения компромисса между безопасностью системы новой технологии для людей и простотой продвижения новых технологий на практике. В прошлом году была разработана перспективная программа стандартизации по приоритетному направлению «Искусственный интеллект» на 2021-2024. В ней есть раздел, посвященный стандартам ИИ в области здравоохранения. При разработке программы подразумевался обязательный этап обучения на прецедентах. Значительная часть систем ИИ рассчитана на автоматизацию естественных интеллектуальных способностей человека. Технический комитет является представительным органом РФ в международной организации по стандартизации ИИ, и сейчас по инициативе российской стороны там рассматривается возможность разработки международного стандарта клинических испытаний систем с ИИ. Опыт и мудрость не заменить Медицина все больше переходит на цифру, и требуются новые цифровые инструменты обработки цифровых данных. Два года назад начались клинические испытания ПО на основе технологий лучевая диагностика. В 2020-21 гг. Сервисы использовались в 102 медицинских организациях при проведении 13 видов исследований КТ, МРТ и другие.
Тем не менее, интерес бизнес-сообщества к таким проектам, в том числе к цифровым решениям для здравоохранения, постоянно растет. Инвесторы понимают, что спрос на услуги медицины будет высоким всегда. Ведь инвестиции в свое здоровье - долгосрочная перспектива. В России стартапы по цифровизации здравоохранения с применением искусственного интеллекта находят дополнительную поддержку на государственном уровне: ряд институтов развития инвестируют в такие проекты на разных стадиях, а разработчики получают гранты по федеральному проекту «Искусственный интеллект». В своем послании Федеральному Собранию президент РФ Владимир Путин заявил о необходимости достижения самодостаточности и конкурентоспособности в области искусственного интеллекта, что позволит обеспечить «настоящий прорыв» в экономике и социальной сфере. Глава государства сообщил об утверждении обновленной Национальной стратегии развития искусственного интеллекта, включающей участие ИИ в создании цифровых платформ для здравоохранения. Например, на основе данных цифрового профиля он сможет получить дистанционное заключение специалиста федерального медицинского центра, а доктор, семейный врач — оценить именно целостную картину здоровья человека, прогнозировать возникновение заболеваний, предотвращать осложнения, выбирать индивидуальную и потому наиболее эффективную тактику лечения», - указал в своем послании глава государства. Ранее вице-премьер Дмитрий Чернышенко обозначил основные глобальные тренды в сфере искусственного интеллекта. Первый тренд - стремление к технологическому суверенитету; второй - ужесточение борьбы за ИИ-специалистов; третий — движение к безопасному ИИ с упором на конкретного человека; четвертый — развитие больших языковых моделей и генеративного ИИ и пятый - рост экономического эффекта от использования ИИ. Интеллектуальные технологии помогают прогнозировать возникновение и развитие заболеваний, выявлять их на раннем этапе, что увеличивает шанс на успешное лечение. Также ИИ-решения упрощают работу врачей при профилактических обследованиях, помогают в подборе оптимальных дозировок лекарств и увеличивают точность хирургических вмешательств.
Нейросеть для медиков: искусственный интеллект научился ставить диагнозы
Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи. Практически все основные технологии искусственного интеллекта сегодня находят применение в реальной практике организаций здравоохранения, повышая качество медицинских услуг и тем самым увеличивая продолжительность и качество жизни граждан. В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных.
Обзор Российских систем искусственного интеллекта для здравоохранения
Будущее рядом: как нас будет лечить искусственный интеллект? | Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей. |
Цельс | ИИ в медицине – Telegram | Журналисты приводят данные, согласно которым совокупный экономический эффект от использования искусственного интеллекта в медорганизациях достиг 13 млрд рублей еще в 2021 году. |
Искусственный интеллект в медицине | Обрфм | Практически все основные технологии искусственного интеллекта сегодня находят применение в реальной практике организаций здравоохранения, повышая качество медицинских услуг и тем самым увеличивая продолжительность и качество жизни граждан. |
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ | — Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность? |
Искусственный интеллект в медицине | Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. |
Применение искусственного интеллекта в московском здравоохранении
Она умеет анализировать многочисленные данные здоровья, может предсказывать ухудшение состояния, а также резервировать врачей и оборудование в случае возникновения критических ситуаций. Искусственный интеллект в российской медицине Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. Конечно, передовые технологии зачастую внедряются в США и Азии, однако и Европа Россия в том числе применяет многочисленные инновации и выстраивает стратегию использования ИИ в здравоохранении. Самые актуальные для нашей страны методы искусственного интеллекта в медицине — это распознавание речи и онлайн-диагностика заболеваний по медицинским картам и снимкам. В 2017 году Институт развития интернета начал работу над созданием системы ИИ, предназначенной для постановки диагноза по снимкам. Ожидается, что она позволит гражданам узнавать о состоянии здоровья по снимкам, в том числе и в домашних условиях. Ведутся также работы по созданию системы TeleMD, которая должна позволить онкологам связываться с коллегами для консультаций и своевременного выявления раковых клеток. Регулирование сферы на законодательном уровне Искусственный интеллект в медицине в России, как впрочем и в остальном мире, представляет собой абсолютно новое решение, требующее самого пристального внимания со стороны не только инвесторов, врачей и пациентов, но и законодателей. Пока данная сфера никак не регламентируется законодательством, а ведь в будущем ИИ может серьезно влиять на работу медицинских учреждений. При этом не стоит забывать, что стопроцентно точные и достоверные результаты машины показывают далеко не всегда: есть вероятность возникновения ошибок, поэтому так важно, чтобы была правовая база, в деталях регламентирующая особенности данной сферы.
Работы в этом направлении уже ведутся. К примеру, в стране обсуждается возможность создания специального государственного агентства по робототехнике и введения поста профильного премьера, чтобы специалисты могли курировать сферу в целом. Проблемы внедрения ИИ в здравоохранении: за и против Искусственный интеллект и интернет вещей в здравоохранении — очень перспективные области, внедрение и развитие которых имеет преимущества и недостатки. Повышение эффективности диагностики ИИ работает на основе огромных объемов данных, благодаря чему существенно увеличивается точность и эффективность постановки диагнозов. Чтобы изучить несколько миллионов медицинских карт, специалисту нужны годы, а компьютер справляется с этим за короткое время. Сокращение рутинных задач врачей Искусственный интеллект может взять на себя все задачи, которые отвлекают медицинский персонал от основной работы — спасения человеческого здоровья и жизни. Программы могут подбирать палаты, искать доступное оборудование, следить за исправностью медтехники и т. Уменьшение количества врачебных ошибок ИИ уже сегодня часто показывает более высокую точность при постановке диагнозов и выполнении других работ, чем врач. Если же доктор и ИИ будут работать вместе, то вероятность ошибок сводится практически к уровню статистической погрешности.
Инвестиции в ИИ в медицине сегодня чрезвычайно важны — они дают возможность развивать сферу, а в перспективе и полностью изменить весь облик здравоохранения в мире, сделать его более надежным, эффективным, комфортным и безопасным для человека. Однако в настоящее время не все идет гладко. У внедрения систем искусственного интеллекта в медицинскую сферу есть проблемы и недостатки, о которых нельзя забывать. Можно выделить несколько препятствий для ИИ в медицине. Проблемы используемых медицинских данных Для обучения ИИ используются уже имеющиеся медицинские карты пациентов, информация в которых может быть неполной, содержать всевозможные неточности и ошибки. Кроме того, в документах нет такой важной информации о больных, как особенности и условия их жизни, их привычки в том числе вредные и т. И сегодня отсутствуют эффективные механизмы сбора этих данных. Естественно, если использовать для обучения машин информацию, заведомо содержащую неточности и даже ошибки, качество работы систем будет снижаться. Непрозрачный алгоритм принятия решений Системы искусственного интеллекта работают по принципу «черного ящика»: оператор не может посмотреть, почему программа приняла именно такое решение, а не какое-то другое.
Практически невозможно определить, по каким причинам ИИ неверно решил задачу.
В российской практике, чтобы избежать самолечения со стороны пациентов, внедряется предварительное заполнение таких анкет, но без демонстрации пациентам возможных диагнозов: их видит только врач. Симптомчекеры особенно актуальны в случаях, когда к начинающему врачу приходят пациенты с обширной или размытой симптоматикой — в этих случаях программа может подсказать врачу не только диагнозы, которые наиболее вероятны при определённой клинической картине, но и рекомендации по лечению, а также направления на дополнительные исследования или на приём к узкоспециализированному врачу. В более продвинутых медицинских сервисах могут использоваться технологии компьютерного зрения. Например, такие технологии применяются при процедурах гастроскопии. В классической практике врач с помощью камеры эндоскопа исследует слизистые оболочки органов и самостоятельно ищет отклонения. В силу сложности данного исследования врач может упустить детали, важные для постановки верного диагноза. Компьютерное зрение помогает врачу замечать такие детали. Работа сервиса выглядит следующим образом: к камере эндоскопа подключается специальный алгоритм на базе искусственного интеллекта. На специальном мониторе он подсвечивает врачу области с возможными отклонениями и даёт рекомендации дополнительно сфотографировать и исследовать выделенные области.
После обследования врач загружает снимки в СППВР, которая помогает подтвердить или скорректировать ранее поставленный диагноз. Анализ такого снимка занимает у врача от одного до нескольких часов, что связано со сложностью данного вида исследований. Программа же выдаёт результат практически мгновенно, анализируя изображение по заданным алгоритмам. Врач видит уже размеченный снимок, на котором подсвечены опасные зоны, а также предварительные диагнозы, поставленные на основе анализа этого снимка. Главная ценность таких программ состоит в том, что они значительно сокращают время рутинных задач врача. Это позволяет сделать диагностику пациента более персонализированной и быстрой: СППВР ранжирует пациентов по степени тяжести, что также позволяет врачам своевременно реагировать на эти данные и оказывать помощь в первую очередь тем, кто нуждается в ней больше всего. Как создать медицинский сервис с использованием ИИ Как происходит разработка медицинских сервисов с использованием ИИ — с момента постановки задачи до выхода готового продукта в клиническую практику? Сбор данных. В первую очередь следует начать со сбора огромного массива данных реальных пациентов из тех медицинских учреждений, в которых они когда-либо проходили лечение. Для этого понадобится: выявить проблему и определить диагноз, с которым вы хотите работать; найти группы врачей, которые помогут вам валидировать вашу модель; собрать группу разработки, которая сможет выстроить эту модель и «обучить» её.
Прежде чем обработать данные, предстоит подготовить их. Для этого их нужно обезличить: в ходе этого процесса пациент получает код, а также убираются персональных данных ФИО, номер паспорта и т. При этом год рождения и диагноз, не обезличиваются. Разметка данных. После того, как данные прошли процедуру обезличивания, они передаются врачам на разметку. Прежде чем приступить к разметке данных, врачи определяют методологию, по которой они будут работать с разметкой. Они определяют диагноз, симптоматику, а также зоны и маркеры, с которыми они будут работать. Только после этого врачи вручную размечают снимки. Сегодня разметка данных, как правило, происходит с помощью программ, где врач в специальном интерфейсе очерчивает необходимые зоны. Повторная разметка.
После первичной разметки данных те же снимки проходят аналогичную процедуру, которую проводит уже другая группа врачей. На этом этапе отсеиваются сомнительные, спорные или неверные диагнозы, а также снимки, которые не могут быть валидированы в выбранной модели исследования. Обучение нейросети. Когда все снимки прошли разметку, этот набор данных попадает к разработчикам, которые на их основе начинают обучать нейронную сеть. Даже если сервис достиг определённого уровня работоспособности, он не может быть сразу использован на практике. Прежде он проходит этап валидации: группе врачей и обученной нейросети выдаются новые данные, которые им предстоит разметить. После этого результаты, полученные врачами и нейросетью, сопоставляются между собой, и модель получает класс точности. Регистрация в Министерстве здравоохранения. По завершении этапа валидации прототип должен пройти регистрацию в Минздраве и получить регистрационное утверждение. На этом этапе экспертная группа — на этот раз со стороны Минздрава — вновь внимательно проверяет работу модели и её алгоритмов.
Интеграция в систему здравоохранения. Только если сервис пройдёт проверку в Минздраве и получит регистрационное утверждение, он может использоваться в медицинских учреждениях. Диагностика заболеваний Чат-боты уже могут с высокой эффективностью помогать пациентам самостоятельно ставить диагноз, а также помогать в постановке диагноза и врачам. Например, ИИ компании Babylon Health предоставляет соответствующую информацию о здоровье на основе симптомов, описанных самим пациентом. Понятно, что симптомы могут быть описаны неверно или пациент может попытаться ввести ИИ в заблуждение умышленно. Поэтому в компании прямо заявляют, что их компьютерный ассистент не ставит диагноз. Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы. А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком». Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM. И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения.
А вот исследователи из Babylon Health продвинулись совершенно точно. Также современные ИИ решают проблемы приоритизации и медицинской сортировки.
Эта технология потенциально способна произвести революцию в области терапии таких заболеваний, как рак, генетические нарушения и аутоиммунные состояния. Предоставляя клеткам точные инструкции, мРНК-терапия может нацеливаться на конкретные молекулы, вызывающие заболевание, и запускать выработку терапевтических белков. Перспективы персонализированной медицины с помощью мРНК-терапии дают надежду на индивидуальные варианты лечения, которые ранее были немыслимы. Виртуальная реальность в медицине В то время как технология мРНК находится в центре внимания, другой технологией, которая добилась значительных успехов в 2023 году, является виртуальная реальность VR. В медицине виртуальная реальность стала мощным инструментом для революционизирования медицинского образования и улучшения ухода за пациентами. В медицинском образовании виртуальная реальность обеспечивает имитируемую среду, в которой студенты могут изучать и практиковать различные процедуры, операции и медицинские сценарии. Этот захватывающий тренинг позволяет студентам приобрести практический опыт, усовершенствовать свои навыки и повысить уверенность в себе перед выполнением процедур на реальных пациентах. Виртуальная реальность также предлагает ценную платформу для непрерывного медицинского образования, позволяя медицинским работникам быть в курсе новейших технологий и методик.
Более того, виртуальная реальность также доказала свою эффективность в улучшении ухода за пациентами. Этот подход может помочь справиться с болью, беспокойством и стрессом, создавая захватывающую обстановку или переживания, которые отвлекают пациентов от их физического дискомфорта. VR показала себя многообещающей в таких областях, как обезболивание, терапия психического здоровья, физическая реабилитация и даже помощь пациентам справляться с хроническими заболеваниями. Нейротехнология Одной из самых захватывающих областей инноваций в области медицинских технологий за последние годы стала область нейротехнологий. Ученые и исследователи добились огромных успехов в понимании сложной работы человеческого мозга и разработке технологий, которые непосредственно взаимодействуют с ним. С появлением интерфейсов мозг-компьютер BCI люди с параличом теперь могут управлять роботизированными конечностями и общаться с помощью силы мысли. Эти BCI обеспечивают прямую связь между мозгом и внешними устройствами, предлагая новый уровень независимости тем, кто ранее зависел от опекунов даже в выполнении простейших задач. Кроме того, нейропротезирование достигло значительных успехов, позволив людям с потерей конечностей восстановить не только движение, но и осязание.
Искусственный интеллект в российской медицине Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. Конечно, передовые технологии зачастую внедряются в США и Азии, однако и Европа Россия в том числе применяет многочисленные инновации и выстраивает стратегию использования ИИ в здравоохранении. Самые актуальные для нашей страны методы искусственного интеллекта в медицине — это распознавание речи и онлайн-диагностика заболеваний по медицинским картам и снимкам. В 2017 году Институт развития интернета начал работу над созданием системы ИИ, предназначенной для постановки диагноза по снимкам. Ожидается, что она позволит гражданам узнавать о состоянии здоровья по снимкам, в том числе и в домашних условиях. Ведутся также работы по созданию системы TeleMD, которая должна позволить онкологам связываться с коллегами для консультаций и своевременного выявления раковых клеток. Регулирование сферы на законодательном уровне Искусственный интеллект в медицине в России, как впрочем и в остальном мире, представляет собой абсолютно новое решение, требующее самого пристального внимания со стороны не только инвесторов, врачей и пациентов, но и законодателей. Пока данная сфера никак не регламентируется законодательством, а ведь в будущем ИИ может серьезно влиять на работу медицинских учреждений. При этом не стоит забывать, что стопроцентно точные и достоверные результаты машины показывают далеко не всегда: есть вероятность возникновения ошибок, поэтому так важно, чтобы была правовая база, в деталях регламентирующая особенности данной сферы. Работы в этом направлении уже ведутся. К примеру, в стране обсуждается возможность создания специального государственного агентства по робототехнике и введения поста профильного премьера, чтобы специалисты могли курировать сферу в целом. Проблемы внедрения ИИ в здравоохранении: за и против Искусственный интеллект и интернет вещей в здравоохранении — очень перспективные области, внедрение и развитие которых имеет преимущества и недостатки. Повышение эффективности диагностики ИИ работает на основе огромных объемов данных, благодаря чему существенно увеличивается точность и эффективность постановки диагнозов. Чтобы изучить несколько миллионов медицинских карт, специалисту нужны годы, а компьютер справляется с этим за короткое время. Сокращение рутинных задач врачей Искусственный интеллект может взять на себя все задачи, которые отвлекают медицинский персонал от основной работы — спасения человеческого здоровья и жизни. Программы могут подбирать палаты, искать доступное оборудование, следить за исправностью медтехники и т. Уменьшение количества врачебных ошибок ИИ уже сегодня часто показывает более высокую точность при постановке диагнозов и выполнении других работ, чем врач. Если же доктор и ИИ будут работать вместе, то вероятность ошибок сводится практически к уровню статистической погрешности. Инвестиции в ИИ в медицине сегодня чрезвычайно важны — они дают возможность развивать сферу, а в перспективе и полностью изменить весь облик здравоохранения в мире, сделать его более надежным, эффективным, комфортным и безопасным для человека. Однако в настоящее время не все идет гладко. У внедрения систем искусственного интеллекта в медицинскую сферу есть проблемы и недостатки, о которых нельзя забывать. Можно выделить несколько препятствий для ИИ в медицине. Проблемы используемых медицинских данных Для обучения ИИ используются уже имеющиеся медицинские карты пациентов, информация в которых может быть неполной, содержать всевозможные неточности и ошибки. Кроме того, в документах нет такой важной информации о больных, как особенности и условия их жизни, их привычки в том числе вредные и т. И сегодня отсутствуют эффективные механизмы сбора этих данных. Естественно, если использовать для обучения машин информацию, заведомо содержащую неточности и даже ошибки, качество работы систем будет снижаться. Непрозрачный алгоритм принятия решений Системы искусственного интеллекта работают по принципу «черного ящика»: оператор не может посмотреть, почему программа приняла именно такое решение, а не какое-то другое. Практически невозможно определить, по каким причинам ИИ неверно решил задачу. Стоимость Создание и внедрение систем искусственного интеллекта требует серьезного финансирования.
Национальная база медицинских знаний
Внедрение искусственного интеллекта (ИИ) в медицину открывает новые возможности для диагностики, лечения и исследований. Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением.
Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей
Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи. В частности, Всемирная организация здравоохранения указала на негативные последствия применения искусственного интеллекта в медицине, если в основе его разработки и использования не будут заложены этические принципы и защита прав человека. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника. Сбор данных и искусственный интеллект в медицине.
Ставит диагнозы и придумывает лекарства
- «Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
- Польза ИИ в медицине
- Для чего в российских регионах используют ИИ в медицине - Российская газета
- Машины лечат людей: как нейросети используют в российской медицине
- Столичные алгоритмы
Эксперт объяснил провал искусственного интеллекта в медицине
Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении. "Искусственный интеллект, даже какой-то удачный вариант его изобретения и внедрения, может повести себя неконтролируемо в чем-то. Попробуем проанализировать, как решения на основе искусственного интеллекта применяются в медицинских учреждениях и как они влияют на качество диагностики и лечения. Преимущества искусственного интеллекта. Благодаря использованию технологий ИИ в медицине, сможет повысится эффективность оказания медицинских услуг, практически единогласно говорят участники рынка.
ИИ в медицине: тренды и примеры применения
Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной или прецизионной медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности. В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины. Медико-технологические достижения, произошедшие в этот полувековой период, позволили вывести здравоохранение на новый уровень. Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных. Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования.
Здравоохранение — лидер по применению искусственного интеллекта Эксперт по искусственному интеллекту «Центрального научно-исследовательского института организации и информатизации здравоохранения» Минздрава России Александр Гусев отмечает: «Сейчас сфера искусственного интеллекта является мировым рекордсменом в мире по размеру инвестиций, вливаемых в программные продукты с использованием технологий ИИ, и по количеству сделок. Здравоохранение — это та отрасль, где инвесторы имеют максимальные надежды на то, что эти продукты будут востребованы и популярны». По словам А. Это абсолютный рекорд по сравнению с другими отраслями. А по размеру привлеченных средств у здравоохранения второе место — 2,766 млрд. Впереди только транспорт и логистика. Но, несмотря на эти рекорды, с прошлого года все острее становится дискуссия о доверии и ответственном отношении всех участников сферы ИИ. Слишком много спекуляций. Большая часть ни к чему плохому не привела, однако 18 процентов причинили вред разной степени тяжести, в том числе были зафиксированы 4 смертельных случая. Будет доказанная безопасность, будет и доверие. Стандарты — залог доверия По мнению Дмитрия Павлюкова, которое он высказал на форуме, в условиях формирования доверия ключевую роль играет стандартизация в области применения ИИ. Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна. С одной стороны, высок уровень технологической зрелости, с другой — не менее высок уровень ответственности, связанной с рисками для граждан в результате некорректной работы системы. Поэтому стандарты — это инструмент нахождения компромисса между безопасностью системы новой технологии для людей и простотой продвижения новых технологий на практике. В прошлом году была разработана перспективная программа стандартизации по приоритетному направлению «Искусственный интеллект» на 2021-2024. В ней есть раздел, посвященный стандартам ИИ в области здравоохранения. При разработке программы подразумевался обязательный этап обучения на прецедентах.
Роботизированные технологии позволяют врачам с минимальным опытом или практикующим врачам, плохо знакомым с той или иной операционной процедурой, проводить лечение на уровне, которого они не смогли бы достичь даже в результате многолетней практики. Помощь робота во время операции уменьшает последствия тремора рук оперирующего врача, а также устраняет случайные движения. Робот Da Vinci, который считается одним из самых передовых в мире хирургических роботов, предоставляет врачу набор хирургических инструментов, которые можно использовать при проведении минимально инвазивной хирургии, и обеспечивает лучший контроль над обычными процедурами. Приобрел большую популярность и миниатюрный мобильный робот Heartlander. Он минимизирует повреждения, которые необходимо причинить пациенту для доступа к сердцу во время операции. Робот входит в грудную клетку через небольшой разрез ниже грудины. Используя это устройство, хирурги теперь могут выполнять стабильное и локализованное картирование, зондирование и лечение всей поверхности сердца. Возможности нейронных сетей помогают трансформировать сферу радиологии, экономя время и деньги медицинских организаций. После того, как медицинское изображение получено с помощью МРТ, компьютерной томографии, ультразвукового или рентгенологического исследования, врач должен проанализировать его на наличие каких-либо отклонений или признаков заболеваний. Для выявления сколько-нибудь серьезного состояния требуется интерпретация нескольких визуализационных исследований. После обучения с использованием больших наборов данных исследований системы на основе ИИ способны анализировать медицинские изображения и сообщать об обнаруженных особенностях, например, небольших опухолях, которые человеческий глаз может упустить. Такие системы выявляют закономерности и предоставляют информацию о характеристиках любых отклонений от нормы, экономя время врача. В тех случаях, когда у пациента есть несколько снимков, сделанных на протяжении некоторого времени, искусственный интеллект также может анализировать динамику заболевания. Так, для проверки работы своей системы на основе ИИ в корпорации Google провели эксперимент: снимки предложили изучить шестерым сертифицированным радиологам. В тех случаях, когда диагноз ставился по единственному снимку, искусственный интеллект справился так же или даже лучше людей. Сегодня рядом с живыми медсестрами в госпиталях США уже работают компьютерные помощники, от которых можно получать советы, подсказки и другую информацию. Например, цифровой ассистент Салли, улыбающаяся женщина в белом халате, или медбрат Уолт.
Но мы поняли, что для адекватной проверки нашей ИИ-платформы необходимо не только создать новые препараты с новым механизмом действия, но и довести их до клинической проверки. Только тогда можно будет сказать, что наша технология работает», — отметил Жаворонков. Фаза 2 В настоящее время лекарство проходит двойное слепое рандомизированное плацебо-контролируемое исследование, в котором участвуют 60 пациентов в 40 разных клиниках США и Китая. Если эта фаза пройдет успешно, испытание продолжится с большим количеством вовлеченных людей. Текущее исследование займет около 12 недель, а его итоги планируется подвести в следующем году. Проблема в том, что он с той же эффективностью способен создавать и новые отравляющие вещества и оружие.
Искусственный интеллект в клинической медицине
Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Многие россияне опасаются применения ИИ в медицине. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Многие россияне опасаются применения ИИ в медицине.
ACHIEVEMENTS AND PROSPECTS OF ARTIFICIAL INTELLIGENCE IN MEDICINE
- Роман Душкин: «Медицина — это область доверия»
- Мы рекомендуем
- Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей
- Искусственный интеллект в клинической медицине | Новый Элемент
- Искусственный интеллект в сфере здравоохранения — Википедия