7 канал Красноярск. Подписаться. Коллектив красноярских ученых разработал именно такой метод обнаружения фенола в промышленных сточных водах. Он основан на использовании композитного материал, состоящего из нановолокон оксида алюминия и детонационных наноалмазов. Ученые из Красноярского государственного медицинского университета разработали метод победить онкологию при помощи слабого магнитного поля и наночастиц. красноярские ученые предлагают использовать для этого алмазы.
Красноярские ученые научились изготавливать наноцеллюлозу
Биолюминесцентные тесты откроют дорогу нанометериалам в медицину | Также красноярские ученые научились выращивать помидоры без солнечного света. |
Красноярские ученые разработали биопластырь » Запад24 | Главная Наука ИНХ в зеркале прессы Ученые из Новосибирска и Красноярска создали новый материал из нанотрубок и наноалмазов. |
Красноярские ученые создали материал из наноалмазов и нанотрубок | Еще в Советском союзе ученые Института биофизики в Красноярске получили первые наноалмазы — серый порошок, получаемый из серии коротких взрывов углерода. |
Российские ученые научились делать наноалмазы в лабораторных условиях | Коллектив красноярских ученых, в состав которого вошли исследователи Красноярского научного центра СО РАН, после анализа научных работ ученых со всего мира по магнитным нанодискам выяснил, что новое поколение. |
Красноярские ученые предлагают проверять воду на яд наноалмазами
Он недорог, прост в производстве и может обнаружить токсичные вещества, в частности фенол, в производственных сточных водах. Результаты исследования опубликованы в журнале Journal of Nanoparticle Research. Фенол — один из наиболее распространенных загрязнителей природных вод. Он используется в производстве пластмасс, фармацевтических препаратов, пестицидов и гербицидов. Существующие высокочувствительные методы определения фенола занимают много времени, требуют многоэтапных и трудоемких процедур пробоподготовки и использования дорогостоящего специализированного оборудования. В то же время для эффективного мониторинга промышленных сточных вод необходимы быстрые и недорогие методы определения опасных веществ. Коллектив красноярских ученых из ФИЦ «Красноярский научный центр СО РАН» и Сибирского федерального университета разработал недорогой, простой в производстве и использовании композитный материал для обнаружения фенола в промышленных сточных водах. Он состоит из нановолокон оксида алюминия и детонационных наноалмазов.
Новый материал может найти широкое применение — от использования в производстве новых типов дисплеев до медицинской диагностики. Материал представляет собой прочно связанную конструкцию из вертикально упорядоченных нанотрубок на поверхность которых нанесен слой наноалмазов. Полученный материал обладает рядом уникальных свойств, говорится в статье ученых, опубликованных в журнал Scientific Reports.
Существующие высокочувствительные методы определения фенола занимают много времени, требуют многоэтапных и трудоемких процедур пробоподготовки и использования дорогостоящего специализированного оборудования. В то же время для эффективного мониторинга промышленных сточных вод необходимы быстрые и недорогие методы определения опасных веществ. Коллектив красноярских ученых из ФИЦ «Красноярский научный центр СО РАН» и Сибирского федерального университета разработал недорогой, простой в производстве и использовании композитный материал для обнаружения фенола в промышленных сточных водах. Он состоит из нановолокон оксида алюминия и детонационных наноалмазов. Композиционный материал имеет сетчатую структуру, в которой кластеры наноалмазов распределены по поверхности нановолокон. Специалисты отмечают, что такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон. Например, они имеют более высокую термическую и механическую стабильность, повышенную химическую и биологическую стойкость, простоту очистки и более длительный срок службы. Одно из таких — фенол и его производные. В связи с этим существует необходимость в мониторинге уровня загрязнения промышленных сточных вод, позволяющем легко и эффективно проводить анализ воды «на месте».
Интенсивность цвета пропорциональна содержанию фенола в пробе и может быть легко оценена «на месте» по цветовой шкале», — объяснил один из соавторов работы Никита Ронжин, кандидат биологических наук, научный сотрудник Института биофизики СО РАН Специалисты ФИЦ КНЦ отмечают, что разработанный композит можно применять многократно, в серии как минимум из шести последовательных тестов. После каждого использования необходимо всего лишь промыть композитный диск деионизированной водой для удаления остатков компонентов реакции. Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре. Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона. Проанализировать результаты можно будет специально созданной программой. Полученные результаты открывают перспективы для разработки нового класса систем индикации многоцелевого использования, например, 2D и 3D сенсоров.
Красноярские учёные создали экологичный пластик
Исследователи отмечают, что наноструктуры подобных форм синтезируются только на поверхности с нанесенным на нее золотом. Нанокристаллы силицида железа с различной огранкой позволяют связать другие материалы с кремнием — основным материалом электроники. Они могут применяться в качестве электрических наноразмерных контактов в полупроводниках с низким непредусмотренным сопротивлением тока. Также такие материалы можно использовать для создания нанопроволоки или для выращивания светоизлучающих диодов инфракрасного диапазона. Благодаря экологической безопасности кристаллы силицида металла с изменяемой формой и ориентацией будут служить для разработки лазерных диодов в волоконно-оптических линиях. Важное значение — их можно использовать для последующего синтеза на их основе других наночастиц и материалов», — рассказал научный сотрудник Института физики им. Исследование проводилось при поддержке Российского научного фонда, Российского фонда фундаментальных исследований и Правительства красноярского края.
В ходе исследований учёные заметили механические напряжения на боковой поверхности диска. Причины две: неравномерное тепловое расширение слоёв в процессе изготовления и избыточная поверхностная энергия на границе раздела слоёв. При этом эффективность наноскальпеля повышается при увеличении магнитного момента наночастиц. Но такое увеличение может вызвать слипание наночастиц в процессе приготовления суспензии. Учёным нужно было найти компромисс. Таким образом, учёные решили проблему наноскальпелей, и вскоре такой метод лечения можно будет применять на практике.
Об этом сообщили в Красноярском научном центре Сибирского отделения Российской академии наук. Созданное вещество проявляет высокую стабильность и реакционную способность. Учёные провели моделирование биологических свойств кристаллов и пришли к выводу, что они эффективно взаимодействуют с белками.
Метод основан на способности некоторых частиц работать в человеческом организме подобно навигатору. Когда они добираются до нужных клеток тела, исследователи включают магнитное поле, и рецепторы клетки принимают сигнал о начале регенерации — процесса восстановления тканей. Наночастицы вводятся пациенту шприцом — это обычный укол, добавила Анна Кичкайло.
Красноярские ученые придумали устройство для создания искусственной вечной мерзлоты
Ученые «Енисейской Сибири» с коллегами-исследователями Красноярского научного центра СО РАН и Красноярского государственного медицинского университета разработали магнитный наноскальпель для адресной и малоинвазивной микрохирургии трудноизлечимых опухолей. Одно из трудноизлечимых онкологических заболеваний — так называемый злокачественный асцит или жидкая опухоль. Жидкость с раковыми клетками создает благоприятную для заболевания среду, скапливаясь в брюшной или грудной полости. Существующие сейчас методы терапии такого онкологического заболевания малоэффективны и высокотоксичны.
Как пояснила ученый, пациенту просто надо будет делать укол с лекарством, в котором доработанные наночастицы. Таким образом, они и будут заниматься всей работой как доктора. Данный метод призван помочь в заживлении ран, хрящей и костей.
С его помощью исследователи открыли нанотрубки, нановолокна, наноалмазы, графен. Они, в свою очередь, необходимы при создании современных лекарств или маркеров, способных обнаружить серьезные болезни на ранней стадии. Одна из часто возникающих проблем — токсичность наночастиц. У исследователей пока нет полной уверенности в безопасности таких медицинских препаратов», — рассказали в центре СО РАН.
Исследователи отмечают, что магнитомеханическая противораковая терапия с использованием магнетитовых наночастиц, активирующихся низкочастотным переменным магнитным полем, показала высокую результативность в исследованиях на мышах. Исследование было поддержано Министерством науки и высшего образования Российской Федерации. Новости по теме.
Новый многоразовый композит из нановолокон и наноалмазов выявит токсичные вещества в воде
Учёные СО РАН выявили способ определения загрязнения воды с помощью наноалмазов. Ученые из Новосибирска вместе со своими коллегами из Красноярска создали интересный материал, соединив для этого углеродные нанотрубки с наноалмазами. Ученые отмечают, что исходные наноалмазы такими свойствами не обладают, из них крайне сложно получить устойчивую суспензию даже при ее длительной обработке ультразвуком, позволяющим разъединить наночастицы. Красноярские ученые синтезировали гибридные наночастицы, которые в будущем могут применяться в медицине. Красноярские ученые объяснили успешное применение магнитных наночастиц из оксида железа в лечении злокачественной опухоли карциномы Эрлиха. Ученые отмечают, что исходные наноалмазы такими свойствами не обладают, из них крайне сложно получить устойчивую суспензию даже при ее длительной обработке ультразвуком, позволяющим разъединить наночастицы.
Красноярские ученые разработали метод лечения переломов наночастицами
Для лиц старше 16 лет. Учредитель — Федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания». Главный редактор Панина Елена Валерьевна.
Поэтому древесные отходы, такие как опилки, могут перерабатываться и использоваться в медицине, косметологии, пищевой промышленности и других областях. Однако для этого необходимо разработать и подобрать эффективные, но при этом нетоксичные методы превращения древесины в полезные компоненты. Для этого они разработали единый технологический цикл, объединяющий разные безвредные способы переработки. Обычно для приготовления целлюлоз используются токсичные серо- и хлорсодержащие компоненты, наносящие вред окружающей среде.
Специалисты предложили впервые объединить экологически безопасные процессы гетерогенного каталитического гидролиза и перекисной делигнификации, в которых используются нетоксичные реагенты — перекись водорода, вода и органические кислоты. В результате ученые получили из опилок березы микрокристаллическую, микрофибриллированную и нанокристаллическую целлюлозы, а также ксилозу и адсорбенты с поглощающей активностью в два раза выше, чем у коммерческих аналогов.
Он недорог, прост в производстве и может обнаружить токсичные вещества, в частности фенол, в производственных сточных водах. Результаты исследования опубликованы в журнале Journal of Nanoparticle Research. Фенол — один из наиболее распространенных загрязнителей природных вод. Он используется в производстве пластмасс, фармацевтических препаратов, пестицидов и гербицидов. Существующие высокочувствительные методы определения фенола занимают много времени, требуют многоэтапных и трудоемких процедур пробоподготовки и использования дорогостоящего специализированного оборудования. В то же время для эффективного мониторинга промышленных сточных вод необходимы быстрые и недорогие методы определения опасных веществ. Коллектив красноярских ученых из ФИЦ «Красноярский научный центр СО РАН» и Сибирского федерального университета разработал недорогой, простой в производстве и использовании композитный материал для обнаружения фенола в промышленных сточных водах.
Он состоит из нановолокон оксида алюминия и детонационных наноалмазов.
Только в этом случае проект получит средства для дальнейшей работы — для этого требуется около 800 млн. Светящийся белок в противоопухолевой терапии Лаборатория фотобиологии Института биофизики СО РАН является одной из ведущих в мире по исследованиям в области биолюминесценции способности живых организмов светиться. Старт этому направлению дал красноярский академик Иосиф Гительзон. Красноярские ученые впервые обнаружили и клонировали гены ряда светящихся белков морских беспозвоночных и создали эффективные конструкции, позволяющие получать эти белки в неограниченных количествах с помощью бактерий и клеток насекомых. Применение биолюминесцентного белка в диагностике дает возможность наблюдать, как помеченные белком клетки взаимодействуют с другими тканями подопытного животного.
Источник: strf. Биолюминесцентный светящийся белок может быть использован при проведении медицинских анализов — в частности в диагностике, заменяя радиоизотопную метку. Белок с помощью адресных молекул направляют в пораженные органы-мишени, а затем, вводя внутривенно субстрат для свечения, регистрируют кванты света с помощью приборов. Этот анализ позволяет с точностью до нескольких клеток проследить процесс увеличения или уменьшения опухоли. Таким образом, можно очень точно оценивать эффективность противоопухолевой терапии. Этот метод уже опробован на лабораторных животных.
Также перспективно применение биолюминесцентных белков для мониторинга состояния окружающей среды. Использование биолюминесцентного белка в диагностике позволяет с точностью до нескольких клеток проследить процесс увеличения или уменьшения опухоли Источник: niipfm. С помощью биолюминесценции можно наглядно иллюстрировать биологические процессы — их, в буквальном смысле, видно.
Красноярские ученые получили магнитные наночастицы для медицины биогенным путем
Главный телеканал Красноярского края, рассказываем о последних новостях Красноярска и районов края. Город - 14 марта 2018 - Новости Красноярска - Красноярские ученые вместе со специалистами НПП "Радиосвязь" холдинга "Росэлектроника" (входит в Ростех) разработали метод быстрого сращивания костей с помощью доработанных наночастиц, а также слабых магнитных полей. Главная Наука ИНХ в зеркале прессы Ученые из Новосибирска и Красноярска создали новый материал из нанотрубок и наноалмазов. Красноярские ученые разработали биопластырь Красноярские ученые создали повязки из разрушаемых биополимеров для лечения повреждений кожи. Красноярские ученые использовали наноалмазы для выявления фенола в воде.
Красноярские ученые создали новый нанокомпозитный 2D-материал
Новый композиционный материал создали ученые из Красноярска и Новосибирска на основе нанотрубок и наноалмазов. Ученые добавляют, что новый светящийся материал можно использовать в различных отраслях: в медицине, электронике и других. Коллектив красноярских ученых, в состав которого вошли исследователи Красноярского научного центра СО РАН, после анализа научных работ ученых со всего мира по магнитным нанодискам выяснил, что новое поколение. Но сибирским ученым удалось выяснить, что наноалмаз засветится, если он будет находиться на кончике углеродной трубки, которая в несколько раз усиливает мощность даже небольшого электрического поля». Коллектив красноярских ученых, в состав которого вошли исследователи Красноярского научного центра СО РАН, после анализа научных работ ученых со всего мира по магнитным нанодискам выяснил, что новое поколение. Группа ученых из Новосибирска и Красноярска совместно с немецкими коллегами разработали композитный материал на основе углеродных нанотрубок и наноалмазов.
Ученые из Сибири создали светящийся материал на основе наноалмазов
Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона. Проанализировать результаты можно будет специально созданной программой. Полученные результаты открывают перспективы для разработки нового класса систем индикации многоцелевого использования, например, 2D и 3D сенсоров.
Кроме того, предлагаемый композит может быть использован в качестве матрицы-хозяина для иммобилизации ферментов, что создает предпосылки для создания новых многоразовых систем медицинской диагностики», — рассказал Илья Рыжков, доктор физико-математических наук, ведущий научный сотрудник Института вычислительного моделирования СО РАН. Работа частично поддержана Российским фондом фундаментальных исследований проект 18—29—19078. Красноярские ученые разработали новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов.
Одно «но» - красноярские ученые предлагают использовать для этого алмазы. Не простые, природные, а «умные» наноалмазы. Их получают при помощи содержащих углерод взрывчатых веществ например, смесь тротила и гексогена. Взрывают в замкнутой камере при дефиците кислорода и готово дело: был обычный алмаз — стал нано алмаз.
Обычно для приготовления целлюлоз используются токсичные серо- и хлорсодержащие компоненты, наносящие вред окружающей среде.
Специалисты предложили впервые объединить экологически безопасные процессы гетерогенного каталитического гидролиза и перекисной делигнификации, в которых используются нетоксичные реагенты — перекись водорода, вода и органические кислоты. В результате ученые получили из опилок березы микрокристаллическую, микрофибриллированную и нанокристаллическую целлюлозы, а также ксилозу и адсорбенты с поглощающей активностью в два раза выше, чем у коммерческих аналогов. Для того, чтобы реакция прошла успешно и наиболее эффективно, исследователи определили оптимальные условия ее проведения: температуру, время, необходимые реагенты и их концентрацию. Например, одним из важных решений было использовать вместо токсичных минеральных кислот — твердые кислотные катализаторы диоксид циркония и оксид титана. Это позволило не только повысить безопасность проводимых реакций, но и увеличить число получаемых продуктов, сообщает Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук».
Огромным преимуществом такого метода будет адресное уничтожение опухоли без повреждения здоровых тканей», — отметил доцент кафедры общей физики СФУ Роман Руденко. Однако есть и сложность — эти частицы обладают собственным магнитным моментом и собираются в крупные образования, что недопустимо во время операции. Чтобы решить эту проблему, ученые предложили способ управления магнитным моментом при помощи механических напряжений в самом нанодиске. Нанодиск представляет собой сердечник из никеля, «обёрнутый» в безопасное для человека гипоаллергенное золотое покрытие.
Красноярские учёные создали экологичный пластик
Ученые «Енисейской Сибири» с коллегами-исследователями Красноярского научного центра СО РАН и Красноярского государственного медицинского университета разработали магнитный наноскальпель для адресной и малоинвазивной микрохирургии трудноизлечимых опухолей. Главная → Новости → Техника/Технологии → Красноярские ученые разработали эффективный композит для определения фенола в промышленных сточных водах. Группа ученых из Новосибирска и Красноярска совместно с немецкими коллегами разработали композитный материал на основе углеродных нанотрубок и наноалмазов. Ученые отмечают, что исходные наноалмазы такими свойствами не обладают, из них крайне сложно получить устойчивую суспензию даже при ее длительной обработке ультразвуком, позволяющим разъединить наночастицы. Красноярские ученые использовали наноалмазы для выявления фенола в воде.