Разница в реакции ядерного деления между этими зарядами, делает водородную бомбу разрушительнее атомной в сотни раз.
Водородная бомба и ядерная — какие различия между двумя видами ядерных взрывов?
Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии радиации , в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.
Разработка и первые испытания водородной бомбы В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок атолл в Тихом океане было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.
Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость размером с трёхэтажный дом , наполненную жидким дейтерием. В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.
Это остается единственным случаем применения ядерного оружия в боевых условиях. Водородные бомбы, напротив, применялись только в ходе испытаний. В 1961 году в Советском Союзе было проведено испытание " Царь-бомбы ", которая до сих пор остается самым крупным ядерным оружием, когда-либо взорванным. Однако это мощное термоядерное оружие никогда не применялось в реальных конфликтах. Что такое атомная бомба? Атомная бомба — это ядерное оружие, предназначенное для создания мощного взрыва в результате процесса деления ядер. Бомбы на основе деления работают за счет детонации нескольких ядер урана или плутония. В качестве топлива в атомных бомбах обычно используется крайне нестабильный ядерный материал, такой как уран-235 или плутоний-239. Эти изотопы нестабильны, поскольку имеют избыток нейтронов по сравнению со стабильными изотопами того же элемента.
Для того чтобы произошел взрыв, бомба должна быть воспламенена, чтобы ядерный материал быстро сжался. Это можно сделать несколькими способами, но одним из наиболее распространенных является использование обычных взрывчатых веществ например, тротила для создания высокого давления и температуры в центре бомбы.
Однако такие боеприпасы всё же содержат делящиеся материалы. В двухфазном термоядерном устройстве собственно ядерная часть выступает только в качестве триггера, запускающего реакцию термоядерного синтеза.
В случае с мегатонной боеголовкой - это маломощный плутониевый заряд мощностью в примерно в 1 килотонну. Для сравнения - плутониевая бомба, упавшая на Нагасаки, имела эквивалент в 21 кт, при этом в ядерном взрыве сгорело лишь 1,2 кг делящегося вещества из 5, остальная плутониевая "грязь" с периодом полураспада в 28 тысяч лет просто рассеялась по окрестностям, внеся дополнительный вклад в радиоактивное заражение. Более распространены, однако, трёхфазные боеприпасы, где зона синтеза, "заряженная" дейтеридом лития, заключена в урановую оболочку, в которой происходит "грязная" реакция деления, усиливающая взрыв. Она может быть сделана даже из непригодного для обычных ядерных боеприпасов урана-238.
Однако из-за весовых ограничений в современных стратегических боеприпасах предпочитают использовать ограниченное количество более эффективного урана-235. Тем не менее, даже в этом случае количество радионуклидов, выделившихся при воздушном взрыве мегатонного боеприпаса, превысит уровень Нагасаки не в 50, как следовало бы, исходя из мощности, а в 10 раз. При этом из-за преобладания короткоживущих изотопов интенсивность радиоактивного излучения быстро падает - снижаясь через 7 часов в 10 раз, 49 часов - в 100, 343 часа - в 1000 раз. Далее, отнюдь нет необходимости ждать, пока радиоактивность снизится до пресловутых 15-20 микрорентген в час - люди без каких-либо последствий столетиями живут на территориях, где естественный фон превышает стандарты в сотни раз.
В итоге, например, панические прогнозы, раздававшиеся после хиросимской бомбардировки "растительность сможет появиться только через 75 лет, а через 60-90 - сможет жить человек" , скажем так мягко, не оправдались. Выжившее население не эвакуировалось, однако не вымерло полностью и не мутировало. Между 1945-м и 1970-м среди переживших бомбардировку количество лейкемий превысило норму менее чем в два раза 250 случаев против 170 в контрольной группе. Заглянем на Семипалатинский полигон.
Всего на нём было произведено 26 наземных наиболее грязных и 91 воздушный ядерный взрыв. Впечатляющие выбросы обеспечил и "мирный" ядерный взрыв, с помощью которого было создано озеро Чаган. Как выглядит результат? На месте взрыва пресловутой слойки - заросшая абсолютно нормальной травой воронка.
Не менее банально, несмотря на витающую вокруг пелену истерических слухов, выглядит и ядерное озеро Чаган. В российской и казахской прессе можно встретить пассажи вроде этого. Однако края водоема "фонят" настолько сильно, что их уровень излучения фактически приравнивается к радиоактивным отходам. В этом месте дозиметр показывает 1 микрозиверт в час, что в 114 раз больше нормы".
Как было показано выше, по сравнению с Рамсаром, Кералой и бразильскими пляжами - это несколько бледный результат. Не меньший ужас у общественности вызывают и особо крупные сазаны, водящиеся в Чагане - однако увеличение размеров живности в данном случае объясняется вполне естественными причинами. Впрочем, это не мешает феерическим публикациям с рассказами об охотящихся на купальщиков озёрных монстрах и рассказам "очевидцев" о "кузнечиках размером с сигаретную пачку". Примерно то же самое можно было наблюдать и на атолле Бикини, где американцы взорвали 15-ти мегатонный боеприпас впрочем, "чистый" однофазный.
Дело в том, что в этом случае при медленном соединении обеих частей вещества вся энергия, выделенная при обмене нейтронами, будет уходить в нагрев. Чем ближе друг к другу будут обе части, тем больше будут они нагреваться и в конце концов расплавятся сами и расплавят всю конструкцию бомбы. Нам же необходимо получить взрывной рост плотности энергии. Этого можно достичь только при очень быстром сближении частей — таком быстром, чтобы возрастание потока нейтронов не успевало бы за скоростью сближения. Данный метод именуется «пушечной схемой» и описан весьма условно.
Ныне этот метод не применяется, а используются более сложные схемы… Водородная бомба Увеличение мощности обычной ядерной бомбы упирается в некий потолок, ограниченной мощностью в несколько десятков килотонн. Дело в том, что цепная реакция при большой сверхкритической массе не успевает затронуть всё вещество — начавшееся практически мгновенно выделение энергии успевает разбросать большую часть вещества до того, как оно вступит в цепную реакцию. Необходимо повысить мощность взрыва другим методом. И решение было найдено: в дело вступил термоядерный синтез, на сегодняшний день самый мощный тип энергии. Управляемый синтез нам не подвластен до сих пор, а неуправляемый взрыв — уже давно освоен.
Первая в мире водородная бомба была взорвана СССР на Семипалатинском полигоне в 1953 году… Термоядерный синтез можно наблюдать в любой горячей звезде: в условиях чудовищных температур и давления легкие ядра водорода приобретают такую огромную кинетическую энергию движения, что объединяются друг с другом, образуя, естественно, более тяжелые ядра — ядра гелия. При этом часть ядер водорода испускается в виде потока высокой энергии. В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода — трития. Вот такая сложная схема. Но дальше будет еще сложнее.
Дейтерид лития-6 помещают в контейнер, изготовленный из урана-238, а рядом размещают обычный ядерный заряд небольшой мощности. Этот заряд нужен для инициации термоядерной реакции. Ядерный заряд подрывается, контейнер мгновенно превращается в плазму, обеспечивая необходимые нам давления и температуру. Нейтроны, излучаемые ураном-238, вступают в реакцию с дейтеридом лития-6, в результате чего получается тритий.
Атомная, водородная и нейтронная бомбы
Советский термоядерный проект стартовал позже – в 1949 г., когда готовилось первое испытание обычной ядерной бомбы. первой термоядерной(водородной) бомбы СССР. Ещё дополнительное отличие её от чисто атомной бомбы — это "чистота" взрыва. В результате взрыва водородной бомбы выделяется гораздо меньше радиоактивных веществ, чем в результате взрыва атомной бомбы.
Разница между водородной бомбой и атомной бомбой
Никто не спрячется: что будет после ядерной войны? | Отличие в том, что в бомбе на уране или плутонии, используется энергия деления ядер урана-235 или плутония-239. |
Вся правда о ядерном ударе. Спасут ли нас бомбоубежища? | Атомная бомба — это тип ядерного оружия, взрывная сила которого обеспечивается ядерными реакциями, включающими деление (расщепление) атомных ядер, тогда как водородная бомба (термоядерная бомба) — это более совершенное ядерное оружие, в. |
Водородная (термоядерная) бомба: испытания оружия массового поражения | Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия. |
Вся правда о ядерном ударе. Спасут ли нас бомбоубежища? | Как сообщают ученые, водородная бомба в несколько тысяч раз мощнее атомной,и отличается от нее своим строением. |
Разница между водородной бомбой и атомной бомбой — Образование и развитие | Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. |
Водородная бомба и ядерная бомба отличия
Как атомный, так и водород отличаются несколькими сравнительными способами. Водородная бомба считается более мощной, чем атомная бомба, из-за их соответствующих принципов и относительных сил. Обе эти бомбы используют радиоактивные элементы урана и плутония для создания ядерной энергии, но отличаются тем, как используются эти элементы. Водородная бомба также известна как «термоядерные» бомбы и генерирует энергию от бомбы деления для сжатия и термоплавкого топлива. Атомная бомба работает путем атомного деления или расщепления атомного ядра, а водородная бомба работает путем атомного синтеза или объединения атомных ядер. По принципу деление делает радиоактивные элементы расщепляемыми от больших атомов до более мелких, в то время как слияние объединяет небольшие атомы для создания больших, что приводит к тому, что водородная бомба высвобождает больше энергии, чем атомная бомба. Энергия, выделяемая атомной бомбой, в миллионы раз больше, чем выброшенная в химических реакциях, тогда как водородная бомба может выпустить в три-четыре раза больше атомной бомбы. Считается, что атомные бомбы имеют тонну TNT до 500 000 тонн тротила, поэтому мы можем грубо оценить, насколько опасна водородная бомба. Атомные бомбы задерживаются взрывом от детонационного устройства TNT. Это приводит к тому, что радиоактивные элементы Уран-235 и Плутоний-239 сталкиваются друг с другом в большом количестве энергии. Это приводит к цепной реакции, когда больше атомов разрушается, и энергия высвобождается.
Для того чтобы произошел взрыв, бомба должна быть воспламенена, чтобы ядерный материал быстро сжался. Это можно сделать несколькими способами, но одним из наиболее распространенных является использование обычных взрывчатых веществ например, тротила для создания высокого давления и температуры в центре бомбы. После взрыва в атомной бомбе начинается интенсивная цепная реакция деления ядер. В ходе этой реакции ядра атомов урана или плутония расщепляются на более мелкие ядра с выделением большого количества энергии. Эти более мелкие ядра, называемые продуктами деления, также испускают дополнительные нейтроны, которые могут вызвать деление других ядер, что еще больше усиливает реакцию. Помимо первоначального взрыва, при взрыве атомных бомб выделяется вредное ионизирующее излучение, которое может нанести долгосрочный ущерб людям и окружающей среде. Это излучение может вызывать такие заболевания, как рак, и оказывать длительное генетическое воздействие.
Что такое ядерная бомба? К ядерным бомбам относятся как атомные бомбы, работающие за счет деления ядер, так и термоядерные бомбы, известные как водородные или термоядерные бомбы. Термоядерные бомбы, в отличие от атомных, используют процесс ядерного синтеза. В этом случае два или более легких ядра объединяются с образованием более тяжелого ядра, при этом выделяется еще больше энергии, чем при делении.
В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала — урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки. Как работает термоядерная бомба и кто ее изобрел? Термоядерная бомба основана на реакции ядерного синтеза. В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно — поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре — порядка нескольких миллионов кельвинов отсюда и название. Термоядерные реакции бывают трех видов: самоподдерживающиеся проходят в недрах звезд , управляемые и неуправляемые или взрывные — они используются в водородных бомбах. Статья по теме Северная Корея опубликовала видео успешных испытаний баллистической ракеты Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам, сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона. Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля. Из чего делают термоядерные бомбы? Если вы думали, что водородные и термоядерные бомбы — это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород а точнее, его изотопы — дейтерий и тритий требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция. Широко известны две схемы. Первая — сахаровская «слойка».
Впечатляющая картина, не правда ли? Проблема в том, что это фейк. Так, в случае лесных пожаров модель исходит из того, что взрыв мегатонной боеголовки немедленно вызовет пожар на площади 1000 квадратных километров. Между тем, в действительности на расстоянии в 10 км от эпицентра площадь 314 квадратных километров уже будут наблюдаться только отдельные очаги. Реальное дымообразование при лесных пожарах в 50-60 раз меньше заявленного в модели. Наконец, основная масса сажи при лесных пожарах не достигает стратосферы, и довольно быстро вымывается из нижних атмосферных слоёв. Равным образом, огненный шторм в городах требует для своего возникновения весьма специфических условий - равнинной местности и огромной массы легко возгораемых построек японские города 1945-го года - это дерево и промасленная бумага; Лондон 1666-го - это в основном дерево и оштукатуренное дерево, и то же самое относится к старым немецким городам. Там, где не соблюдалось хотя бы одно из этих условий, огненный шторм не возникал - так, Нагасаки, застроенный в типично японском духе, но расположенный в холмистой местности, так и не стал его жертвой. В современных городах с их железобетонной и кирпичной застройкой огненный шторм не может возникнуть по чисто техническим причинам. Пылающие как свечи небоскрёбы, нарисованные буйным воображением советских физиков - не более чем фантом. Добавлю, что городские пожары 1944-45, как, очевидно, и более ранние, не приводили к значительному выбросу сажи в стратосферу - дымы поднимались только на 5-6 км граница стратосферы 10-12 км и вымывались из атмосферы за несколько дней "чёрный дождь". Иными словами, количество экранирующей сажи в стратосфере окажется на порядки меньше, чем заложено в модели. При этом концепция ядерной зимы была уже проверена экспериментально. Перед "Бурей в пустыне" Саган утверждал, что выбросы нефтяной сажи от горящих скважин приведут к достаточно сильному похолоданию в глобальных масштабах - "году без лета" по образцу 1816-го, когда каждую ночь в июне-июле температура падала ниже нуля даже в США. Среднемировые температуры упали на 2,5 градуса, следствием стал глобальный голод. Однако в реальности после войны в Заливе ежедневное выгорание 3 млн. Таким образом, ядерная зима невозможна даже в том случае, если ядерные арсеналы снова вырастут до уровня 1980-х. Экзотические варианты в стиле размещения ядерных зарядов в угольных шахтах с целью "сознательного" создания условий для возникновения ядерной зимы тоже неэффективны - поджечь угольный пласт, не обрушив при этом шахту, малореально, и в любом случае задымление окажется "низковысотным". Тем не менее, работы на тему ядерной зимы с ещё более "оригинальными" моделями продолжают публиковаться, однако... Последний всплеск интереса к ним странным образом совпал с инициативой Обамы по всеобщему ядерному разоружению. Второй вариант "косвенного" апокалипсиса - глобальное радиоактивное заражение. Посмотрим на то, что потенциально должно её создать. Ядерные боеприпасы мощностью в мегатонны и сотни килотонн - водородные термоядерные. Основная часть их энергии выделяется за счёт реакции синтеза, в ходе которой радионуклиды не возникают. Однако такие боеприпасы всё же содержат делящиеся материалы. В двухфазном термоядерном устройстве собственно ядерная часть выступает только в качестве триггера, запускающего реакцию термоядерного синтеза.
Атомная, водородная и нейтронная бомбы
Водородная бомба (термоядерное оружие) — вид ядерного оружия, основанного на использовании энергии реакции ядерного синтеза легких элементов в более тяжелые. Чем отличаются атомная, ядерная и водородная бомбы. Согласно сообщениям новостей, Северная Корея угрожает протестировать водородную бомбу над Тихим океаном. Но не все понимают, чем отличаются ядерная бомба от термоядерной, атомная от водородной. это два различных типа ядерных боеприпасов, которые имеют разные. В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез.
Ядерный взрыв — есть ли защита от атомной бомбы?
Водородная бомба считается более мощной, чем атомная бомба, из-за их соответствующих принципов и относительных сил. Конечно, обывателям не обязательно знать, чем отличается атомная бомба от водородной, потому что они несут огромную опасность в любом случае. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия. Водородная бомба — вид ядерного оружия, энергия взрыва которого высвобождается в ходе термоядерной реакции синтеза ядер тяжёлых элементов из более лёгких. Каковы принципы действия водородной и атомной бомб и есть ли разница в последствиях?
Водородная против атомной. Что нужно знать о ядерном оружии
Принцип действия водородной бомбы Разберем пошагово, этапы приведения в действие водородных бомб: Детонация заряда. Заряд находится в специальной оболочке. После детонации идет выброс нейтронов и создается высокая температура, требуемая для начала ядерного синтеза в главном заряде. Расщепление лития.
Под воздействием нейтронов, литий расщепляется на гелий и тритий. Термоядерный синтез. Тритий и гелий запускают термоядерную реакцию, вследствие чего в процесс вступает водород, и температура внутри заряда мгновенно возрастает.
Происходит термоядерный взрыв. Принцип действия атомной бомбы Далее пошаговый принцип действия атомных бомб: Детонация заряда. В оболочке бомбы находится несколько изотопов уран, плутоний и т.
Лавинообразный процесс. Разрушение одного атома, инициируют к распаду еще нескольких атомов.
Это была не просто механическая система подвески: первые атомные бомбы были изделиями, требующими весьма деликатного обращения. Между прочим, вооружение тяжелого бомбардировщика Ту-95В супербомбой АН602 принято считать чисто экспериментальным. Мол, и самолет был всего лишь специально оборудованным единичным образцом серийной машины Ту-95, и «Кузькина мать» представляла собой штучное изделие, которое Хрущев решил показать Западу. Правда, дальности полета Ту-95В с такой чудовищной бомбой на борту хватало только на поражение целей в пределах Евразии и на Аляске. Есть мнение, что, сбросив ее у побережья в море, можно было вызвать разрушительное цунами. Это, например, 40-килотонная бомба с зарядом РДС-2 «изделие 501-М».
Водородные бомбы принимали на борт туполевские средние бомбардировщики Ту-16 и тяжелые Ту-95, а также мясищевские М-4 и 3М. Речь идет о разнообразной литературе по этой теме.
Все эти соблазнительные для военных факторы отлились в детском стишке: "... Город стоит, а в нем - никого". Однако практические испытания показали, что для применения "по земле" нейтронное оружие мало подходит. Нейтронный поток эффективно рассеивается и поглощается земной атмосферой - в особенности водяным паром, - бетоном и некоторыми другими материалами, так что зона поражения новой бомбы сократилась до сотен метров.
В 70-е годы Китай, СССР и США выпустили некоторое количество тактических нейтронных боеприпасов - в частности, самые большие в мире минометы "Тюльпан" имеют в арсенале нейтронные мины "Смола" и "Фата", - а на танках и другой бронетехнике появились дополнительные экраны для нейтрализации нейтронного потока. Золотая ракета Гораздо большие перспективы для нового оружия открылись в противоракетной обороне. Из-за недостаточной точности систем наведения времен холодной войны баллистические ракеты предполагалось уничтожать перехватчиками с атомным зарядом.
Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии. Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме.
Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна.
Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов.