Новости дроби презентация

Просмотреть и скачать презентацию Всё об обыкновенных дробях (Математика).

Правильные и неправильные дроби 5 класс презентация

Картинки дроби для презентации Предлагаю Вашему вниманию презентацию к уроку математики в 5 классе «венные дроби» по учебнику Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И.
Презентация: Арифметические действия с дробями Обыкновенные дроби ГБОУ СОШ №456 Санкт-Петербурга Учитель Швиммер Г.Е. 209-075-447 Презентация выполнена для первых уроков по теме «Обыкновенные дроби».
Презентация на тему по математике на тему: Цепные дроби презентация по Алгебре абсолютно бесплатно.
Презентация "Все действия с дробями" Презентация на тему Дроби к уроку по математике.

Презентация по теме: "Десятичные дроби. Устный счет."

Официальная демоверсия проверочной работы по математике для 5 класса. ВПР в 2024 году будут проводиться по образцам и описаниям контрольных измерительных материалов 2023 года. Предлагаю Вашему вниманию презентацию к уроку математики в 5 классе «венные дроби» по учебнику Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. История обыкновенных дробей Подготовила: учитель математики МКОУ «Чебаклинская СОШ» Сиканкина А.И.

Презентация "Дроби"

Возьмите полоску бумаги. Разделите её на 2 равные части, свернув полоску пополам. По линии сгиба проведите черту. На 2 части Запишем число 2 под чертой вот так:. Черту называют дробной, а число, записанное под чертой — знаменателем.

В матче третьего тура группы В олимпийского мужского турнира по хоккею сборная России взяла верх над командой Чехии со счетом 4:2 Сколько всего шайб во время матча было забито в ворота? Какую часть шайб забили Россияне? Какую часть шайб забили чехи? На работу ему отвели 30 дней.

Успеет ли писатель выполнить задание в срок? Вчера доктор получил вызов и посетил 6 больных. Какая часть людей на участке врача болеет? В рецептах врачи указывают своим пациентам в каких частях принимать им лекарства.

Теперь ясно, что надо 4 хлеба разрезать пополам, 2 хлеба на 4 части и только один хлеб — на 8 частей всего 17 разрезов. Слайд 13 Дроби в Древнем Риме. Слайд 14 Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия. Всего применялось 18 различных названий дробей.

Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас. При делении 1001 асса на 100 один римский математик сначала получил 10 ассов, потом раздробил асе на унции и т. Но от остатка он не избавился. Чтобы не иметь дела с такими вычислениями, римляне стали использовать проценты.

Запишем это свойство в виде буквенных выражений.

Сравнение дробей с одинаковыми знаменателями Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше. Сравнение дробей с одинаковыми числителями Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше. В первом случае торт разделили на 2 части знаменатель дроби равен 2 , и у вас в руках половина торта, а во втором — торт поделили на 8 частей, и у вас в руках маленькая часть торта. Сложение дробей с одинаковыми знаменателями Такой случай наиболее простой. При сложении дробей с равными знаменателями складывают числители, а знаменатель оставляют тот же. Вычитание дробей с одинаковыми знаменателями При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого первой дроби отнимают числитель вычитаемого второй дроби , а знаменатель оставляют прежним.

Вычитание правильной дроби из единицы Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби. Зная целое, можно найти его часть, указанную соответствующей дробью.

Обобщающий урок-презентация "Умножение и деление дробей"

🗊Презентация Обыкновенные дроби презентацию по теме Закрепление по теме Дроби. (Математика 4 класс, автор Петерсон Л.Г.) построила в виде испытаний, где закрепляются и повторяются знания в игровой.
Обыкновенные дроби - презентация онлайн ать презентацию на тему дроби ать занимательную историю по теме дроби вать газету по теме дроби.

Презентация по математике: "Египетские дроби" | Мандрикова Нина Емельяновна. Работа №305201

Если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Презентация для внеурочного занятия по математике в 6 – 7 классах по теме «Аликвотные дроби». Просмотр содержимого документа «Презентация к уроку "Понятие о дроби.

Презентация по математике: "Египетские дроби" | Мандрикова Нина Емельяновна. Работа №305201

Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Слайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа. Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Слайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей.

Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами. Слайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей. От перестановки множителей произведение не меняется. Чтобы произведение двух дробей умножить на третью дробь, можно первую дробь умножить на произведение второй и третьей дроби или произведение первой и третьей дробей умножить на вторую дробь.

Чтобы умножить сумму разность дробей на дробь, можно умножить на эту дробь каждое слагаемое и сложить вычесть полученное произведение. Чтобы умножить смешанное число на натуральное число, можно: умножить целую часть на натуральное число; умножить дробную часть на натуральное число; сложить полученные результаты. Слайд 15 Чтобы найти дробь от числа, нужно умножить число на эту дробь. Слайд 16 Деление обыкновенных дробей Чтобы разделить одну дробь на другую, надо делимое умножить на дробь, обратную делителю. Если среди данных чисел имеются смешанные числа, то нужно сначала смешанное число превратить в неправильную дробь, только потом нужно выполнить деление. Если делимое и делитель — натуральное число, то нужно натуральное число записать в виде дроби со знаменателем 1, затем приступить к выполнению деления.

Слайд 17 Нахождение числа по его дроби Чтобы найти число по данному значению его дроби, надо это значение разделить на дробь.

При этом получим дроби с одинаковыми знаменателями. Cлайд 7 Сравнивание обыкновенных дробей Если дроби имеют разные знаменатели, то прежде чем их сравнивать, их надо привести к общему знаменателю. Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше. На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби. Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше. Cлайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1.

Cлайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Cлайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Cлайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа. Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Cлайд 13 Умножение дробей.

Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей. Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами. Cлайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей.

Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены. Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.

Правило неправильных дробей. Обыкновенные дроби правильные и неправильные дроби.

Правильные дроби неправильные дроби и смешанные дроби. Правильные и неправильные дроби смешанные числа. Смешанные дроби в обычные. Презентация по теме обыкновенные дроби 5 класс. Парильные дроби и неправильные. A an the правильно 5 класс. Правильная дробь и неправильная дробь пример. Неправильные и неправильные дроби. Правильная дробь пример. Правильные и неправильные дроби карточки.

Неправильные дроби в смешанные числа. Дроби смешанные числа 5 класс. Правильные и неправильные дроби рисунок. Дроби 5 класс. Неправильная обыкновенная дробь. Правильные и неправильные числа. Распределите дроби на группы. Распределение дробей по группам. Распределите дроби по группам. Математика 5 класс дроби.

Карточки правильные и неправильные дроби 5 класс Виленкин. Правильные и неправильные дроби 5 класс карточки. Какие дроби называются правильными и неправильными. Дроби на Луче. Изображение дробей на координатном Луче. Задачи с дробями на координатном Луче. Неправильная дробь на координатном Луче. Правильная дробь это какая.

Презентация - "Презентация по теме "Десятичные дроби и проценты""

Обыкновенные дроби ГБОУ СОШ №456 Санкт-Петербурга Учитель Швиммер Г.Е. 209-075-447 Презентация выполнена для первых уроков по теме «Обыкновенные дроби». Продукт: Исследование с обзором практического применения обыкновенных дробей, презентация с примерами, методические рекомендации по работе с дробями, видеоуроки. Просмотреть и скачать презентацию Всё об обыкновенных дробях (Математика). Повторить и закрепить изученный материал, отработать навыки выполнения действия над обыкновенными дробями Цель урока. Данная презентация подходит для проведения открытого урока в 5-6 классах для обобщения повторения темы Арифметические действия с дробями. Поиск математической и исторической литературы, чтобы узнать когда древние египтяне стали использовать дроби и проводить вычисления с использованием дробей.

КАРЛ ГАУСС

Инфоурок › Математика ›Презентации›Презентация по математике на тему "Дроби". Просмотр содержимого документа «Презентация на тему "Дроби в жизни людей"». На нашем сайте презентаций вы можете бесплатно ознакомиться с полной версией презентации "Презентация по теме "Десятичные дроби и проценты"". Учимся искать дробь, обратную заданной, расставлять дроби на числовой прямой и сравнивать их.

Презентация по математике 5 класс "Действия с обыкновенными дробями"

При сложении дробей числители складываются, а знаменатель остается прежним. Если у уменьшаемого нет дробной части, то можно, заняв единицу у целой части, представить эту единицу в виде неправильной дроби с нужным знаменателем. При умножении дробей числитель умножается на числитель, а знаменатель — на знаменатель. Единственным отличием будет то, что прежде чем перемножить дроби необходимо «перевернуть» дробь, которая стоит справа от знака деления. Готов ответить на ваши вопросы.

Лишь значительно позже греки, а затем индусы стали использовать в вычислениях и другие дроби. Слайд 3 Описание слайда: Запись дробей с помощью числителя и знаменателя Запись дробей с помощью числителя и знаменателя появилась в Древней Греции, только греки знаменатель записывали сверху, а числитель — снизу. В привычном для нас виде дроби впервые стали записываться в Древней Индии около 1500 лет назад, но при этом индусы обходились без черты между числителем и знаменателем.

А черта дроби стала употребляться только с 16 века. Слайд 4 Описание слайда: Понятие «дробь» произошло Понятие «дробь» произошло от глаголов «раздроблять», «разбивать», «ломать».

Как найти целое число по его дроби. Как складывать и вычитать дроби. Как определить какую часть одна величина составляет от другой Все начиналось так: Первой дробью, с которой познакомились люди была половина. Следующей дробью была треть. Египтяне все дроби старались записать в виде суммы дробей.

Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю. Любое смешанное число можно представить в виде неправильной дроби и наоборот. При сложении дробей числители складываются, а знаменатель остается прежним. Если у уменьшаемого нет дробной части, то можно, заняв единицу у целой части, представить эту единицу в виде неправильной дроби с нужным знаменателем. При умножении дробей числитель умножается на числитель, а знаменатель — на знаменатель.

Презентация "Все действия с дробями"

Числитель стоит ___ чертой дроби и означает, сколько равных частей _____ от целого взяли. Математика 5 класс дроби презентация 5 класс. Презентация)Барабанная дробь в дверь застала Винни Пуха в момент попытки попить чая с медом, последним делиться как-то не хотелось ни с кем.

Похожие новости:

Оцените статью
Добавить комментарий