Новости термоядерный холодный синтез

объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. теоретически возможный способ простого и дешёвого получения огромных количеств экологически чистой энергии.

В защиту холодного ядерного синтеза (ХЯС)

Продолжительность ремонта термоэкранов оценивается примерно в два года». Еще одна проблема возникла при сварке секторов вакуумной камеры. При проектировании ИТЭРа первую стенку решили делать из бериллия. Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала. К середине апреля мы выработаем позицию и представим ее на следующем совете ИТЭР.

Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено». Физпуск состоялся еще 18 мая 2021 года.

Арата ещё в 2004 г. История вызвала всплеск интереса СМИ. В январе 2011 года Росси заявил, что он имеет чёткое понимание о задействованном механизме, но отказывается публично его раскрывать, пока не будет получен патент [30]. Он ещё имеет нескольких уверенных сторонников, но, наиболее вероятно, вскоре канет во мрак патологической науки, к которому он и принадлежит [31]. В 2014 году группа профессора физики Болонского университета Джузеппе Леви исследовала параметры процесса, описанного Росси.

Япония, 2017—2020 годы[ править править код ] В университете Тохоку в серии экспериментов зафиксировано увеличение температуры в тонких пленках из никеля и палладия, насыщенных водородом и дейтерием. В одном из экспериментов из-за недостаточного напряжения не удалось получить напыление, в результате оба опыта дали одинаковые результаты. Проведенная масс-спектрометрия не обнаружила ядерную реакцию [34] [35]. Ранние такие мероприятия часто критиковались за привлечение псевдоучёных [36].

Проблема в том, что энергия, которую в такой реакции можно получить за счет мюона, — не более 1,4 гигаэлектронвольта.

А чтобы получить мюон на современных ускорителях, необходимо придать частице энергию от нескольких гигаэлектронвольт. Ситуация как с золотом, которое можно получить из других элементов с помощью ядерной физики: сам процесс возможен, но золото, полученное им, будет много дороже обычного. Никаких путей снизить нужную для наработки мюонов энергию пока даже не просматривается. Сторонники «холодного синтеза» ищут какие-то катализаторы типа мюонов, но при этом намного более стабильные, способные сделать реальностью слияние атомов при умеренных температурах «за недорого». Проблема этих поисков в том, что они идут без каких-либо здравых теоретических идей, «на ощупь», и даже сама возможность решения этой проблемы никак не доказана.

Возьмем обычные токамаки: считается, что если вложить 25 миллиардов долларов ITER, то удастся добиться «горячей» термоядерной реакции, при которой энергии получалось бы больше, чем нужно на нагрев и удержание плазмы в токамаке. Далеко не очевидно, что из этого получится что-то экономически разумное стоимость реактора на единицу тепловой мощности для этого должна упасть минимум в десятки раз. С холодным термоядом таких надежд пока нет. Лженаука и патологическая наука Тем не менее попытки построить установки холодного ядерного синтеза предпринимались, предпринимаются и будут предприниматься во всем обозримом будущем. Двадцать вторая Международная конференция по холодному термоядерному синтезу проходит, как видно из названия, уже почти третий десяток раз.

Холодный термояд считается неперспективным методом получения энергии минимум с 1990 года, однако еще много лет туда съезжались сотни человек. Это не только ученые-пенсионеры или ученые из областей, не связанных с ядерной физикой, но имеющих о ней свои особые представления. Такие места привлекают и инженеров, и типичных «изобретателей вечных двигателей» без заметных знаний даже об основах физики. Фото «реактора» Тадахико Мизуно. Легко видеть уровень оснащения «лаборатории» разработчиков.

Лженаука — то, что считает себя наукой, но на деле не имеет с ней связей, исходя из принципиально других представлений о научном методе и многом другом. Один из наиболее важных принципов лженауки — ее нельзя опровергнуть, потому что, как правило, она выдвигает нефальсифицируемые предположения.

Проект разрабатывается с середины 1980-х годов, закончить строительство главной конструкции планируют в 2025 году. В готовом виде токамак ИТЭР будет представлять собой 60-метровое сооружение массой 23 000 т. Знаете, почему термоядерный реактор не могут построить уже 50 лет? Hi-Tech Mail.

Прорыв в термоядерном синтезе

Представлены новые данные в пользу реальности холодного термоядерного синтеза – следы возникновения высокоэнергичных нейтронов при электролизе тяжёлой воды. Если весь этот изотоп использовать в термоядерном реакторе, выделится столько же энергии, как при сжигании 300 л бензина. Холо́дный я́дерный си́нтез — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных). Новый атомный проект России – холодный ядерный синтез? объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32.

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

В Китае на несколько часов запустили реактор термоядерного синтеза, или так называемую установку токамак. Холодный термоядерный синтез в обыкновенной кружке. В термоядерном синтезе ядра разгоняются до высоких скоростей (в токамаках и в Солнце — из-за высокой температуры). в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа.

Академик Александров о холодном термоядерном синтезе

Невольно возникает крамольная мысль: «А может, ученые сговорились и просто обманывают всех? Термоядерная гонка Для того чтобы понять степень сложности проблемы, мы обратились к специалисту — ведущему научному сотруднику Физико-технического института им. В дальнейшем ученые постоянно совершенствовали конструкцию токамаков, улучшая параметры удерживаемой в них плазмы примерно на порядок каждое последующее десятилетие. При этом токамаки неизменно увеличивались в размерах. Наш Т-15, увы, так по-настоящему и не заработал. Погубили его... Не сами по себе — причина тут чисто экономическая: для охлаждения сверхпроводников нужно было много жидкого гелия, который в то сложное время оказался слишком дорог для российских ученых. Сегодня вместо Т-15 строится новый токамак, без сверхпроводников, который обещают запустить в ближайшее время. В Великобритании и США же тем временем получили плазму с рекордными параметрами и провели первые эксперименты с использованием дейтерия и трития.

Американцы спустя несколько лет утилизировали свою установку, чтобы построить на ее месте новый токамак, — такая у них политика. Но самым большим токамаком в мире на сегодняшний день пока по-прежнему остается JET. Почему так долго не удается запустить полноценную реакцию? Тем не менее до коммерческого реактора еще достаточно далеко. В числе причин — отсутствие ряда технологий, ресурс реактора, его размеры. Есть надежда, что в ИТЕРе нам все-таки удастся запустить самоподдерживающуюся реакцию. Кстати, в этом экспериментальном токамаке-реакторе будут использоваться те же сверхпроводники, которые когда-то стояли на нашем Т-15. Они позволят поддерживать поле в магнитных катушках без значительного расхода мощности.

Реакция полностью контролируема. Энергетические сферы Параллельно с классическими токамаками в конце 80-х стало развиваться еще одно направление — сферических токамаков, форма которых больше напоминала уже не бублики, а пончики или шарики. Первая экспериментальная установка, построенная в Оксфордшире, рядом с JET, показала, что в такой конфигурации лучше удерживается плазма более высокой плотности. После этого интерес к таким установкам проявили в исследовательских центрах во многих странах мира. Когда установки были запущены, почти у всех трех была выявлена одна общая проблема — плохо удерживались заряженные частицы с большой энергией. Для исправления ситуации требовалось увеличить магнитное поле. В итоге все три «ушли» на модернизацию до 2016—2017 годов. Однако после перерыва, в 2018 году, запустить свой токамак удалось только ученым из Санкт-Петербурга.

Их обновленный «Глобус» стал называться «Глобусом-М2». Конечно, это меньше, чем на большом торе у европейцев, но их показатели нельзя сравнивать из-за небольших размеров нашего «Глобуса», который имеет диаметр всего 36 сантиметров диаметр JET — около 3 метров.

При этом выделяется огромное количество энергии в виде тепла. Энергии выделяется настолько много, что 100 тонн тяжелого водорода хватило бы, чтобы обеспечить энергией все человечество на целый год не только электричеством, но и теплом.

Именно такие реакции происходят внутри звезд, благодаря чему звезды и живут. Много энергии это хорошо, но есть проблема. Чтобы запустить такую реакцию, нужно сильно столкнуть ядра. Для этого придется разогреть вещество примерно до 100 миллионов градусов Цельсия.

Люди умеют это делать, причем довольно успешно. Именно это происходит в водородной бомбе, где разогрев происходит за счет традиционного ядерного взрыва. Результат — термоядерный взрыв великой силы. Но конструктивно использовать энергию термоядерного взрыва не очень удобно.

При этом Минэнергетики США объявило, что министр Дженнифер Гранхолм и замминистра по ядерной безопасности Джилл Хруби объявят о «крупном научном прорыве» в лаборатории во вторник, 13 декабря. В ведомстве отказались от комментариев.

То есть при нарушениях в работе установки процесс попросту остановится. Максимум, какая опасность поджидает обслуживающий персонал и окружающих — расплавление токамака установки удержания плазмы с помощью мощных магнитов. В этом плане УТС гораздо безопаснее классической атомной энергетики, где реакция как раз является цепной и угрожает загрязнением обширных площадей. Чем еще хорош термоядерный синтез Высокая энергоэффективность и относительная безопасность — далеко не все плюсы. Есть как минимум еще четыре : Отсутствие эмиссии парниковых газов. Возможность размещения станции вблизи населенных пунктов из-за отсутствия выделяемых в окружающую среду вредных веществ. Практически неограниченные запасы топлива.

Например, изотоп водорода дейтерий легко получается из обычной воды, да и требуется его немного. К тому же термоядерный синтез лишен всех недостатков классической атомной энергетики. Так, первое теоретическое обоснование в своих работах дал Лаврентьев 1950 , чуть позже с аналогичными трудами выступил Спицер из США 1951. Первый токамак , ТМП, был сконструирован в 1958 году в Курчатовском институте. По расчетам, его мощность будет в 30 раз выше аналогичного показателя у JET.

Холодный ядерный синтез — научная сенсация или фарс?

Корнилова к. Сообщение химиков Мартина Флейшмана и Стенли Понса об электрохимически индуцированном ядерном синтезе — превращении дейтерия в тритий или гелий в условиях электролиза на палладиевом электроде [13] , появившееся в марте 1989 года, наделало много шума. Журналисты назвали их опыты «холодным термоядом» [4] [14] [15]. Эксперименты Флейшмана и Понса не смогли воспроизвести другие учёные, и научное сообщество считает, что их заявления неполны и неточны и представляют собой либо проявление некомпетентности, либо мошенничество [4] [16] [17] [18] [19] [20] [21]. Флейшман и Понс сделали вывод о ядерной реакции, обнаружив излучение нейтронов. Академик РАН Эдуард Кругляков пояснил, что в экспериментах с пропусканием тока через палладиевый электрод возникает «искрение» на микротрещинах электрода, при этом ионы разгоняются до энергии порядка 1 кЭв, и этого может быть достаточно для получения небольшого количества нейтронов [22]. Такие исследования плохо воспроизводятся [23].

США, 2002 год[ править править код ] 8 марта 2002 года в солидном международном научном журнале «Сайенс» появилось сообщение о наблюдении «явлений, не противоречащих возможности» ХЯС. Русско-американская группа исследователей под руководством Руси Талеярхана в эксперименте с ультразвуковой кавитацией ацетона, в котором простой водород замещён дейтерием, наблюдала замену дейтерия тритием и излучение нейтронов во время сонолюминесценции.

Взрывы сопровождались вспышками света и выделением энергии. Но — в чём, собственно, и фокус — температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину это сопоставимо с температурой ядра Солнца , а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза. Естественно, говоря о выделении энергии и возможном осуществлении ядерного синтеза, учёные фактически заявляют, что ими был зафиксирован продукт реакции — тритий. На этом этапе и «подключается» «научная общественность», которая требует доказательств: «Докажите, что реакция была». Кроме того, очевидно, что речь идёт о предметах такого калибра, что приходится брать в расчёт погрешности вычислительных и измерительных приборов. Так вот, именно на этом этапе первооткрывателей уже успели «обломать», сказав, что приборы ничего такого особенного не зафиксировали. Saltmarsh , которые заявили: «Доказать, что пузырьки испускали нейтроны, не представляется возможным.

Кроме того, увеличение излучения не превышает один процент, что может объясняться фоновыми явлениями». На это революционеры ответили что-то наподобие «это у вас приборы плохие». Недолгая перебранка не помешала представить открытие на суд Science, который и собирает комментарии независимых ядерных физиков. На сегодняшний день известна пара реплик по подводу открытия. Лоренс Крам Lawrence Crum , физик Лаборатории Прикладной физики при Вашингтонском Университете в Сиэтле University of Washington in Seattle : «Задача матушки-природы в том и состоит, чтобы делать из учёных полных дураков». Ричард Лейхи один из экспериментаторов на эти скептичные гримасы отвечает, что дело даже не в неподготовленности научного мира к открытию, а в том, что его подтверждение означает, что учёные, занимающиеся «горячим расщеплением», тратят миллиарды долларов на ветер.

На этой установке российские ученые будут проводить исследования, без которых невозможен запуск международного проекта ИТЭР. Самый большой в мире экспериментальный термоядерный реактор сейчас строится на юге Франции. На связь оттуда вышел генеральный директор проекта. На совещании глава правительства обсудил с российскими учеными федеральную программу развития синхротронных и нейтронных исследований. До 2027 года на нее предусмотрено выделить 138 миллиардов рублей. В рамках программы Курчатовский институт создает по стране целую сеть мегаустановок нового уровня. Россия была абсолютно самодостаточна. Мы производили все сами, все компоненты от начала до конца. И сейчас у нас это есть, но это требуется перевести на современный уровень», — отметил президент НИЦ «Курчатовский институт» Михаил Ковальчук. План по модернизации прорабатывается, и глава правительства призвал ученых присоединиться к этой работе.

В SPARC будут использоваться так называемые высокотемпературные сверхпроводящие магниты, которые стали коммерчески доступными только в последние три-пять лет — ощутимо позже, чем был спроектирован ИТЭР и началось его строительство. Для сравнения, сила магнитного поля Земли колеблется от 30 до 60 миллионных долей тесла. Предварительная схема ITER. В семи новых исследованиях ученые описали результаты расчетов и моделирований суперкомпьютеров, лежащих в основе конструкции SPARC. Ожидается, что этот термоядерный реактор будет генерировать как минимум в два, а то и в 10 раз больше энергии, чем потребляет, как показали исследования. Однако все еще ITER будет как минимум в 5 раз мощнее. А дальше принцип работы схож с текущими атомными электростанциями: тепло от термоядерного реактора будет превращать воду в пар. Он, в свою очередь, будет приводить в действие турбину и электрический генератор, после чего конденсироваться и снова нагреваться у реактора, завершая цикл. Однако в отличие от ядерных реакторов не нужно будет строить несколько контуров, на которых сильно теряется КПД, дабы избежать радиации — «снимать энергию» можно будет сразу же с первого контура. Напротив, по его словам, электростанции, использующие возобновляемые источники энергии, такие как солнечный свет или ветер, «плохо приспособлены к нынешним электрическим сетям».

Холодный ядерный синтез

Американские учёные заявили? что они ещё ближе подошли к тому, чтобы сделать ядерный синтез — тот самый процесс, который «зажигает» звезды — жизнеспособным источником энергии. Во вторник 13 декабря 2022 года учёные, исследующие термоядерный синтез в Ливерморской национальной лаборатории, объявили о достижении долгожданного этапа приручения этого типа энергии. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Холодный ядерный синтез: истории из жизни, советы, новости. Между холодным термоядерным синтезом и респектабельной наукой практически нет никакой связи вообще. Холодный ядерный синтез или ХЯС специалисты определяют как реакцию слияния1 атомных ядер в холодном водороде, например, мюонный катализ. «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец.

Холодный синтез: самое известное физическое мошенничество

Предполагалось, что атомы водорода захватываются катализатором, и каким-то образом создаются условия для ядерного синтеза. Этот эффект и назвали холодным ядерным синтезом. Статья Понса и Флейшмана наделала много шума. Еще бы — решена проблема энергетики! Естественно, многие другие ученые попытались воспроизвести их результаты. Однако ни у кого ничего не получилось.

Далее физики начали выявлять одну ошибку оригинального эксперимента за другой, и научное сообщество пришло к однозначному выводу о несостоятельности эксперимента. С тех пор в этой области успехов не было. Но некоторым идея холодного синтеза так понравилась, что они занимаются ей до сих пор. При этом в научном сообществе таких ученых не воспринимают серьезно, а опубликовать статью по теме холодного синтеза в престижном научном журнале, скорее всего, не получится.

Схемы ядерных электрических оболочек протона слева и антипротона справа без указания гравитационых. В полусферических слоях рождается зона холодной безмассовой плазмы, удерживая и центрируя положения магнитных монополей ГЭММ. Подобная полусфера внешней оболочки в совокупности с полусферой нижней положительной части оболочки определяет положительный заряд протона.

Энергия, обеспечивающая протон массой, электрическим зарядом, спином, магнитным моментом, размером и другими параметрами, определяется суммарной энергией пяти магнитных монополей ГЭММ, пульсирующих с разной частотой. Даже две внешние положительные оболочки порождают такой недостаточный положительный отрицательный электрический заряд из зёрен-потенциалов на поверхности протона антипротона , который один электрон позитрон в атоме водорода антиводорода перекрывает полностью и даже остаётся излишек — образуется атом водорода с достаточно большой энергией сродства к электрону, который способен присоединить ещё один протон с образованием молекулярного иона. Поэтому более стабильна молекула водорода. Превращения структуры протона в движении при увеличении энергии на ускорителях и коллайдерах. Вплоть до настоящего времени расчёт увеличения энергии протонов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, то есть с учётом релятивистского эффекта зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы — ни массы покоя, ни релятивисткой массы в СТО.

А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики, ограниченной неполнотой по Геделю. Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью, что приводит к увеличению периода обращения он пропорционален массе и синхронизм нарушается. Реально, в природе увеличение внутренней энергии протона идёт по формуле Планка, то есть путём увеличения частоты магнитного монополя и количества в замкнутых вихронах ГЭММ каждой из его оболочек, а также числом таких оболочек. Поэтому ускоряясь в электрическом поле, протон фото 6 поэтапно превращается в дейтрон фото 7 , тритон фото 16 и т. Превращения протона в плазмоиде Вачаева 31 Высокоинтенсивные электроимпульсные короткие 5—50 микросекунд разряды-процессы в плазмоиде Вачаева реализуют переходы протон-дейтрон-тритон-гелий путём концепции возбуждение-распад-синтез.

Этот же метод позволяет получить из протонов воды почти всю таблицу Менделеева химических элементов. Атомный и ядерный аналог процессов в диапазоне, частот на которых работает реактор Вачаева реализован на 30—60 МГц производство электроэнергии и 30—60 ГГц холодный ядерный распад-синтез атомных ядер химических элементов в стабильном состоянии. Продолжительность импульса разряда, которая определяет длину движения кластера воды для достижения синтеза ядер элементов, колеблется от 20…30 до 2000…3000 микросекунд. Таким образом, наличие дейтронов и тритонов 32 в отработанных водах указывает на механизм их избытка при превращениях протона в движении в плазмоиде на пути четверть волновода вышеуказанных частот и тока в импульсе для реализации синтеза атомных ядер. А также доказывает причастность к таким переходам увеличение заряда энергии магнитного монополя через произведение постоянной Планка на частоту — переход с увеличением энергии в новый более тяжёлый элемент. Внешний слой оболочки нейтрона антинейтрона имеет характерную структуру волноводов и размер 9,1 х 10—13 см, а также определяет спин частицы и его знак электрического заряда — у протона он положительный, у антипротона отрицательный. Один из вихронов половины внешней оболочки в нейтроне при распаде улетает и строит электрон или позитрон, а оставшийся формирует внешнюю оболочку протона 33 или антипротона со структурой мюона.

Подобным же образом, как и на внешней оболочке протона, формируется заряд электрическим положительным потенциалом атомных ядер всех последующих химических элементов. Аннигиляция протона и его античастицы происходит аналогично, как и в случаях нейтрона и антинейтрона, электрона и позитрона. Таким же образом вскрывается внешняя оболочка запорный слой со структурой мюона протона. Самыми последними вылетают вихроны, образующие центральную и более высокоэнергетическую высокочастотную К-оболочку. Этот процесс — процесс электромагнитной вихревой эксплозии с превращением зарядов покоя двух противоположных частиц в заряды движения, как и в случае аннигиляции электрона и позитрона, то есть в безмассовую форму энергии движения фотонов — играет самую главную роль в производстве энергии звёзд и планет. У протона, сформированная оставшимся полярным вихроном часть внешней оболочки с положительными волноводами и открытая часть средней фото 6 порождает его внешнее положительно заряженное поле, препятствующее вылету вихронов с внутренних оболочек и их возможности последующего распада — это наиболее стабильная частица из числа всех известных. Благодаря одинаковым структурам внешних оболочек, с параллельным спином, тепловой протон может легко захватывать тепловой нейтрон с образованием дейтрона фото 7 , посредством слияния-объединения связано-замкнутых дебройлевских квантов-вихронов.

После пересечения и преобразования вихронами их фазовых объёмов происходит процесс энергетического упорядочивания внутренних оболочек при рождении новой микрочастицы с излучением-сбросом гамма-кванта с энергией 2,2 Мэв. В процессе слияния этих нуклонов суммарный заряд сфер-источников ГЭММ всех оболочек дейтрона увеличивается, размер — уменьшается, частота и число оболочек — изменяются. Фото 7. Схема рождения дейтрона. Слева протон, затем нейтрон, справа дейтрон. Спин и электрический заряд дейтрона равен единице, суммарный заряд энергии сфер-источников ГЭММ всех оболочек увеличивается вдвое, средний диаметр — 4,1 х 10—13 см, а масса в СИ — 1875 Мэв равна удвоенной массе нуклонов без энергии вылетевшего гамма-кванта. Эта ядерная реакция является знаковой по формуле — охлаждение с образованием вокруг движущихся микрочастиц связано-замкнутых дебройлевских вихронов, ориентация спинов, дрейф, захват-синтез с расширением внутреннего дискретного микропространства на величину, соответствующую энергии 2,2 Мэв, преобразование и снятие возбуждения и характеризует последовательное взаимодействие быстрых ядерных вихронов — сброс освободившейся энергии в виде вылета свободного биполярного вихрона в форме фотона с энергией 2,2 Мэв.

Такие преобразования внутренней структуры промежуточной составной частицы, образованной слиянием одинаковых дебройлевских гравитационных монополей, дополняют свойства ядерных вихронов. Внутренние вихроны, вылетев в такое пространство после взаимодействия и изменения в общем фазовом объёме, по новому образуют вложенные друг в друга биполярные оболочки, и уже с другим частотным спектром. Эта ядерная реакция экзотермическая — лишняя освободившаяся энергия, как и в случае возбуждённого атома, сбрасывается в виде ядерного гамма-излучения. При этом надо отметить, что эта ядерная реакция является первой, порождающей ещё стабильный тяжёлый изотоп водорода-дейтрон. Уже вторая реакция антипротона с дейтроном или наоборот даёт нестабильный изотоп сверхтяжёлого изотопа водорода — тритон тритий. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может. Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах 34.

В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди. Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц. Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ — это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R — и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной. Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек фото 4—5 — 6 и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона.

Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Центральная ядерная оболочка типа К-ноль мезон с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона. Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма. Подтверждение указанной структуры нуклонов находим на каждом шагу анализа распадов и взаимодействий, особенно частица-античастица, а также легких и тяжёлых элементарных частиц, следующих из известной таблицы изотопов 35. Так, например, с участием лептонов — мюонный захват протоном с последующим образованием нейтрона и мюонного нейтрино. Другие источники обнаружены во всех генераторах холодного ядерного синтеза LENR при ионизации внешних оболочек ядер тяжёлых элементов. Когда атмосфера пульсара уже перенасыщена нейтронами и плотность слоя прилегающего непосредственно к поверхности ядра звезды достигает критического, то спектр нейтронов начинает обогащаться более тяжёлыми нейтральными ядрами.

Другой путь производства и накопления нейтральных ядер происходит при вращении ядер звёзд и планет путём индукции механических гипервихронов, состоящего из гравитационного гипермонополя. Для сохранения средней энергии, в связи с тем, что в таких системах, не может произойти перезарядка индуктированного монополя на противоположный, происходит квантовый переход с образованием электромагнитного гипервихрона, квантовые переходы в котором доступны этой системе массы. При его квантовых переходах электрический гипермонополь уже способен сбрасывать излишнюю индуктированную энергию в виде излучения мощных «тяжёлых» магнитных монополей, которые взаимодействуя с плотными слоями нейтронов преобразуют их в нейтральные ядра с весом в две, три или четыре атомные единицы и т. Структура этих частиц — центрально-оболочечная из волноводов зёрен-электропотенциалов и гравпотенциалов, причём каждая оболочка вложена одна в другую таким образом, что над отрицательной полусферой внутренней находится внешняя полусфера положительных волноводов, как и в нейтроне — фото 4. Фото 8. Оболочечная структура атомных ядер из оболочек ГЭМД. Каждая внутренняя оболочка заполняется более энергетическими вихронами, по сравнению с предыдущей внешней, то есть в терминах СИ, по мере увеличения атомного веса идёт заполнение центральных оболочек более тяжёлыми мезонами типа ипсилон Y cм.

Такой процесс принципиально отличается от заполнения атомных оболочек частицами одного электрического знака электронов, САП с полуцелым спином. Таким образом идёт заполнение центра сферы нейтральной частицы вплоть до ядра кальция. На поверхности ядра звезды нейтральные ядра достаточно стабильны, но по мере заполнения ими атмосферы всего прилегающего пространства, дальнейшего уплотнения и вытеснения по радиусу в наиболее слабые гравитационные пояса звезды, начинается распад внешних оболочек фото 9 с образованием положительных или отрицательных ядер с помощью ядерно-мезонной плазмы. Это обусловлено тем, что появляется возможность у двух магнитных монополей внешней оболочки в отличие от внутренних оболочек пульсировать в свободное пространство. Ядерно-мезонная плазма. При распаде по каналу бета-плюс образуются отрицательно заряженные ядра, которые практически мгновенно же объединяются синтез ядер с положительными. При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 — 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 10—14 см.

Этот процесс идёт наиболее интенсивно, как показывают результаты «выстрелов» С. Адаменко, при определённых условиях и в твёрдом теле. Фото 9. Деление внешней оболочки и распад После этого следует движение к поверхности и долгая стабилизация-распад с образованием уже известных ядер химических элементов. Подтверждением такой схемы жизни нейтральных ядер свидетельствуют проблемы, возникающие при полной обдирке от атомных электронов тяжёлых ядер при подготовке пучков тяжёлых многозарядных ионов. В этом случае, после неоднократного разделения пучка в магнитном поле на положительный, отрицательный и нейтральный, последний необходимый пучок опять содержит все эти компоненты. Реакции, которые приводятся в работах А.

Кладова на основе капельной модели ядра, а также в работах А. Вачаева, могут идти только как ядерно-ионные, то есть ядра при распаде могут быть как положительные, так и отрицательные. К настоящему времени на поверхности Земли не осталось ни одного типа нейтральных ядер атомов химических элементов кроме нейтрона, что свидетельствует об их весьма коротком периоде полураспада на этом гравитационном поясе. Однако имеется от 3000 до 7000 радиоактивных изотопов, до сих пор находящихся в стадии стабилизации, то есть на пути превращения в стабильные изотопы, путём радиоактивного распада. Распад тяжёлых нейтральных ядер идёт с образованием как положительных, так и отрицательных ядер. Распад лёгких нейтральных ядер идёт по схеме деления внешней оболочки на два замкнутых вихрона с образованием двух оболочек одной внутренней и одной внешней, фото 6 волноводов преимущественно положительных потенциалов, образующих его спин и внешнее электрическое поле ядра, запирающее его дальнейший спонтанный распад. Заряд электрическим потенциалом ядра, определяющий число электронов в нейтральном атоме формируется только внешней оболочкой, которая по мере увеличения тяжести ядра меняется на более тяжёлые мезоны.

Внутренние оболочки попарно нейтрализованы противоположно заряженными — фото 4 и своей структурой обновления гравитационных контуров определяют лишь суммарную массу частицы, которая, является продуктом взаимодействия противоположных полей атомного ядра и гравитационного поля Земли. Во внешнем пространстве атома два магнитных монополя сферы двух внешних оболочек формирует положительное электрическое поле, рождённое с частотой накачки на три десятичных порядка больше, чем это делают электроны на атомных оболочках, что и определяет количество присоединённых электронов в нейтральном атоме, чтобы полностью скомпенсировать на ноль своё собственное внешнее поле. В целом, таким образом сформированная внешняя ядерная оболочка, имеет форму сферы с положительным зарядом электрического потенциала, соответствующим атомному номеру стабильного химического элемента. Этот процесс очень сложный и заключается в том, чтобы каждое положительное зерно-потенциала было уничтожено отрицательным зерном потенциалом волновода электрона. А так как на двух внешних оболочках ядра вблизи узлов нахождения магнитных монополей размещены более мощные по значению величины и дальнодействию потенциалы, превосходящие подобные противоположные зёрна электронов, то и месторасположение точки их нейтрализации находится вблизи волновода электронов, удалённого на расстояние размера атома.

Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке. Исследователи использовали метрику под названием H98 y, 2 для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 y, 2 больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте. Повторение эксперимента на более крупном реакторе После такого успеха ученые хотят экстраполировать результаты на более крупные установки.

В частности, они думают об ИТЭР, экспериментальном токамаке нового поколения, который сейчас строится во Франции. Однако исследователи подчеркивают, что воспроизвести тот же эксперимент на реакторе такого размера может быть очень сложно.

Звезда по имени токамак — рукотворное Солнце на поверхности на Земле. Эта установка дает надежду на светлое будущее — термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. И запуск российской установки — большой шаг на этом пути. Токамак Т-15 МД размером с небольшой дачный домик полностью спроектировали и построили в России за 10 лет. Подобный термоядерный реактор должен помочь заменить атомные электростанции и работать на безопасном и доступном топливе — дейтерии и тритии.

На несколько порядков больше, чем сжигание нефти или газа того же количества, в десятки тысяч раз», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко. Еще в 50-х годах прошлого века советские ученые придумали установку в форме тора, или бублика, где разогретую плазму удерживает магнитное поле. Тогда и родился термин «токамак» тороидальная камера с магнитной катушкой. Сегодня в работе с токамаками российские специалисты по-прежнему впереди планеты всей. В термоядерном синтезе множество задач, которые никому не удается решить уже десятки лет.

Компактные термоядерные реакторы: прорыв или просчёт?

Очевидно, что авторы темнят, — прокомментировал сообщения о презентации итальянских исследователей доктор физико-математических наук академик РАН Евгений Александров , член комиссии РАН по борьбе с лженаукой. Дело в том, что ядерный синтез приводит к выделению энергии при слиянии «лёгких» ядер. Границей «легкости» служит ядро железа. Ядра тяжелее железа уже, строго говоря, метастабильны и, в принципе, способны к ядерному распаду с выделением энергии — чем тяжелее ядро, тем у него больше избыточной энергии практически эту энергию удаётся извлекать только в особых случаях очень тяжёлых ядер — уран, плутоний... Так вот: никель тяжелее железа, а потому для его слияния с протоном с образованием меди нужно затратить энергию! С другой стороны, в сообщении говорится о большом энергетическом выходе, который трудно подделать и в каковом факте трудно ошибиться. Поэтому я думаю, что вскоре эта история прояснится».

Главная и пока, к сожалению, нерешённая проблема термоядерных реакторов, предназначенных для разогрева дейтерия и трития до температуры в сотню миллионов градусов, — отсутствие эффективности. Если выражаться проще, то удерживать разогретые до состояния плазмы дейтерий и тритий в реакторе учёные научились, но энергия, выделяющаяся во время процесса синтеза, оказывается меньше той, что потребляет реактор. Впрочем, реакцию продолжительной назвать нельзя — со времён первых опытов советских учёных продолжительность реакции увеличили лишь на сотые доли секунды. Успеха не удалось добиться даже самым пытливым в мире физикам — китайским. Их "реактор будущего" под названием EAST разогрелся до 100 млн градусов лишь на тысячные доли секунды — фантастический результат для китайцев, но совершенно отвратительный для коммерческой эксплуатации. При этом обычного разогрева трития и дейтерия до плазменной "каши" недостаточно. Главная задача термоядерных реакторов токамаков , которую учёные никак не могут решить на практике, состоит в том, что разогретые частицы нужно удерживать на месте. Только так они будут пригодны для выработки и преобразования тепловой энергии в электричество. При коротких "прожигах" реакторов этого не требуется, но для промышленной эксплуатации необходимы длительные реакции. Добиться этого пока не получается — контроль над системой теряется почти сразу, и термоядерный реактор приходится экстренно останавливать.

Расщепления радиоактивных материалов в четырёх энергоблоках достаточно, чтобы осветить огромную территорию. Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что кроме использования нового типа топлива и потенциально огромного количества энергии могут сильно уменьшиться и размеры электростанций. Реактор ITER — это лишь первый шаг. Его размеры велики, но по мере развития технологии такая станция станет меньше. Возможно, со временем размеры всего комплекса уменьшат до размеров офисного здания Владимир Спиридонов Особенность термоядерного синтеза заключается в том, что за сутки таких импульсов может быть десять, а при должном умении — сто и даже более тысячи. После перемножения импульсов на мегаватты выработанной энергии получится, что самая маленькая термоядерная электростанция в разы производительнее атомной.

В тот же день их опытный образец сгорел, а вскоре и само производство в Ленинграде прикрыли… Делаем выводы, если еще в состоянии…..

Ученные работают под их дудку,подводя теоретическое обоснование о невозможности подобных процессов,хотя есть достаточно фактов,что это работает…Даже если это непонятно современной физике,что из этого? Включая компьютер нам не обязательно знать как он работает,чтобы им пользоваться! Можно было бы давно снять с человечества нефтегазовую удавку. Нам нужно развиваться духовно и тогда все будет. Россия это уникальная страна и наш подход ко всему должен быть интуитивным. Умом Россию не понять аршином длинным не измерить,в Россия только нужно верить. Никто из разумных не даст опасную бритву в колыбель ребёнку, даже если очень хочется.

А, поскольку Истина открывается каждому по уровню его сознания, то нет и не может быть единого общего мнения, что ею является. Нужны условия… Пока Люди не поймут, что каждый должен жить для каждого, а мысли и идеи, порождаемые сознанием это источник и основа реальности физического мира, они уподобляются дикарям, которые будут жить соответственно. Извините за прямоту. Вращение, плюс должен быть в центре , даст огромную температуру в самом центре. В начале синтеза появляется лидер, который в свою очередь заставит соседей сделать тоже самое. Но резкое повышение температуры спровоцирует взрывную волну, которая разбросает атомы которые были на грани превращения, разлетятся не вступив в реакцию. Вот для чего нужно давление.

Представте грузовик полный гранат, если одна взорвется, взорвутся и еще несколько по соседству, остальные просто раскидает взрывная волна. А если их придавить чтоб не разлетелись вот тогда мы получим то что хотим! Лет 7 -8 назад при докладе Кириленко президенту. Он похвастался успешным завершением работ по холодному ядерному синтезу. После этого Киреленко практически не видно на экранах телевизора. Так что я спокоен и думаю, что технология уже отработана и находится под секретом. Скоро узнаем, может быть.

Поэтому вызывает недоумение появление в престижном журнале как самой публикации о «застрявшем» на подготовительном этапе многолетнем исследовании, так и неприлично ангажированных и злорадных редакционных комментариев Nature, Science и других СМИ, ни коим образом не следующих из экспериментов, в которых холодный синтез не был и не должен был быть получен из-за отсутствия необходимых для его получения параметров. Суть этих комментариев сводилась к тому, что якобы 30 лет назад уже было окончательно и бесповоротно доказано, что холодного синтеза на белом свете не существует, и вот спустя 30 лет «нормальными» учёными при финансировании не кого-нибудь, а самой Google был окончательно вбит ещё один гвоздь в крышку гроба лженаучного направления, видимо, для профилактики, чтобы оно случайно не воскресло и не заразило неокрепшие умы научной молодежи. В действительности ситуация вокруг холодного ядерного синтеза в 2019 году была совсем иной.

В феврале 2019 года были опубликованы результаты положительной государственной экспертизы в Южной Корее российской технологии микробиологической трансмутации жидких радиоактивных отходов, разработанной под руководством Аллы Александровны Корниловой из МГУ им. Ломоносова см. An Experiment in Reducing the Radioactivity of Radionuclide 137Cs with Multi-component Microorganisms of 10 Strains , в Индии была восстановлена государственная программа по холодному ядерному синтезу, а в рамках подготовки программы развития новых технологий ЕС по итогам конкурса были отобраны более 50 проектов по холодному ядерному синтезу и многое-многое другое.

К 2019 году были опубликованы документально подтвержденные результаты расследований, которые показали откровенно политизированный характер травли Мартина Флейшмана, Стенли Понса и других исследователей холодного синтеза, главными мотивами которых были финансовые интересы и зависть. Более того, как показала прошедшая в Москве 23 марта 2019 года мемориальная конференция «Холодному синтезу — 30 лет: итоги и перспективы», в которой приняли участие известные российские исследователи, уже в начале 1990-х годов вопрос о реальности феномена холодного ядерного синтеза не стоял, так как надежные подтверждения его существования были получены ещё в советское время в ведущих научных центрах Министерства среднего машиностроения и Академии наук СССР. Для Государственного комитета по науке и технике в 1990 году академиками А.

Барабошкиным и Б. Дерягиным был разработан проект государственной программы по исследованию холодного синтеза, которая не была реализована из-за распада СССР. Кстати, Мартин Флейшман и Стэнли Понс признавали приоритет группы Бориса Дерягина в получении реакций холодного ядерного синтеза, полученных при раскалывании дейтерированного льда в 1986 году.

Но обо всём по порядку. Для начала попробуем разобраться, почему же «группе Google» не удалось запустить холодный ядерный синтез при использовании трёх, казалось бы, классических способов, которые были неоднократно воспроизведены за прошедшие 30 лет и основные условия воспроизводимости результатов для которых были давно установлены.

Похожие новости:

Оцените статью
Добавить комментарий