Новости термоядерная физика

Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха. Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние. Если в ядерных реакциях ядрам урана, плутония, тория выгодней распадаться для запуска цепной взрывной реакции, то при термоядерном варианте, наоборот, балом правит реакция.

Регистрация

  • Мирный термояд – ​почти реальность
  • Термоядерный запуск. Как Мишустин нажал на большую красную кнопку
  • ЗА ЧТО БОРЕМСЯ
  • Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

ядерная физика

Ожидается, что это будет сделано завтра. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Проект National Ignition Facility, специалисты которого и добились успеха, использует метод так называемого «термоядерного инерционного синтеза». На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду.

Напомним, тогда, затратив 2,05 МДж на питание лазеров, ученые получили 3,15 МДж энергии. Повторный эксперимент был нужен для того, чтобы подтвердить, что первоначальный успех не был случайностью и технология действительно позволяет генерировать больше энергии, чем затрачивается на запуск реакции. Термоядерный синтез — это процесс, при котором два легких атомных ядра объединяются в одно более тяжелое, высвобождая большое количество энергии. В 1960-х годах группа ученых-первопроходцев из LLNL выдвинула гипотезу, что лазеры можно использовать для индукции термоядерного синтеза в лабораторных условиях.

Несколько американских физиков заинтересовались теоретическими выкладками российского ученого, и начались «камерные» лабораторные эксперименты. Действие лабораторной термоядерной установки основано на эффекте акустической кавитации в специально подготовленной жидкости, подвергнутой воздействию акустической волны, образуется кластер мельчайших пузырьков, которые с огромной скоростью схлопываются. Все происходило в небольшом цилиндре с ацетоном, в котором ядра водорода были заменены ядрами дейтерия, имеющими в своем составе по дополнительному нейтрону. Ученые зарегистрировали поток нейтронов, вылетающих из камеры, где находился цилиндр с ацетоном. Это и появление ядер трития в облученном таким образом ацетоне — явные признаки термоядерной реакции. А в середине нулевых в одном из номеров журнала Physical Review Е оявилось сообщение группы физиков из двух американских институтов Окриджская национальная лаборатория, штат Теннесси, и Ренселлерский политехнический институт в Трое, штат Нью-Йорк о том, что им вторично удалось получить доказательства существования пузырькового термояда. Экспериментаторы «бомбардировали» цилиндр мощными звуковыми волнами и одновременно — высокоэнергичными нейтронами. В результате рождалось скопление воздушных пузырьков диаметром около миллиметра, то есть гораздо более крупных, нежели образуются при воздействии только звуковых волн. Схлопывание пузырьков нагревало дейтерированный ацетон до таких температур, при которых, утверждают физики, уже начинается термоядерная реакция — слияние двух ядер дейтерия в ядро трития с вылетом лишнего нейтрона. Кстати, о температурах. Пузырьковый термояд иногда называют «холодным». Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза». В центре пузырька, который испускает нейтроны, температура от 100 до 200 миллионов градусов Кельвина. Процесс длится доли пикосекунды 10—12 с. В общем, получается 500 тысяч нейтронов в секунду. Это много с точки зрения физики явления, но этого мало, чтобы это было термоядерным реактором». Как бы там ни было, по словам Роберта Нигматулина, он продолжает теоретические исследования в этой области и есть идеи, как повысить выход нейтронов в пузырьковом термояде. Нет денег на проведение экспериментов. Как отмечал польский философ и футуролог Станислав Лем в своем трактате «Сумма технологий» 1964 , «Без сомнения, ученым придется сначала «воспитать» целое поколение руководителей, которые согласятся достаточно глубоко залезть в государственный карман, и притом для достижения целей, столь подозрительно напоминающих традиционную тематику научной фантастики». Пузырьковому термояду в этом смысле не повезло: до него додумались, когда основные государственные бюджеты уже были поделены между токамаками и лазерным термоядом. В любом случае отметим еще раз этапное достижение ученых, полученное на установке NIF. Пусть и локально, но превышение выработанной энергии над затраченной продемонстрировано экспериментально.

С использованием точных методов квантовой механики он вычислит сечения наиболее интересных с прикладной точки зрения термоядерных реакций синтеза. На основе найденных величин можно будет рассчитать кинетику ядерных превращений для расчета коэффициента полезного действия КПД конкретной энергетической термоядерной или гибридной ядерной установки.

Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика

«Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times.

Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

Американский "Национальный комплекс зажигания" National Ignition Facility, NIF в Ливерморской национальной лаборатории воспроизвел так называемый инерционный управляемый термоядерный синтез, предусматривающий облучение крошечной порции водородной плазмы самым большим в мире лазером». Вот когда появится первая ТЯ электростанция на 100 гвт, тогда и будет порыв. А так, просто болтовня! Гоблин даже про него говорил. Ну как английские ученые прямо... Евгений Это важно?

В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад.

Что же касается той новости, которую вы пересказываете сейчас, то это типичная армия Венка, которая вот-вот придет и спасет Берлин;.

Нерешенных проблем много. Во-первых, нужно разработать сплавы с конкретными свойствами, совмещающие прочность и пластичность. Пока основной кандидат в конструкционные материалы — вольфрам. Во-вторых, есть вопросы по физике плазмы, ее контролю, безопасному охлаждению, а главное — стабильному удержанию. Бум токамаков Идея создания термоядерного реактора была основана на теплоизоляции высокотемпературной плазмы с использованием электрического поля высокого напряжения. Токамак — тороидальная камера с магнитными катушками, прототип реактора для поддержания контролируемой термоядерной реакции в горячей плазме. Главной задачей JET было подготовить сценарий технических характеристик, близкий к запланированному для постройки международного термоядерного экспериментального реактора ИТЭР. На реакторе JET было достигнуто первое в мире контролируемое выделение мощности синтеза на дейтерий-тритиевой реакции 1991 год , этому же реактору принадлежит мировой рекорд мощности управляемого термоядерного синтеза — 16 МВт 1997 год. При таких колоссальных температурах ядра изотопов водорода сталкиваются и, преодолевая кулоновский барьер, сливаются, образуя ядра атомов гелия.

В результате каждого акта такого синтеза должно выделиться 17,6 МэВ энергии. При нагревании топливная смесь приходит в состояние полностью ионизированной плазмы, словно в солнечном ядре, где каждую секунду сгорают тонны водорода, также превращаясь в гелий. Сверхпроводящие тороидальная и полоидальная катушки совместно с центральным соленоидом удерживают плазму внутри вакуумного сосуда реактора. Эти катушки генерируют магнитное поле, которое формирует плазму в тор. В 1950-х годах считалось, что MFE можно достичь относительно легко. Шла настоящая гонка: кто первым создаст подходящую установку. К концу 1950-х годов стало ясно, что турбулентность и нестабильность в плазме — серьезные проблемы. В 1968 году советская команда изобрела токамак, который показал производительность в 10 раз выше, чем альтернативные способы. Курчатова под руководством академика Льва Арцимовича. С тех пор считается наиболее перспективной идея токамаков с магнитным плазменным удержанием.

Однако есть и другая концепция термоядерного синтеза — инициирование цепных реакций внутри реактора путем нагревания и сжатия топливной мишени с помощью мощного лазерного излучения так называемый инерционный синтез. Применяются мощные лазеры для того, чтобы зажечь небольшую мишень — ампулу, содержащую топливо, и быстро менее чем за одну миллиардную долю секунды достичь условий термоядерного синтеза. Лазер используется для генерации импульса инфракрасного света, который длится несколько миллиардных долей секунды с миллиардными долями джоуля энергии. У этой технологии есть свои подводные камни. Лазеры с высоким КПД должны интенсивно, а главное — однородно облучать мишени; при этом важны сверхточная фокусировка лазеров, скрупулезное соблюдение размеров мишеней, их строго сферическая форма. Несколько ампул за секунду должны быть загружены в реактор с фиксированным положением по центру — это особенно сложно осуществить, учитывая масштабы реактора. Самая крупная экспериментальная установка, работающая по принципу инерционного синтеза, — это Национальный центр зажигания National Ignition Facility , расположенный в США, в Ливерморской национальной лаборатории им. NIF — самая мощная лазерная система в мире, насчитывающая 192 лазерных пучка. Принцип работы тот же, но в LMJ 176 лазерных луча.

Например, там будут использоваться высокотемпературные сверхпроводники, которые пока нигде не применялись. Они используются при изготовлении катушек. Аналогичные разработки ведутся в США и в Великобритании. Гаспарян уточнил, что термоядерный реактор безопаснее, потому что в обычном происходит самоподдерживающаяся реакция деления, которая в случае аварии, как на «Фукусиме», может приводить к нежелательным последствиям. В термоядерном реакторе такого сценария быть не может.

Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца

Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Росатом поддержит популяризаторов ядерной физики во Всероссийской премии «За верность науке». Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим.

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии. Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы.

Похожие новости:

Оцените статью
Добавить комментарий