Российские ученые разработали технологию "вечной" ядерной батарейки. В этой статье расскажем, что придет на замену привычным аккумуляторам.
Стартап NDB сообщает о прорыве в области бесконечных батарей
Смотрите видео онлайн «Российские ученые создали батарейку из плутония, которая может работать вечно» на канале «Телеканал МИР» в хорошем качестве и бесплатно. изобретение, родственное скатерти-самобранке и ковру-самолёту. «Помещая радиоактивный материал внутрь алмаза, мы превращаем проблему ядерных отходов в батарейку для длительной выработки чистой энергии», — заявил Скотт. Батарейка на изотопах плутония, прототип которой создан в НИЯУ МИФИ по заказу Госкорпорации «Росатом», способна работать без подзарядки несколько десятилетий.
Ученые представили «вечную» батарейку, работающую на радиоактивных элементах
Китайский стартап Betavolt представил новую «вечную» батарею, которая может генерировать электроэнергию в течение 50 лет. “Безотходное” производство “вечных” батареек нельзя назвать фантастически дорогим, как о вероятном производстве “атомных аккумуляторов” сегодня рассуждают ведущие специалисты. Вечная батарейка? Российские учёные сделали элемент питания со сроком работы 10 лет. как сделать вечную батарейку видео бесплатно ритег так называлась вечная батарейка при ссср своими руками из магнитов видео для пульта из монет схема вечной батарейки. Новая батарейка преобразует энергию радиоактивного распада в электрическую и может использоваться для питания микроэлектронной аппаратуры. Принцип атомной батарейки в том, что радиоактивный изотоп, распадаясь, излучает тепло и разогревает капсулу, в которой он находится, до полутора тысяч градусов.
Комментарии
- Конкуренты тоже есть
- Рекомендации
- Также в «Общество»
- Публикации
Также в «Общество»
- Российские ученые создали батарейку из плутония, которая может работать вечно
- Технотренды 2024: привычным литиевым аккумуляторам приходит конец - Hi-Tech
- Ядерное питание: российские учёные создали атомную батарейку повышенной мощности
- Американский стартап показал «вечную» ядерную батарейку — Будущее на
- Ученые представили новую разработку ядерную батарейку, которая не превосходит по размерам монету.
- Российские учёные сделали диагностику когнитивных нарушений более точной и быстрой
В России создали прототип ядерной батарейки
Конечно, зачастую наши ученые отстают от иностранных коллег в плане оборудования и скорости исследования, но, тем не менее, именно российские ученые сообщили на неделе о весьма интересной новейшей разработанной технологии. Она позволяет создать элемент питания в виде привычной всем нам батарейки со сроком службы до 100 лет. Весь смысл такого источника питания заключается в том, чтобы преобразовать радиоактивную энергию в электрическую. И хотя такие прототипы уже разрабатывали ученые других стран, но отечественная детище обещает стать более дешевым, экологичным и обладать большим сроком использования.
В основе системы данной батарейки лежит бета-распад никеля-63. То есть, в ней увеличен токовый сигнал, потому что регенерация вторичных электронов происходит внутри наноструктурированных пленок никеля. В процессе окисления пленок образуется оксидная оболочка, которая увеличит эффективность источника питания.
Реактор разместили вверху, капсулу с условной командой и грузом — за нижней частью. Последовавшие испытания показали, что идея хороша, да только не работает: в определенных условиях, вероятность появления которых высока, смертельная доза радиации пройдет сквозь защиту. Кроме того, конструкция оказалась весьма взрывоопасной. Transit 4A. Атомные батарейки на плутонии-238, которого потратили 96 граммов, установили в навигационные спутники военных Transit 4A и 4B. Они выдавали 2,5 Вт электрической энергии тепловая была намного больше. Это был 1961 год. Спустя еще примерно год Transit 4B и некоторые другие спутники были повреждены из-за проведенных США ядерных испытаний в рамках программы Starfish Prime. Тогда на высоте 400 километров взорвали 1,44-мегатонный заряд, устроив небесный фейерверк, а заодно повредив собственную технику. Ведь ядерную энергию воспринимали как-то не всерьез. После проведения испытаний Starfish Prime во многих точках мира наблюдалось полярное сияние. Ошибок случалось немало, в том числе после того, как в гонку «радиоактивных» спутников включился СССР, который вначале использовал полоний-210, а затем перешел на уран-235. Иногда атомные батарейки падали в океан упоминается несколько случаев , другие горели в атмосфере или были уничтожены при запуске. Были вопросы и к конструкции советских космических аппаратов: ситуацию можно сравнить с водителем, выбрасывающим весь мусор которого тонны из машины в окно — чего только не оказалось на мусорной орбите вокруг Земли! Собственный опыт и опыт «коллег» подтолкнул американских инженеров к тому, чтобы разработать системы, которые активируются лишь после удаления от Земли. Это было важно, так как мощность батареек планировали нарастить. Однако особенно преуспели в этом Советы, которые быстро перешли на киловаттные установки, но уже в 1970-е. Американцы также запустили экспериментальный вариант на 500 Вт и 30—40 кВт тепловой энергии в 1975 году. В 1979 году началось частичное разрушение объекта. Причины остались неизвестны, предполагалось столкновение. Также считается, что радиоактивные элементы оказались в космосе.
Согласно тексту, новая батарея работает, используя «экситонную энергию» — состояние, в котором электрон поглощает достаточно заряженные фотоны света. Появился новый концепт экобатареек По словам ученых, исследование обеспечивает теоретическую демонстрацию того, что изготовление квантовой батареи без потерь возможно. Для этого замкнутая квантовая сеть была реализована таким образом, чтобы она находилась в «темном» состоянии.
Практически вечные: Китай запустит производство батареек, работающих полвека
Физики придумали «вечную» батарейку на основе алмаза | В КНР разработали «вечную» батарейку 14 января, 17:57. В китайской стартап-фирме Betavolt сообщили о разработке уникального ядерного аккумулятора, способного снабжать. |
Наука РФ - официальный сайт | Первые рабочие образцы таких батареек, которые можно будет полноценно использоваться, могут появиться через 1-2 года. |
Технотренды 2024: привычным литиевым аккумуляторам приходит конец | Сотрудники НИЯУ МИФИ создали первый прототип атомной батарейки, способной работать до 80 лет без подзарядки. |
Автономный источник питания "Этак" | как сделать вечную батарейку видео бесплатно ритег так называлась вечная батарейка при ссср своими руками из магнитов видео для пульта из монет схема вечной батарейки. |
Невероятно, но в России создана «Вечная батарейка»!
Инженеры КНР готовы выпустить на рынок «вечную» ядерную батарейку для гаджетов | В одном грамме созданной ими батарейки запасено около 3300 милливатт-часов, что является лучшим результатом среди «ядерных батареек» на основе. |
Атомные батарейки и зарядка по Wi-Fi: будущее рынка сохранения энергии | Батарейка, которая проработает в 14 раз больше, чем прошло лет с начала нашей эры. /. |
Вечная батарейка? Российские учёные сделали элемент питания со сроком работы 10 лет
Но и это далеко не предел. По мнению авторов проекта, инновационный аккумулятор в принципе изменит представление об элементах питания как о расходниках. К примеру, одна такая батарея смогла бы работать несколько служебных сроков обслуживаемой техники. Успешные эксперименты Мия продолжала месяц, что позволило в деталях исследовать работу нового аккумулятора и сделать обнадеживающие выводы о его возможном применении уже в коммерческих целях.
Это позволяет эффективно собирать обогащенный материал простым обжигом стержней. Углерод можно затем использовать для роста алмазов методами осаждения из газовой фазы. Выбор алмазов связан с тем, что они способны эффективно преобразовывать ионизирующее излучение в заряд.
Благодаря этому их даже предлагают использовать в качестве высокопроизводительных детекторов радиации. Для того чтобы обезопасить бета-вольтаический элемент, физики предлагают покрыть алмаз, обогащенный углеродом-14, обычным, нерадиоактивным алмазом. Это позволит сдержать большую часть излучения. Период полураспада углерода-14 составляет 5730 лет — хотя изотоп не обладает высокой активностью, элемент на его основе сможет проработать тысячи лет. Ранее аналогичные системы были предложены на основе в тысячу раз более активного изотопа: никеля-63. Его период полураспада равен 100 годам.
Удельная мощность элемента, разработанного в марте этого года в МИСиС, составляла порядка 10-100 нановатт на кубический сантиметр.
Как сообщает New Atlas, новые аккумуляторы абсолютно безопасны для человека и окружающей среды, могут быть упакованы во все возможные форм-факторы, будут стоить как литий-ионные батареи, а главное — обладают невероятным сроком службы в 28 тысяч лет. И это все меняет. Подпишитесь , чтобы быть в курсе. NDB использует графитовые стержни из ядерных реакторов, которые поглотили излучение ядерных топливных стержней и сами стали радиоактивными. Этот графит богат радиоизотопом углерода-14, который подвергается бета-распаду, высвобождая при этом антинейтрино и электрон бета-распада. NDB берет этот графит, очищает его и использует для создания крошечных алмазов из углерода-14. Алмазная структура действует как полупроводник и теплоотвод, собирая заряд и отводя его наружу. Что умеют программные роботы Дальше радиоактивные алмазы из углерода-14 покрываются слоем дешевого, нерадиоактивного, созданного в лаборатории алмаза из углерода-12, который действует как сверхтвердый защитный слой радиоактивного элемента.
Канта и Санкт-Петербургского государственного медицинского университета им. Павлова, заключается в совокупности характеристик, мобильности технологического решения и возможности проводить исследования в динамике.
В Китае создали ядерную батарейку, способную проработать 50 лет
При работе «алмазная» батарейка будет передавать излишки электричества литиевому аккумулятору. Новости 26 октября 2019. Появился проект вечной квантовой батарейки. Исследователи и учёные из Технического университета Вены изобрели аккумулятор принципиально нового типа.
Без зарядки 50 лет: в Китае разработали ядерную батарею
В настоящее время ученые работают над серьезным повышением эффективности работы за счет использования углерода-14, который присутствует в графитовых блоках на атомных электростанциях. В Великобритании в настоящее время — почти 95 тысяч тонн графитовых блоков. Если выделить из них углерод-14, их радиоактивность снизится, что уменьшит стоимость и повысит безопасность хранения этих ядерных отходов. Несмотря на малую мощность новых источников энергии, они обладают удивительным сроком действия. Аккумулятор, содержащий один грамм углерода-14, будет давать 15 джоулей в день — меньше, чем батареи типа АА.
Уже несколько лет доступны саморастворяющиеся имплантаты и даже водорастворимые в горячей воде печатные платы, что удобно для безопасной и полной переработки. На фоне этих инноваций прототип радиоизотопной батареи малой и средней мощности на основе бета-распада никеля-63, плутония-238 и других изотопов , а также параллельные разработки по созданию ядерной электрической батареи в КНР представляют огромный интерес. Выбор радиоизотопа и схемы преобразования Области применения ядерных батарей разнообразны: они незаменимы на территориях, удалённых от инфраструктуры, к примеру, в Арктике, на больших глубинах, на газо- и нефтепроводах большой протяжённости, в космосе, в устройствах, обеспечивающих специальную связь, и в медицине: везде, где требуется длительный мониторинг без возможности подзарядки или замены источников энергии. Для изотопных источников применительно к кардиостимуляторам или датчикам артериального давления, электронным анализаторам крови подходят только плутоний-238 и никель-63. Требование безопасного радиоизотопа сужает возможности, поскольку радионуклиды при распаде должны распадаться либо переходить в состояние дочернего ядра. Кроме выбора радионуклида принципиально важным при разработке радиоизотопных источников энергии является выбор схемы преобразователя энергии ядерного распада в электрический ток.
На практике преобразование осуществляется по непрямому ступенчатому принципу: кинетическая и кулоновская энергия альфа- и бета-частиц сначала превращаются в тепловую, химическую, механическую, световую и другие виды энергии, а затем — в электрическую. Концепция оригинальной физической системы на основе 63Ni предложена группой учёных из Института «ЛаПлаза» под руководством Петра Борисюка [7]. Если обеспечить условия эффективной генерации вторичных электронов непосредственно внутри наноструктурированных плёнок никеля и значительно увеличить токовый сигнал, вызванный каскадом многократных неупругих соударений бета-частиц, на выходе экспериментальной реализации получают относительно простую систему, но довольно результативную с точки зрения состава плотно упакованных нанокластеров никеля с градиентным распределением наночастиц по размеру, осаждённых на поверхности широкополосного диэлектрика — оксида кремния [7]. Вследствие размерной зависимости энергии Ферми наличие пространственно-неоднородного распределения металлических наночастиц по размерам приводит к пространственному перераспределению заряда в электропроводящей системе соприкасающихся друг с другом металлических наночастиц. Их средний размер изменяется в выделенном направлении, что приводит к возникновению разности потенциалов на полярных выходах напряжению. Объяснением этого эффекта с помощью знаний физики ядерной реакции является демонстрация формирования нанокластерных плёнок никеля-63 с градиентным распределением наночастиц. В процессе реакции достигают двух эффектов. Во-первых, формируются покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, происходит преобразование энергии бета-распада 63Ni в ток электронов электрический ток без использования дополнительных сложных для реализации полупроводниковых систем. Исследование электрофизических свойств формируемой нанокластерной плёнки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество впервые были опубликованы в журнале Applied Physics Letters коллективом авторов [7]. Поскольку наноструктурированные плёнки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределённым спектром излучения в заданном спектральном диапазоне, процесс окисления плёнки приводил к образованию оксидной оболочки поверх металлического ядра нанокластера.
Затем происходило формирование совокупности металлических нанокластеров с их пространственным распределением по размерам, но в одном слое оболочке оксида. Относительно малые размеры нанокластеров 2—15 нм способствуют проявлению квантовых свойств полупроводниковых материалов с широким разбросом значений ширины запрещённой зоны, а это обеспечивает возможность эмиссии фотонов заданной длины волны при нагреве и, следовательно, обеспечивает возможность коррекции спектра излучения под определённый диапазон длин волн. Это важное отличие перспективного открытия в разработке отечественных ученых, поэтому энергоэффективность и энергосбережение современных тепловых источников электроэнергии может выйти на новый уровень. Понимая конкурентное значение технологии, подобными исследованиями занимаются во всём мире. Китайские успехи Китайский стартап Betavolt из Пекина представил первую в мире миниатюрную аккумуляторную батарею с ядерной начинкой: модель BV-100. Первенство объясняют тем, что это первый случай, когда атомная энергия реализована в столь миниатюрной модели. Отсюда и название батареи — «ядерная». Миниатюризация — основной отличительный признак инновации. Батареи можно подключать параллельно и последовательно, создавая модули в электрической цепи для увеличения мощности источника питания и суммарного напряжения. Заявленная мощность одной батареи с изотопом никель-63 и алмазными полупроводниками сравнима с источником автономного питания в 100 мкВт, а напряжение составляет 3 В постоянного тока [6].
Размеры батареи меньше средней монеты. На рис. Принцип работы батареи основан на преобразовании энергии, выделяемой при распаде изотопов, в электрический ток. Соответственно, речь идёт об источнике энергии, у которого понятие саморазряда отсутствует вообще, а рабочий процесс начинается только после подключения в электрическую цепь при подключении к контактам батареи устройств нагрузки. Изотопы никеля — разновидности химического элемента никеля, имеющие разное количество нейтронов в ядре. Известны изотопы никеля с массовыми числами от 48 до 80 количество протонов 28, нейтронов от 20 до 52 и 8 ядерных изомеров. Среди искусственных изотопов самые долгоживущие — 59Ni период полураспада 76 тыс. Дочерний изотоп — стабильный 63Cu — получают облучением нейтронами в ядерном реакторе стабильного изотопа 62Ni. Используемый в новой атомной батарее 63Ni — наиболее перспективный радионуклид в бета-вольтаике: средняя энергия бета-частиц 63Ni 17,5 кэВ и максимальная энергия 67 кэВ , период полураспада 100,1 лет; к нему можно создать физическую защиту от мягкого бета-излучения источника в миниатюрном элементе питания. Модуль BV-100 рекомендован к применению в широком спектре современных электронных устройств: в сотовых телефонах и радиостанциях, робототехнике миниатюрных роботах , БПЛА, устройствах с ИИ, медицинских электронных приборах и датчиках разного назначения, в том числе работающих удалённо от основного блока управления или сервера.
Особую роль пророчат изобретению в аэрокосмической промышленности, в частности, в микропроцессорной технике. Батарея имеет многослойную конструкцию, устойчива к огню и даже сильному воздействию детонации, приравниваемому к взрывной среде. При этом модуль безопасен и не имеет излучения, ибо в процессе отдачи электроэнергии изотопы распадаются, превращаясь в стабильные и нерадиоактивные изотопы меди. Атомная батарея не имеет внешнего радиоактивного излучения, пригодна для использования даже в условиях высоких требований к стерильности: в медицинских устройствах, таких как кардиостимуляторы, мониторы разного назначения, элементы искусственного сердца, соприкасающиеся с телом человека.
Представьте себе мир, в котором вам вообще не придется заряжать аккумулятор в течение дня. А теперь представьте себе неделю, месяц... Как насчет десятилетий? Вот что мы можем сделать с помощью нашей технологии», — рассказал о разработке сотрудник стартапа Нил Найкер. В настоящий момент разработка переводится на коммерческую основу.
Также считается, что радиоактивные элементы оказались в космосе. Фото: energy. В рамках проекта NERVA, например, были испытаны ЯРДы ядерные ракетные двигатели, относятся к радиоизотопным источникам энергии, как и РИТЭГ , способные произвести до 4500 мегаватт тепловой энергии и 1,1 млн ньютонов реактивной тяги половина тяги маршевого двигателя шаттла , работая до 90 минут. Плюс таких двигателей — в значительном сокращении времени полета. Но это другая история, которая пока не закончилась. Модификация одного из них обогревала измерительный инструмент, который взяли с собой участники миссии «Аполлон-11». И пока это так. Однако подобные системы практически незаменимы при отправке зондов на сверхдальние расстояния — туда, где солнечные батареи бесполезны. Первопроходцем в этом деле стала межпланетная станция «Пионер-10», отправленная в космос 3 марта 1972 года.
Перед запуском они выдавали 155 Вт электроэнергии, но при подлете к Юпитеру показатель снизился до 140 Вт. Этого было более чем достаточно для работы систем, потреблявших 100 Вт, но к 2001 году энергии уже едва хватало на поддержание функционирования лишь некоторых модулей. До этого новые системы прошли обкатку в спутниках на околоземной орбите. Каждый из космических аппаратов получил по три РИТЭГа общей электрической мощностью 470 Вт на момент запуска с перспективой снижения электрической мощности в два раза примерно через 88 лет. Источниками энергии стали 24 спрессованные сферы из оксида плутония. Плюс на борту имелось по девять нагревателей RHU их может быть и больше, они устанавливаются точечно в рассчитанных местах. Инженерам приходилось решать проблемы с нагревом в тысячи градусов как в случае с новой системой, так и в прошлом и будущем Спустя пару лет после запуска «Вояджеров» США временно вышли из гонки, а СССР, напротив, наращивал количество запущенных спутников — это были аппараты серии УС-А. Но на них устанавливали ядерные энергетические установки БЭС-5 «Бук», работавшие на уране. Их электрическая мощность составляла 3 кВт при тепловой мощности 100 кВт, что заметно превосходило показатели американских систем, работавших по несколько иному принципу.
Фото: Los Alamos National Laboratory Срок работы спутников с «Буками» был заметно меньше: он составлял около полугода потом аппарат становился мусором, который летает вокруг Земли до сих пор , и это при более высоком весе ядерного топлива. Поэтому требовались регулярные запуски, с которыми то и дело не ладилось. На смену БЭС-5 пришли ядерные установки «Топаз», которые были мощнее предшественников более чем в два раза.
Советско-российские разработки. Вечная батарейка
Источник изображения: Betavolt Компания Betavolt утверждает, что созданный ею 3-вольтовый прототип атомной батарейки меньше монеты будет работать 50 лет. Батарея якобы уже передана клиентам для изучения, а по-настоящему мощный 1-Вт элемент будет представлен в 2025 году. Сообщается, что аккумулятор будет полностью безопасным, так как на него не будут влиять температура воздуха и другие факторы. Также отмечается, что проблем с утилизацией быть не должно — к концу эксплуатации почти все радиоактивные элементы попросту распадутся. Эта разработка, как и множество других подобных в США, России и в других странах, использует источник изотопов, который выделяет энергию при радиоактивном бета-распаде. У таких батарей низкий КПД на уровне единиц процентов, но работать они могут десятилетиями, поэтому, например, нашли применение в качестве бортовых систем питания межпланетных станций, которые направляются вглубь Солнечной системы.
Он также накапливается в графитовых деталях ядерных реакторов, которые поглощают излучение ядерных топливных стержней. Хранить такие отходы опасно, дорого и трудно. Батареи на углероде-14 решают сразу две проблемы — недолговечность обычных элементов питания и переработки радиоактивных отходов.
В Nano Diamond Battery отмечают, что батарейки безопасны для человека и окружающей среды. В процессе испытаний радиационный фон оставался в норме. А алмазная оболочка дешевые искусственные алмазы успешно защищала корпус от возможных повреждений. Еще один положительный момент — работающая батарейка не выделяет углекислый газ. Безопасность и эффективность бета-гальванической батареи подтвердили в Ливерморской национальной лаборатории имени Лоуренса и Кавендишской лаборатории Кембриджского университета. Внутренний стержень «фонит» до 28 000 лет, поэтому элементы питания будут работать гораздо дольше, чем техника, в которую они установлены.
Всем известно, что алмаз является одним из наиболее твердых и прочных материалов, повредить или сломать который будет очень непросто.
Кроме того, использование алмаза в производстве данной батарейки имеет еще один практический смысл. Все дело в том, что энергия радиоактивного ядра будет им поглощаться за счет неупругого рассеивания - это же явление применяется для выработки электричества. Предполагаемую сферу использования наноалмазных батарей разработчики обрисовали довольно широко. Так, согласно имеющимся техническим характеристикам данного источника энергии, её можно применять для питания гаджетов или техники буквально любого размера - от смартфонов и электрокаров до пассажирских лайнеров и даже ракет. Генеральный директор и соучредитель компании-разработчика NDB Нима Голшарифи сообщил: «Как члены общества, мы чрезвычайно обеспокоены благополучием планеты и сосредоточены на том, чтобы сберечь нашу планету для будущих поколений...
А потому она меньше своих предшественников. С одной стороны радиоактивный накопитель пропускает электроны, а с другой — контролирует период полураспада. По словам исследователей, использовать их можно не только на земле, но и в космосе, ведь электричество будет вырабатываться десятки и даже сотни лет, сообщает ИТАР-ТАСС.
Невероятно, но в России создана «Вечная батарейка»!
Устройство размерами 15х15х5 миллиметров (меньше рублевой монеты) способно в течение 50 лет выдавать напряжение три вольта — вдвое больше, чем стандартная пальчиковая батарейка. Действительно ли она безопасна для человека и будет ли производство батареек дорогим, рассказывает доцент кафедры радиохимии химического факультета МГУ Владимир Петров. В одном грамме созданной ими батарейки запасено около 3300 милливатт-часов, что является лучшим результатом среди «ядерных батареек» на основе.
«Вечные» батарейки и аккумуляторы
Устройство размерами 15х15х5 миллиметров (меньше рублевой монеты) способно в течение 50 лет выдавать напряжение три вольта — вдвое больше, чем стандартная пальчиковая батарейка. Датчики с «вечной» батарейкой могут широко применяться и при создании сложных механизмов, поскольку карбид кремния выдерживает температуру до 350 градусов. Принцип атомной батарейки в том, что радиоактивный изотоп, распадаясь, излучает тепло и разогревает капсулу, в которой он находится, до полутора тысяч градусов. В КНР разработали «вечную» батарейку 14 января, 17:57. В китайской стартап-фирме Betavolt сообщили о разработке уникального ядерного аккумулятора, способного снабжать.