Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Индекс Джини или коэффициент Джини — это статистическая мера распределения, разработанная итальянским статистиком Коррадо Джини в 1912 году.
Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства
Коэффициент Джини: формула неравенства | Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. |
Индекс Джини | Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения. |
14.2 Кривая Лоренца и коэффициент Джини | «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». |
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
показателе расслоения общества. Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают.
Кривая Лоренца
В разделе не хватает ссылок на источники см. Информация должна быть проверяема , иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. Дополняет данные о ВВП и среднедушевом доходе. Служит своеобразной поправкой этих показателей. Может быть использован для сравнения распределения признака дохода между различными совокупностями например, разными странами.
Недавно в официальной статистике появился ещё один ряд показателей — индексы риска бедности, которые отвечают на вопрос, какие категории населения рискуют стать бедными по источникам доходам, характеристикам домашних хозяйств, уровню образования, месту жительства и так далее. Так, в мегаполисах жить легче, чем в маленьких городках. Рост уровня образования снижает риск бедности, а наличие детей — повышает. Да, на трудовые доходы у нас единая ставка налога — 13 процентов. Но заработная плата — это не все виды доходов.
По другим видам доходов у нас либо нет налогов — на пенсии, стипендии, пособия, либо другие ставки налогообложения, например, на предпринимательские доходы или от финансовых операций. Ещё один инструмент выравнивания — социальные трансферты: пособия, пенсии, компенсационные выплаты и льготы. Возвращаясь к идее разделения доходов богатых среди бедных, хотелось бы напомнить пример зимних Олимпийских игр — 2014 в Сочи. Перед их проведением некоторые тоже высчитывали, во сколько организация Олимпиады обошлась каждому россиянину. Разделили 50 миллиардов долларов на 143 миллиона жителей, оказалось, по 350 долларов на человека.
Если делить только на бедных, получается более 3200 долларов на каждого.
Перейти к навигации Перейти к поиску Общий вид кривой Лоренца Коэффициент Джини коэффициент концентрации доходов — статистический показатель, который используют для характеристики степени отклонения линии фактического распределения Кривая Лоренца общего объёма денежных доходов населения от линии их равномерного распределения. Величина коэффициента ограничена промежутком от ноля до единицы — чем выше значение показателя, тем более неравномерно распределены доходы в обществе [1].
Индекс Джини — процентное представление этого коэффициента.
Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи.
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
Коэффициент Джини рассчитывается по формуле. Страны ближнего востока и северной Африки: Коэффициент Джини. Коэффициент Джини (индекс концентрации доходов). Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов.
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи
Как рассчитывать коэффициент Джини | Коэффициент Джини рассчитывается по формуле. |
Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца | Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. |
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
Данный вид налога является регрессивным, поскольку пошлина оставляет большую часть дохода для бедного человека, и меньшую часть дохода для богатого человека. Какой из данных видов налогов является более справедливым? Популярной является точка зрения, что прогрессивные налоги являются более справедливыми, а регрессивные менее справедливыми. Но эта точка зрения ошибочна. Как мы показали раньше, все зависит от того, в рамках какой системы моральных ценностей мы будем говорить о справедливости.
Рассмотрим простой пример. Налоговая шкала является регрессивной — средняя ставка падает при росте дохода. Но является ли она несправедливой? Посчитаем сумму налога, уплаченную каждым индивидом.
В результате индивид, зарабатывающий больше, платит и большую сумму налога. И в чем же здесь несправедливость? Для оценки справедливости налоговой системы выделяются следующие постулаты: Принцип получаемых выгод: индивиды должны платить налоги в соответствии с выгодой, которую они извлекают из услуг государства. На этом принципе может быть основана идея, что богатые люди должны платить больше налогов, чем бедные.
Поскольку государство является предоставителем общественных благ и гарантом прав собственности, богатые люди извлекают больше выгод от государства, чем бедные, потому что у них есть больше собственности. Также этот принцип оправдывает идею программ по борьбе с бедностью за счет богатых. Все мы хотим жить в обществе, которое не испытывает революций и социальных потрясений из-за неприемлемого уровня жизни беднейших слоев населения. Поэтому идея помощи бедным за счет богатых кажется оправданной.
Принципы платежеспособности: горизонтальная справедливость и вертикальная справедливость. Горизонтальная справедливость означает, что индивиды с одинаковыми доходами должны платить одинаковые налоги. Вертикальная справедливость означает, что индивиды с более высокими доходами должны платить более высокие налоги. Как мы увидели из примера выше, этим принципам может соответствовать не только прогрессивная система налогообложения, но и регрессивная.
В зависимости от того, каким образом налоги собираются в государственный бюджет, различают прямые и косвенные налоги. Прямые налоги — это налоги, которые уплачивает тот, кто является носителем налога. Например, налог на прибыль является прямым налогом, потому что его оплачивает фирма, которая получает эту прибыль. Подоходный налог является прямым налогом, поскольку его уплачивает индивид, который получает налогооблагаемый доход.
Косвенные налоги — это налоги, которые уплачивает тот, кто не является носителем налога. Например, акцизы на алкоголь и сигареты уплачивают фирмы. Однако носителем налога в этом случае является потребитель, потому что акцизы «сидят» в цене товаров, покупаемых потребителем. Косвенными налогами в России являются НДС налог на добавленную стоимость и акцизы.
Все косвенные налоги являются регрессивными по отношению к доходам покупателей. Какие налоги являются более популярными: прямые или косвенные? Ответ заключается в том, что косвенные налоги легче собрать, поскольку фактически они вводятся на расходы потребителей. Прямые налоги собрать тяжелее, потому что они вводятся преимущественно на доходы, и в этом случае индивиды имеют стимулы к уклонению от налогов путем сокрытия доходов.
Показатель неравенства не должен зависеть от какой-либо характеристики отдельных лиц, кроме их дохода. Независимость от масштаба экономики: коэффициент Джини не учитывает размер экономики. Независимость от размера населения: не имеет значения, насколько велико население страны. Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах.
Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини.
В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки.
Полный вариант пособия я использую на занятиях с моими учениками. На контент, содержащийся в данном пособии, установлено правообладание. Попытки его копирования и использования без указания ссылок на автора будут преследоваться в соответствии с законодательством РФ и политикой поисковиков см.
Построение кривой Лоренца удобнее всего рассмотреть на следующем примере: Представим экономику, состоящую из 3-х агентов: А, B, C. Доход агента А составляет 200 единиц, доход агента В составляет 300 единиц, доход агента С составляет 500 единиц. Для построения кривой Лоренца найдем доли индивидов в общем доходе. Общий доход составляет 1000.
Затем включим в анализ более богатого индивида — индивида В. Далее включим в анализ еще более богатого индивида С. Отметим полученные результаты на графике: Линия, соединяющая левую нижнюю точку и правую верхнюю точку графика, называется линией равномерного распределения доходов. Это гипотетическая линия, которая показывает, что было бы, если доходы в экономике распределяются равномерно.
При неравномерном распределении доходов кривая Лоренца лежит левее этой линии, причем чем больше степень неравенства, тем сильнее изгиб кривой Лоренца. А чем ниже степень неравенства, тем более она приближена к линии абсолютного равенства. В нашем случае кривая Лоренца выглядит как кусочно-линейный график. Это получилось так, потому что в нашем анализе мы выделили только три группы населения.
С ростом числа рассматриваемых групп населения кривая Лоренца будет выглядеть следующим образом: Кривая Лоренца позволяет судить о степени неравенства доходов в экономике о ее изгибу. Для количественного измерения степени неравенства дохода по кривой Лоренца существует специальный коэффициент — коэффициент Джини. Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно.
Чем ближе коэффициент Джини к единице, тем больше изгиб кривой Лоренца, и доходы распределены менее равномерно. Рассчитаем коэффициент Джини для нашего примера с тремя индивидами. Площадь внутренней фигуры D быстрее всего можно посчитать путем вычитания из площади большого треугольника площади фигур А, В и С. В этом случае коэффициент Джини будет равен: Частный случай кривой Лоренца и коэффициента Джини: попарное сравнение.
Материалы данного раздела не публикуются на сайте, а доступны в полной версии данного пособия, которое я использую на занятиях с учениками. Как известно, любой статистический показатель имеет свои изъяны. Так же как и по показателю ВВП нельзя судить об уровне благосостояния экономики, и коэффициент Джини и другие показатели степени неравенства не могут дать в полной мере объективную картину степени неравенства доходов в экономике. Это происходит по нескольким причинам: Во-первых, уровень дохода индивидов не является постоянным и может резко изменяться с течением времени.
Доходы молодых людей, которые только что закончили университет, как правило, являются минимальными, и затем начинают расти по мере того, как человек набирается опыта и наращивает человеческий капитал. Доходы людей, как правило, достигают пика между 40 и 50 годами, и затем резко снижаются, когда человек уходит на пенсию. Э то явление называется в экономике жизненным циклом. Но человек имеет возможность компенсировать различие в доходах на разных этапах жизненного цикла с помощью финансового рынка — беря кредиты или делая сбережения.
Так, молодые люди, находящиеся в самом начале жизненного цикла, охотно берут кредиты на образование или ипотечные кредиты. Люди, которые находятся ближе к окончанию экономического жизненного цикла, активно делают сбережения.
В примере мы построили две модели оценки риска страховых полисов в данном случае транспортных средств и оценили риск группы полисов. Прогноз каждой модели — это значение утверждения каждой политики. После выполнения прогноза мы классифицировали уровень риска каждой политики. Каждая точка на оси X символизирует уровень риска полиса, а каждая точка на оси Y — сумму денег, заявленную группой в реальных деньгах. Группа 10 — это группа, которая спрогнозировала наиболее рискованные полисы с точки зрения фактических требований.
Расчет индекса Джини Пойдем шаг за шагом. Первым шагом является получение результата двух моделей в предикации.
Индекс Джини и неравенство доходов
Степень неравенства доходов внутри групп населения (коэффициент Джини) выросла по итогам 2023 года до 0,403, тогда как в 2022 этот показатель составлял 0,395, констатировал Росстат. Коэффициент концентрации Джини (G) используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]. В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. Свое название данный коэффициент получил по инициалам демографа и статиста Корадо Джини, предложившего эту статистическую модель.
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи
Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках. Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. Коэффициент Джини (индекс концентрации доходов).
Задача №77. Расчёт коэффициента Джини
Коэффициент Джини не учитывает источник дохода, то есть для определённой географической единицы страны, региона и т. Метод кривой Лоренца и коэффициента Джини в деле исследования неравномерности распределения доходов среди населения имеет дело только с денежными доходами, меж тем некоторым работникам заработную плату выдают в виде продуктов питания и т. Различия в методах сбора статистических данных для вычисления коэффициента Джини приводят к затруднениям или даже невозможности в сопоставлении полученных коэффициентов. Коэффициент Джини отчасти неадекватен для плановых экономик, где распределение ресурсов зависит не только от доходов, но и от лояльности к государству партии. Кроме того, так как частное предпринимательство запрещено в плановой экономике , выходит ситуация когда получаемые доходы фиксируются не у предпринимателей, а у государства. Из-за этого, формально выходит что доходы концентрируют предприниматели, в отличие от плановой экономики, где доходы принадлежат государству.
Данные об индексе Джини и другие социально-экономические показатели были опубликованы Росстатом в отчете, выпущенном 28 февраля, сообщает РБК. Важно отметить, что в 2022 году индекс Джини показал падение ниже отметки 0,4 впервые с 2002 года. Несмотря на это, значение индекса в 2023 году все еще оказалось ниже, чем в 2020 году 0,406 и в 2021 году 0,409.
Максимальное значение коэффициента Джини в России зафиксировано было в 2007 году и составило 0,422.
В компании обещают устранить ошибку. Минздрав России зарегистрировал двухкомпонентную вакцину от коронавируса «Спутник V» с обновленным составом. В 16 российских регионах зафиксировали нехватку вакцин от кори. Препараты производит компания «Нацимбио». Ее представители сообщили, что в январе 2024 года все регионы получили почти 200 тыс.
В Волгограде произошел пожар на складе пиломатериалов. Площадь возгорания составила тысячу квадратных метров. Погибших и пострадавших нет. Минюст предложил штрафовать коллекторов на 2 млн рублей за навязчивые звонки или письма.
Коэффициент Джини. Неравенство доходов Коэффициент Джини индекс Джини - статистический показатель, свидетельствующий о степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку к примеру, по уровню годового дохода — наиболее частое применение, особенно при современных экономических расчётах. Коэффициент Джини может использоваться для выявления уровня неравенства по накопленному богатству.
Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство». Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны. Коэффициент Джини определяет степень отклонения распределения доходов по группам населения от равномерного. Чем он ближе к нулю, тем более равномерное распределение доходов; чем ближе коэффициент Джини к единице, тем больше доходы концентрируются самой богатой группой граждан. Страны европейского блока, такие как Чехия, Швеция, Норвегия, Дания, Словения, имеют более низкий коэффициент Джини, в пределах 0,2 до 0,3. Сложившаяся сегодня в России модель социальной стратификации характеризует в высшей степени дифференцированное общество. В 1991 году децильный коэффициент составлял 4,5 раза; в 1992 — уже 8,0 раз; в 1994 году наблюдалась его рекордная величина за всё время реформ — 15 раз, в последние годы — в среднем 14 раз.
Социальная поддержка сократила уровень неравенства в России
Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения. Страны ближнего востока и северной Африки: Коэффициент Джини. Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. Коэффициент Джини рассчитывается по формуле. Коэффициент Джини может принимать значения от 0 до 1. Чем ближе коэффициент Джини к нулю, тем меньше изгиб кривой Лоренца, и доходы распределены более равномерно.
Ваш пароль
- Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца
- Коэффициент Джини
- Индекс Джини
- Содержание
- Коэффициент Джини - что это такое простыми словами
Коэффициент Джини, значение по странам мира и в России
Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла.
Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего.
The PIP Methodology Handbook provides a good summary of the comparability and data quality issues affecting this data and how it tries to address them. The surveys underlying the data within a given spell for a particular country are considered by World Bank researchers to be more comparable. The breaks between these comparable spells are shown in the chart below for the share of population living in extreme poverty. You can select to see these breaks for any indicator in our Data Explorer of the World Bank data. These spells are also indicated in our data download of the World Bank poverty and inequality data.
А теперь информация отдельно по продуктам:Вклады.
Открыть или закрыть вклад можно в любой день. После пополнения деньги поступят на вклад 11 марта.
They do not apply to official groups presented in your selected database. For each selected series, choose your Aggregation Rule and Weight Indicator if needed from the corresponding drop-down boxes.
Check the Apply to all box if you wish to use the same methodology for all selected series. Aggregation Rules include: 1. Max: Aggregates are set to the highest available value for each time period. Mean: Aggregates are calculated as the average of available data for each time period.
Mean 66: Aggregates are calculated as the average of available data for each time period. Values are not shown if more than one third of the observations in the series are missing. Median: Aggregates are calculated as the median of available data for each time period. Median 66: Aggregates are calculated as the median of available data for each time period.