В России коэффициент Джини в последние годы держится на уровне 0,41. Ниже приведены коэффициенты Джини дохода для каждой страны, по которой в CIA World Factbook представлены данные. Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат.
Рекомендуем
- Коэффициент Джини | RikoNw
- Коэффициент Джини
- В России зафиксирован рост доходного неравенства
- Коэффициент Джини |
- Судьбы глобального неравенства
- Уровень жизни. Динамические ряды
Доверять Джини или нет: вот в чем вопрос
Пусть одни децили общества получают поменьше, а другие - побольше. График начинает выглядеть по-иному. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини. Если доходы равны, графики совпадут, а коэффициент будет равен нулю. Если доходы сосредоточит только одна доля населения, то коэффициент станет равен единице.
Вот в этих пределах неравенство и считают.
И такая картина наблюдается во многих развитых странах. А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию. Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Делается это следующим образом: Строится прямая Лоренца на основе собранных статистических данных. Затем рассчитывается коэффициент. Он берется, как отношение площади образованной фигуры к площади треугольника, отображающей прямую равенства.
Фактически ищут 2 площади.
Коэффициент Джини — что это такое? Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами. Можно также встретить его другие названия, например, индекс Джини, индекс справедливости, индекс социального неравенства. Изначально данная модель оценки финансового неравенства между слоями населения была разработана и предложена итальянским статистиком и демографом Коррадо Джини в 1912 году в работе под названием «Вариативность и изменчивость признака» известна также как «Изменчивость и непостоянство» , в честь которого впоследствии и была названа.
Коэффициент Джини для богатства, как правило, намного выше, чем для дохода. Коэффициент Джини является важным инструментом для анализа распределения дохода или богатства в стране или регионе, но его не следует путать с абсолютным измерением дохода или богатства. Страна с высоким доходом и страна с низким доходом могут иметь одинаковый коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: например, в Турции и США коэффициент Джини дохода составляет около 0,39—0,40, согласно Организация экономического сотрудничества и развития ОЭСР ,.
Графическое представление индекса Джини Индекс Джини часто представляется графически в виде кривой Лоренца ,. Коэффициент Джини равен площади под линией совершенного равенства 0,5 по определению минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Другими словами, это удвоенная площадь между кривой Лоренца и линией идеального равенства.
Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая эту цифру из 0,5 площадь под линией равенства , мы получаем 0,3, которую затем делим на 0,5. Другой способ представить коэффициент Джини как меру отклонения от идеального равенства.
Чем дальше кривая Лоренца отклоняется от идеально ровной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равноправным является общество. В приведенном выше примере Гаити более неравноправно, чем Боливия. В 1820 г.
Источник: Всемирный банк. COVID-19, вероятно, окажет дальнейшее негативное влияние на равенство доходов.
Коэффициент Джини (распределение дохода)
Коэффициент концентрации Джини G используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]: где — накопленная частость доля численности единиц совокупности; — накопленная доля значений признака i-ой группы, приходящихся на все единицы совокупности. Иным способом расчета коэффициента является геометрический метод. А именно, через кривую Лоренца. Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2].
И на её основании можно вывести коэффициент Джинни. Для простоты понимания рассмотрим рисунок 1.
Это прослойка образованных людей с высокими доходами, занимающихся интеллектуальным трудом.
Именно на их потенциале главным образом строится инновационная экономика, которая дает высокую добавленную стоимость и рост благосостояния общества в целом. Средний класс как условие модернизации экономики России — «Экономическая теория» Проверьте в нашем экспресс-тесте , попадаете ли вы в категорию среднего класса по российским меркам, или в масштабах всего мира — в калькуляторе доходов и богатства. В развитых странах с крупной прослойкой среднего класса экономическое неравенство, как правило, ниже.
Такая ситуация характерна, например, для Европы. Ниже представлено распределение доходов и богатства между слоями населения в евро по паритету покупательной способности ППС.
Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными.
Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов. В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5. В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты. Он полностью учитывает разброс значений признака вариационного ряда, в то время как фондовый и децильный коэффициенты учитывают разрыв, складывающийся между крайними децильными группами[3]. Таким образом, коэффициент Джини может быть использован как дополнительный показатель к коэффициенту фондов в оценке состояния экономической безопасности по уровню неравенства населения по доходам. Список источников и литературы: 1.
Указ Президента РФ от 13. Указ Президента РФ от 7 мая 2018 г. N 204 "О национальных целях и стратегических задачах развития Российской Федерации на период до 2024 года" 3.
Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление.
Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать.
Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate.
Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов.
Содержание
- Индекс Джини: новые горизонты применения - Сетевое аналитическое СМИ «РЕПОСТ»
- Коэффициент Джини (распределение дохода)
- World Bank Indicatorss
- Индекс Джини: в каких странах мира самая маленькая разница между доходами богатых и бедных
В Турции рекордно увеличился разрыв между богатыми и бедными
28 фев в 21:49. Пожаловаться. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. По коэффициенту Джини (статистический показатель степени экономического неравенства в обществе) Россия уступает лишь Бразилии. Коэффициент Джини стран мира ежегодно с 1967 по 2020 годы в виде рейтинга и визуализации. Ниже представлен список стран по показателям неравенства доходов, включая коэффициент Джини, по данным Организации Объединённых Наций (ООН).
Как оценивается социальное неравенство
Более высокий индекс Джини указывает на большее неравенство, когда люди с высоким доходом получают гораздо больший процент от общего дохода населения. Из-за данных и других ограничений индекс Джини может завышать неравенство доходов и может скрывать важную информацию о распределении доходов. Понимание индекса Джини В стране, где каждый житель имеет одинаковый доход, коэффициент Джини дохода будет равен 0. Страна, в которой один резидент получил весь доход, а все остальные ничего не заработал, будет иметь коэффициент Джини дохода 1. Тот же анализ может быть применен к распределению богатства «коэффициент Джини богатства» , но поскольку богатство труднее измерить, чем доход, коэффициенты Джини обычно относятся к доходу и выглядят просто как «коэффициент Джини» или «индекс Джини», без указав, что они относятся к доходу. Коэффициенты богатства Джини, как правило, намного выше, чем для дохода. Коэффициент Джини — важный инструмент для анализа распределения доходов или богатства в стране или регионе, но его не следует принимать за абсолютное измерение дохода или богатства. По данным ОЭСР , в стране с высоким и низким уровнем доходов может быть один и тот же коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: в Турции и США в 2016 году коэффициенты Джини по доходам составляли около 0,39-0,40.
Графическое представление индекса Джини Индекс Джини часто представлен графически через кривую Лоренца , которая показывает распределение доходов или богатства путем нанесения процентиля населения по доходу на горизонтальную ось и совокупного дохода на вертикальной оси. Коэффициент Джини равен площади под линией полного равенства 0,5 по определению за вычетом площади под кривой Лоренца, деленной на площадь под линией абсолютного равенства. Другими словами, это вдвое больше площади между кривой Лоренца и линией полного равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая это число из 0,5 площадь под линией равенства , мы получаем 0,3, которое затем делим на 0,5.
Полученная кривая и будет характеризовать степень концентрации. Такое распределение отображается прямой, проходящей из нижнего левого угла графика к верхнему правому углу и являющейся линией равномерного распределения. Чем сильнее концентрация изучаемого признака, тем заметнее кривая Лоренца отклоняется вниз от линии равномерного распределения, и наоборот, чем слабее концентрация, тем ближе будет кривая к прямой. Степень концентрации определяется площадью фигуры А, ограниченной линией равномерного распределения и кривой Лоренца.
В приведенном выше примере Гаити более неравное, чем Боливия. Индекс Джини во всем мире Глобальный Джини По оценкам Кристофа Лакнера из Всемирного банка и Бранко Милановича из Городского университета Нью-Йорка , коэффициент Джини для глобального дохода составлял 0,705 в 2008 году по сравнению с 0,722 в 1988 году. Однако цифры значительно различаются. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Лакнер и Миланович показывают снижение неравенства примерно в начале 21 века, как и книга Бургиньона 2015 года: Источник: Всемирный банк. Экономический рост в Латинской Америке, Азии и Восточной Европе во многом стал причиной недавнего снижения неравенства доходов. В то время как неравенство между странами в последние десятилетия снизилось, неравенство внутри стран возросло. Джини внутри стран Ниже приведены коэффициенты Джини дохода для каждой страны, по которой в CIA World Factbook представлены данные: Некоторые из беднейших стран мира Центральноафриканская Республика имеют одни из самых высоких в мире коэффициентов Джини 61,3 , тогда как многие из самых богатых стран Дания имеют одни из самых низких 28,8. Однако взаимосвязь между неравенством доходов и показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения. С 1950 по 1970 год неравенство, как правило, уменьшалось, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения, а затем резко увеличилось. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен.
Человек может ознакомиться с индексом, к примеру, в Нидерландах , и узнать, насколько местные состоятельные граждане зарабатывают больше, чем среднестатистические. На показатель, отражающий неравенство доходов, влияют многие факторы. Всего показатель насчитывает свыше 10 вариаций, которые применяются в отдельных случаях. Коэффициент позволяет также определить процент роста или падения ВВП, темпы роста долгов граждан перед банками, возрастание поляризации в политике или уровня нищеты. Индекс не учитывает доходы от продажи услуг или продуктов собственного производства или выращивания, а также источники прибыли. Половина населения может получать заработную плату, находясь на официальной должности, а другая часть — от сданного жилья в аренду, процентов со счетов в банке и прочего. Индекс Джини не применяется для анализа государств, где действует плановая экономика, поскольку уровень дохода в таких странах априори не имеет большого разрыва между трудящимися, так как регулируется государством. Также этот коэффициент не является мерилом уровнем экономического развития и богатства страны.
Индекс Джини в странах мира
Коэффициент Джини снизился до 0,391 в 2014 году, и его текущее значение означает худший показатель с 2009 года, уточняет Turkish Minute. Latest numbers for economic inequality, which is the difference in how assets, wealth, or income are distributed among individuals and/or populations. It is also described as the gap between rich and poor, income inequality, wealth disparity, wealth and income differences, or the wealth gap. Ниже приведены коэффициенты Джини дохода для каждой страны, по которой в CIA World Factbook представлены данные. Может показаться, что самый низкий коэффициент Джини существует только в Нарнии, но и на нашей карте все же есть страна, в которой удалось добиться равномерного распределения благ, — Словакия. Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца.
Gini inequality index - Country rankings
Может показаться, что самый низкий коэффициент Джини существует только в Нарнии, но и на нашей карте все же есть страна, в которой удалось добиться равномерного распределения благ, — Словакия. Самая высокая степень социального неравенства по коэффициенту Джини отмечена в странах Африки, Латинской Америки, Азии. Европейский союз коэффициенты Джини государств-членов, согласно Евростат. Коэффициент Джини по странам мира. Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой.
Коэффициент Джини, значение по странам мира и в России
Все знают, что в ней поддерживается чудовищное, сверхъестественное, запредельное экономическое неравенство по мнению многих, самое высокое в мире. Какие здесь могут быть сомнения? Как ни странно, но могут. Согласно официальным оценкам Росстата, в России коэффициент Джини по доходам после 1993 г.
Много это или мало на фоне других стран? Строго говоря, ни то ни другое. Отталкиваясь от тех оценок, которые дает Росстат, Россию следовало бы отнести скорее к группе стран-середняков.
В совершенно ином свете российская ситуация предстает в недавней работе Филипа Новокмета, Пикетти и Габриэля Цакмана. Во-первых, по их расчетам, уровень неравенства в России намного выше, чем говорит официальная статистика: так, коэффициент Джини по доходам составляет сейчас не 0,41, а 0,55. Во-вторых, его динамика выглядит совсем иначе.
Пик неравенства пришелся на 1996 г. Еще одну историю, не имеющую ничего общего с двумя предыдущими, рассказывают эксперты Всемирного банка. По этим оценкам, за последние полтора десятилетия неравенство в России устойчиво и быстро снижалось.
С 1998 по 2012 г. Сжатие неравенства более чем на 15 п. Наконец, в качестве завершающего штриха сошлюсь на оценки по 53 странам Питера Линдерта, одного из наиболее авторитетных современных исследователей проблем неравенства.
Похоже, после такого экскурса не остается ничего другого, как признать, что реальных масштабов существующего в России неравенства не знает никто. То ли оно высокое команда Пикетти , то ли среднее Росстат , то ли низкое Линдерт ; то ли оно сначала резко возросло, просев немного позднее команда Пикетти , то ли стояло на месте Росстат , то ли быстро снижалось эксперты Всемирного банка. Есть варианты на любой вкус.
Спросим еще раз: можно ли исходя из этой статистической какофонии объявлять Россию страной с запредельно высоким неравенством, считая это общеизвестным фактом?
Напомним, с 2021 года в России действует прогрессивная шкала: люди, чей доход превышает 5 млн руб. Силуанов напомнил, что эта мера была внедрена под конкретную задачу — поддержку детей со сложными болезнями, требующими дорогостоящего лечения. Но дальнейшее увеличение прогрессии отрицательно скажется на доверии правительству, властям, пояснил министр. Такие заявления главы российского Минфина вписываются в контекст того исследования, которое обнародовали эксперты из Лаборатории мирового неравенства и Парижской школы экономики. Их выводы, опровергающие некоторые «привычные представления» о способах борьбы с неравенством, пересказывают авторы портала «Эконс». Сравнение ситуации в США и Европе показало, что более выраженная налоговая нагрузка на богатых вовсе не гарантирует эффективного решения проблемы с неравенством в стране. Главный вывод таков: меньшим неравенством Европа обязана не налоговому перераспределению доходов, а так называемому предраспределению — политике, которая направлена на создание условий для более равномерного распределения доходов еще до налогообложения. К таким механизмам относятся регулирование рынка труда, защита прав работников, установление минимальной заработной платы, антимонопольное регулирование, инвестиции в образование и здравоохранение, которые дают равный доступ к этим услугам всем слоям населения и позволяют получить людям из низов более высокооплачиваемую работу.
Чем выше значение, тем хуже ситуация с неравенством.
В то же время показатель неравенства является одним из основных для оценки того, куда вообще движется экономика государства, оказывается своего рода лакмусовой бумажкой. При этом отсутствие расслоения общества, конечно, не наблюдается нигде. Показателем стабильности же является неизменность год от года разрыва между бедными и богатыми. Государства могут бесконечно говорить о росте ВВП, бюджетных доходах, рекордах промышленности. Однако если при этом постоянно растет социальное неравенство, значит все идет не так уж хорошо. Примером такой страны стала и Россия, где уровень неравенства в последние годы стабилизировался, но на фоне победных реляций правительства о росте уровня жизни, доходов, профицитном бюджете внезапно вновь стал расти. Почему это происходит и каковы последствия этого явления? Выпуская Джини из бутылки Наиболее распространенным в мире показателем имущественного расслоения общества является коэффициент Джини. Он сравнивает годовые доходы бедных и богатых граждан и показывает уровень отклонения от абсолютной нормы, то есть одинакового роста доходов социальных групп.
В индексе «0» означает равенство, а «1» — полное неравенство. Чем больше индекс, тем больше неравенство. По данным Росстата, за последнее десятилетие в России коэффициент Джини показывал максимальные значения в 2008 и 2010 годах — 0,421 в 2007 году был немного больше — 0,422. Затем он снижался до 0,412 в 2016 году. Наконец, самым минимальным он стал в 2017 году, достигнув 0,410. Ниже этого уровня индекс Джини в России был только в 2005 году 0,409. Как обратила внимание в документе «Комментарии о государстве и бизнесе» заместитель директора Центра развития ВШЭ Светлана Мисихина, в 2018 году индекс Джини в России вновь начал расти. За январь-сентябрь 2018 года индекс вырос с 0,400 до 0,402 в сравнении с тем же периодом 2017 года.
Коэффициент Джини можно определить как макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны. Иногда используется процентное представление этого коэффициента, называемое индексом Джини. Коэффициент Джини после 2-й Мировой Войны: 0 - идеально ровное распределение доходов, 100 - всё богатство сконцентрированно в руках одного человека:.
Gini Coefficient By Country
В действительности население любой страны или региона в каждый конкретный момент находится где-то между этими показателями. Коэффициент Джини для Коста-Рики — 0,48 — самый высокий среди стран Организации экономического сотрудничества и развития ОЭСР , что свидетельствует о высоком неравенстве в доходах местного населения. Он составляет всего 0,24.
Бюро переписей США начало собирать доходы для домашних хозяйств в 1967 году. В США самый высокий разрыв в доходах среди западных промышленно развитых стран. Каждое государство в стране испытывает влияние неравенства в доходах, которое поднимает судьбу богатых и оставляет остальных рабочих позади. Согласно отчету, штат Юта имеет наиболее равномерное распределение доходов с коэффициентом Джини 0, 419.
За ним следуют Аляска, Вайоминг и Нью-Гемпшир с показателями 0, 422, 0, 423 и 0, 425 соответственно. Округ Колумбия и Нью-Йорк имеют самые высокие различия в доходах между наемными работниками во всех категориях доходов с коэффициентом Джини 0, 532 и 0, 499 соответственно. Другие государства, которые также показали большие различия, включают Коннектикут, Массачусетс и Луизиану.
Однако два ведущих специалиста по налоговой статистике — Джеральд Аутен и Дэвид Сплинтер — подвергли оценки команды Пикетти пересчету и получили совершенно другие цифры. По их выкладкам, по сравнению с 1979 г. Иными словами, доходы сверхбогачей росли практически теми же темпами, что и у остального населения. Причина этих расхождений все та же: произвольные допущения плюс неполный учет налогов и трансфертов. И снова зададимся вопросом: неужели на столь хлипкой статистической основе можно выносить безапелляционные нормативные вердикты, призывая государство к принятию жесточайших мер по ограничению неравенства?
Что касается России, то уж здесь, казалось бы, все ясно. Все знают, что в ней поддерживается чудовищное, сверхъестественное, запредельное экономическое неравенство по мнению многих, самое высокое в мире. Какие здесь могут быть сомнения? Как ни странно, но могут. Согласно официальным оценкам Росстата, в России коэффициент Джини по доходам после 1993 г. Много это или мало на фоне других стран? Строго говоря, ни то ни другое. Отталкиваясь от тех оценок, которые дает Росстат, Россию следовало бы отнести скорее к группе стран-середняков.
В совершенно ином свете российская ситуация предстает в недавней работе Филипа Новокмета, Пикетти и Габриэля Цакмана. Во-первых, по их расчетам, уровень неравенства в России намного выше, чем говорит официальная статистика: так, коэффициент Джини по доходам составляет сейчас не 0,41, а 0,55. Во-вторых, его динамика выглядит совсем иначе. Пик неравенства пришелся на 1996 г. Еще одну историю, не имеющую ничего общего с двумя предыдущими, рассказывают эксперты Всемирного банка. По этим оценкам, за последние полтора десятилетия неравенство в России устойчиво и быстро снижалось. С 1998 по 2012 г.
В статье основное внимание уделяется балансу между справедливостью и эффективностью. Справедливость существует при условии равных возможностей при отсутствии крайней депривации. Основные выводы: 1. При сильном расслоении снижается социальная мобильность и талантливые бедняки не могут развить свои способности. Возникают «ловушки неравенства», когда институты разделенного общества запирают бедных в своей социальной страте. Необходима более широкая и научно обоснованная количественная оценка эффективности преодоления неравенства, доказывающая его эффективность для общества в целом. Должна быть разработана и предъявлена обществу система институциональных изменений, через которые возможно перейти из ловушки неравенства к лучшему для всех равновесию, с оценкой конкретных политических мер, направленных на расширение возможностей для обездоленных. Доказывается, что доступное образование повышает уровень человеческого капитала и в то же время способствует более равномерному распределению доходов. Но представители населения с высоким уровнем дохода зачастую выступают против бесплатного образования, полагая, что оно происходит за их счет, одновременно пытаясь предотвратить конкуренцию за высокооплачиваемую работу со стороны талантливых бедняков. Эти тезисы обосновываются авторами статьи с помощью математической модели. Автор работы [9] Gyimah-Brempong, 2002 на основе панельных данных по странам Африки изучала влияние коррупции на экономический рост и неравенство. Доказывается, что коррупция тормозит рост, уменьшая вложения в основной капитал. В статье [10] Qudrat-I Elahi, 2005 рассматривается научная обоснованность критерия благосостояния Парето для оценки альтернативных сценариев экономического неравенства. Принцип Парето может быть ошибочным при оценке влияния неравенства, поскольку рынки труда не удовлетворяют условиям совершенной конкуренции. Использовались данные примерно по ста тысячам человек за 6 лет. Оказывается, что увеличение доходов в регионе и неравенства в образовании имеет значимую связь с последующим экономическим ростом. На более высоких уровнях экономического развития накопление физического капитала замещается накоплением человеческого капитала. Авторы статьи [12] Ryvkin, Semykina, 2017 экспериментально изучали различные модели неравенства. Они проводили лабораторный эксперимент, где студенты могли инвестировать в прибыльные проекты и определять уровень налогов голосованием. В другой серии экспериментов автократии размер инвестиций и распределение осуществлялись извне, но существовал риск экспроприации. Участники эксперимента могли добровольно перейти от демократии к автократии большинством голосов. В эксперименте участвовали 228 добровольцев, которые играли роли бедных и богатых и участвовали в голосованиях. Игра показала, что играющие роли богатых очень редко 13 из 304 голосовали за смену режима. Переход к демократии почти полностью определялся голосами бедных. В группах, которые перешли на автократию, бедные получали выгоды, и уровень неравенства значительно снизился во всех циклах игры. Это происходит при условии, что автократ выполняет свои обещания. Более подробный обзор литературы по проблемам неравенства можно найти в работе [13] Sukharev, 2020. Некоторые сложности с обработкой данных возникают из-за того, что административное деление РФ за эти годы изменялось: происходили переименования, объединения и присоединения. В частности, данные по индексам ВРП имеются с 1997 по 2016 г. Данные по ВРП 2017—2018 гг. Для оценки темпов экономического роста по субъектам регионам удобнее использовать индексы ВРП, которые имеются в виде процентов прироста падения по сравнению с предыдущим годом, а не данные по физическому объему, которые нужно было бы нормировать к начальному уровню. В рамках модели Кузнеца-Пикетти предполагалось обнаружить зависимость между темпами роста и неравенства типа перевернутой U или S кривой, поскольку мы имеем набор данных за 21 год по более чем 80 регионам, значительно различающимся по своему экономическому развитию. Для анализа использовался Microsoft Excel 2013, строились точечные диаграммы диаграммы рассеяния с линиями полиномиальных трендов. Кроме того, вычислялся коэффициент корреляции по каждому году. При этом были получены результаты с очень большим разбросом по годам, что затрудняет поиск каких-либо зависимостей.