В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении. Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями.
ИИ в медицине: тренды и примеры применения
Сбор данных и искусственный интеллект в медицине. Искусственный интеллект в здравоохранении, который когда-то был областью научной фантастики, теперь стал реальностью. Внедрение искусственного интеллекта (ИИ) в медицину открывает новые возможности для диагностики, лечения и исследований. Многие россияне опасаются применения ИИ в медицине. искусственный интеллект в медицине, искусственный интеллект. Рост применения КТ приводит к выявлению большого количества очагов и округлых образований в легких. Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики.
Будущее рядом: как нас будет лечить искусственный интеллект?
Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине.
Читайте также
- Читайте также:
- Третье Мнение - искусственный интеллект в здравоохранении
- Искусственный интеллект в медицине: применение и перспективы
- Читайте также:
Какие есть препятствия на пути внедрения ИИ в медицину?
- Искусственный интеллект в медицине: применение и перспективы
- Искусственный интеллект в клинической медицине
- Видео: Как искусственный интеллект помогает в медицине | Новости России
- Читайте также
- Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли
- Предварительный просмотр:
Национальная база медицинских знаний
Москва, ул. Правды, д. Почта: mosmed m24.
Списаны миллиарды долларов инвесторов, которые вкладывались в эти самые алгоритмы, но пока ИИ в здравоохранении толком не взлетает нигде», — говорит Кузнецов. Он объясняет, что провалы данных систем в медицине происходят потому, что на самом деле это никакой не ИИ: «Современный медицинский искусственный интеллект — это «искусственный», но не интеллект вовсе. Эти алгоритмы напоминают скорее систему распознавания лиц. Соответственно, они не «думают», не анализируют, а лишь сопоставляют данные пациентов с загруженной в них базой. И на основе этого сопоставления делают выводы». В пример собеседник приводит типовой алгоритм, который, как заявлялось, способен выявлять коронавирус по КТ. Однако если на снимке пациента есть какие-то отклонения от нормы, погрешности которые, например, появляются из-за использования разного оборудования или индивидуальных особенностей пациента — врожденных или приобретенных , то точность сопоставления начинает падать. Подобная проблема встречается и при определении алгоритмами онкологических болезней, инсульта, инфаркта и других диагнозов. У распознавания «по аналогии» есть набор всем известных проблем, поясняет эксперт. Иногда не всегда то, что распознается как болезнь, является болезнью — это «ложноположительный результат». В других случаях наоборот: система это не распознает как болезнь, хотя болезнь есть — это «ложноотрицательный результат». Кроме того, бывает, что медицинская информация не поддается в полной мере алгоритмическому анализу — это так называемые эксквизитные случаи, специфика пациента, орфанные болезни и так далее. Возможно, следующие поколения алгоритмов будут избавлены от этих проблем, но пока надежды на медицинский ИИ, как диагностический философский камень — очевидный самообман», — заключил Кузнецов. По информации местных Telegram-каналов, агрессором является Богдан Ш. На видеороликах, которые сам блогер публикует в социальных сетях, видно, как он нападает на прохожих, бьет их по лицу и издевается над ними. Сообщается, что от его действий уже пострадали около 50 человек. Мотивы своих поступков он не объясняет. Помимо видео избиений, в блоге Ш. Ранее в петербургском метро пожилой мужчина напал с ножом на серебряного призера чемпионата России по фигурному катанию Владислава Дикиджи. По его данным, тела были найдены со связанными руками и зашитыми животами, что вызывает подозрения в изъятии внутренних органов. Тела завернуты в нейлоновые черно-синие саваны, которые отличаются по цвету от саванов, используемых в Газе, передает ТАСС. Представители чрезвычайных служб считают, что это могло быть сделано с целью повышения температуры тел для ускорения процесса их разложения и сокрытия улик. Также агентство отмечает, что на некоторых телах обнаружены следы огнестрельных ранений в голову. Ранее палестинские экстренные службы обнаружили на территории медицинского комплекса «Насер» в Хан-Юнисе массовое захоронение с 50 телами погибших.
Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна. С одной стороны, высок уровень технологической зрелости, с другой — не менее высок уровень ответственности, связанной с рисками для граждан в результате некорректной работы системы. Поэтому стандарты — это инструмент нахождения компромисса между безопасностью системы новой технологии для людей и простотой продвижения новых технологий на практике. В прошлом году была разработана перспективная программа стандартизации по приоритетному направлению «Искусственный интеллект» на 2021-2024. В ней есть раздел, посвященный стандартам ИИ в области здравоохранения. При разработке программы подразумевался обязательный этап обучения на прецедентах. Значительная часть систем ИИ рассчитана на автоматизацию естественных интеллектуальных способностей человека. Технический комитет является представительным органом РФ в международной организации по стандартизации ИИ, и сейчас по инициативе российской стороны там рассматривается возможность разработки международного стандарта клинических испытаний систем с ИИ. Опыт и мудрость не заменить Медицина все больше переходит на цифру, и требуются новые цифровые инструменты обработки цифровых данных. Два года назад начались клинические испытания ПО на основе технологий лучевая диагностика. В 2020-21 гг. Сервисы использовались в 102 медицинских организациях при проведении 13 видов исследований КТ, МРТ и другие. Было обработано 3,8 млн исследований, подготовлено 104 дата-сетов механизмов хранения информации, предоставляющих быстрый доступ к большим объемам данных. Говорит главный внештатный специалист по лучевой и инструментальной диагностике, директор ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий ДЗМ» Сергей Морозов: «За время эксперимента мы увидели, что искусственный интеллект значительно снижает длительность подготовки описания результатов. Он не может заменить врача, но может в отдельных клинических сценариях ускорить работу рентгенолога, оптимизировать ресурсы за счет автоматизации двойных просмотров результатов скринингов. Поначалу врачи опасались, что ИИ заменит их, относились как к конкуренту, но потом настороженность все же сменилась слабопозитивным отношением». Очевидно, что искусственный интеллект может взять на себя лишь часть врачебных функций.
Но одна из проблем в том, что такие области очень похожи на здоровую ткань и их сложно найти. Заказчиками многих исследований являются известные медицинские научные институты Источник: Анастасия Пешкова По отзывам наших медицинских партнеров, в России есть единицы опытных рентгенологов, которые могут найти такие патологии на снимках МРТ. Эти врачи есть в крупных городах: в Москве, Питере, Новосибирске. Каждый из них может просматривать в день снимки не более трех-четырех пациентов. Соответственно, ожидание растягивается более чем на полгода. Мы начали делать систему, которая должна выполнить две базовые задачи: помочь опытному врачу сократить время поиска, а неопытному — подсказать, какие части мозга смотреть. Исследования, которыми занимается Центр прикладного ИИ, применяются в лечении онкологии и эпилепсии Источник: Анастасия Пешкова Мы собирали данные из двух медицинских центров больше года, проводили их разметку, и сейчас у нашей команды самый большой в мире датасет по этой патологии. Пока наша система работает на уровне среднего врача, но мы совершенствуем ее. Структурная показывает трехмерную картинку мозга, а функциональная — активность разных зон мозга. У здоровых людей расположение областей, отвечающих за движение, речь, зрение, плюс-минус известно. Но даже у здоровых людей они могут немного варьироваться, их расположение может отличаться на несколько сантиметров. У людей со структурными патологиями, такими как опухоль, эти зоны могут смещаться ввиду нейропластичности, и до операции это неизвестно. Во время операции нужно соблюдать баланс: убрать как можно больше пораженной ткани и оставить как можно больше здоровой, чтобы не повредить важные мозговые центры. Чтобы не вырезать лишнего, прямо во время операции пациента будят, разговаривают с ним, дотрагиваются электродами до поверхности мозга и смотрят на результат. Например, когда попадают в речевую зону, человек начинает запинаться, а если воздействуют на моторную зону, он не может пошевелить рукой. В мозге нет болевых рецепторов, поэтому пациенту в сознании не больно. Я сам несколько раз был на таких операциях, чтобы понимать, как это работает. Хирург о чём-то говорит с человеком и при этом удаляет какие-то участки. И так несколько часов. Желательно локализацию этих зон хотя бы примерно знать до операции, когда череп еще не вскрыт. Здесь и выручает ФМРТ, которая при наложении на структурную МРТ позволяет получить карту функциональных зон, которые для наглядности можно раскрасить в разные цвета. Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход.
Нейросеть для медиков: искусственный интеллект научился ставить диагнозы
В медицинском образовании виртуальная реальность обеспечивает имитируемую среду, в которой студенты могут изучать и практиковать различные процедуры, операции и медицинские сценарии. Этот захватывающий тренинг позволяет студентам приобрести практический опыт, усовершенствовать свои навыки и повысить уверенность в себе перед выполнением процедур на реальных пациентах. Виртуальная реальность также предлагает ценную платформу для непрерывного медицинского образования, позволяя медицинским работникам быть в курсе новейших технологий и методик. Более того, виртуальная реальность также доказала свою эффективность в улучшении ухода за пациентами. Этот подход может помочь справиться с болью, беспокойством и стрессом, создавая захватывающую обстановку или переживания, которые отвлекают пациентов от их физического дискомфорта. VR показала себя многообещающей в таких областях, как обезболивание, терапия психического здоровья, физическая реабилитация и даже помощь пациентам справляться с хроническими заболеваниями.
Нейротехнология Одной из самых захватывающих областей инноваций в области медицинских технологий за последние годы стала область нейротехнологий. Ученые и исследователи добились огромных успехов в понимании сложной работы человеческого мозга и разработке технологий, которые непосредственно взаимодействуют с ним. С появлением интерфейсов мозг-компьютер BCI люди с параличом теперь могут управлять роботизированными конечностями и общаться с помощью силы мысли. Эти BCI обеспечивают прямую связь между мозгом и внешними устройствами, предлагая новый уровень независимости тем, кто ранее зависел от опекунов даже в выполнении простейших задач. Кроме того, нейропротезирование достигло значительных успехов, позволив людям с потерей конечностей восстановить не только движение, но и осязание.
Имплантируя электроды непосредственно в периферические нервы, нейропротезы теперь могут обеспечить пользователям реалистичные и интуитивные ощущения, позволяя им держать предметы, ощущать текстуру и даже испытывать колебания температуры. Влияние этих прорывов в области нейротехнологий невозможно переоценить. Они дают пациентам с травмами спинного мозга новое чувство надежды, позволяя им вновь обрести подвижность и независимость. Применение ИМК и нейропротезирования выходит за рамки физической реабилитации; они также многообещающи для людей с неврологическими расстройствами, такими как эпилепсия, болезнь Альцгеймера и Паркинсона. Непосредственно взаимодействуя с мозгом, эти технологии позволяют проводить более целенаправленные и эффективные методы лечения, потенциально повышая качество жизни бесчисленного множества пациентов.
Часто искусственный интеллект выявляет патологию на самой ранней стадии, когда врач еще ее не обнаружил. Цифровизация позволяет московским врачам больше времени уделять пациентам — Мэр Эра технологий. Врачи рассказали о новых стандартах в столичном здравоохранении Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований. В ближайшие годы планируется превратить искусственный интеллект в базовую медицинскую технологию. В результате не только у терапевтов, но и у других московских врачей появятся цифровые помощники, которые смогут подсказывать оптимальную тактику лечения пациентов. Помимо этого, исчезнет рутинная бумажная работа — медицинская информация будет регистрироваться и обрабатываться исключительно в цифровой среде, врачи смогут больше времени уделять задачам, где действительно необходимы их компетенции.
Стартап Healx использует ИИ для сопоставления лекарств, прошедших клинические испытания, с редкими заболеваниями, которые они могли бы лечить. Arterys использовала облачные вычисления для предоставления изображений 4D Flow больничным радиологам через веб-браузер, что позволяет им принимать жизненно важные решения о лечении. Компания Thymia, основанная в 2020 году, разработала видеоигру на основе искусственного интеллекта, которая призвана обеспечить более быструю, точную и объективную оценку психического здоровья. Алгоритмы ИИ способны анализировать большие объемы данных о здоровье населения, включая информацию из социальных сетей, новостных порталов и официальных статистических данных, для прогнозирования возможных вспышек болезней и эпидемий. Это позволяет государственным органам заранее подготовиться к возможным эпидемиям. В России работает цифровой сервис диагностики MDDC, основанный на алгоритмах нейросети: он помогает выявлять минимальные новообразования в легких менее 4 мм , а также диагностировать рак на ранней стадии. В исследовании Journal of the National Cancer Institute ученые использовали ИИ для анализа маммограмм более чем 26 000 женщин. В целом, ранняя диагностика и прогнозирование с использованием ИИ открывает новые горизонты для медицинской науки, делая возможным профилактику и оперативное лечение многих заболеваний на самых ранних стадиях. Персонализированное лечение на основе искусственного интеллекта ИИ играет важную роль в разработке персонализированных планов лечения, основанных на индивидуальных характеристиках пациента. В хирургии, роботизированные системы и ИИ уже помогают хирургам в проведении сложных операций с большей точностью и меньшими рисками для пациента. В операционной ИИ может анализировать данные в реальном времени, предоставляя хирургам ценную информацию, которая помогает в принятии решений во время операций. Другое интересное направление - персонализированная терапия на основе генетической информации: при участии ИИ медицинские учреждения могут создавать индивидуализированные планы лечения, используя генетическую информацию пациента. Это может помочь в создании более эффективных и безопасных терапевтических планов лечения, минимизируя побочные эффекты и увеличивая шансы на успешное лечение. Алгоритмы предсказания реакции на лекарства: ИИ может анализировать большой объем данных о реакциях различных пациентов на лекарства, предсказывая, как конкретный пациент может отреагировать на определенное лекарство или терапию.
В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Ключевые слова: искусственный интеллект, машинное обучение, нейронная сеть. Рецензент: Гладских Наталья Александровна - Кандидат технических наук, ассистент кафедры медицинской информатики и статистики. ВГМУ им. Бурденко В современном мире информационные технологии затрагивают почти каждую сферу деятельности человека. И медицина тому не исключение. Искусственный интеллект ИИ - основа новых информационных технологий. ИИ в лечении и диагностике Одной из главных задач ИИ в медицине является оптимизация диагностики и лечения. В настоящее время созданы и внедрены программы, способные обрабатывать данные жалоб пациентов, осмотра, лабораторных анализов и инструментальных обследований. Так для назначения оптимального лечения используется IBM Watson for oncology, помогающий врачам-онкологам в кратчайшие сроки подобрать терапию, основываясь на большой базе данных, загруженных для обучения ИИ: более 25 тысяч историй болезней, 300 медицинских журналов и 200 учебников. Программа, обрабатывая данные с помощью многочисленных источников, предлагает несколько вариантов терапии, из которых врач может выбрать наиболее подходящий, а также дополнить клиническую картину новыми данными, в зависимости от которых ИИ формирует новый алгоритм лечения. Human Diagnosis project - это программа, соединяющая в себе знания врачей со всего мира и алгоритмы машинного обучения. На сегодняшний день тысячи профессионалов медицины более чем из 80 стран и 500 медицинских институтов вовлечены в создание проекта. Human Diagnosis project направлен на создание наиболее полной базы, способной составить алгоритм помощи любому пациенту. Проект преследует цель не только оптимизировать принятие клинических решений, но и улучшить получение медицинского образования. Одной из таких программ является IBM Medical Sieve, которая в среднем более точно выявляет дефекты и новообразования, что позволяет сократить время диагностики и уменьшить возможность упущения важных данных.
Читайте также:
- Как AI может повлиять на CRISPR?
- ВЦИОМ. Новости: Прогресс или угроза, или об искусственном интеллекте в медицине
- ACHIEVEMENTS AND PROSPECTS OF ARTIFICIAL INTELLIGENCE IN MEDICINE
- Точные результаты
- Цельс — Медицинские скрининг системы | CELSUS
- Искусственный интеллект в медицине и здравоохранении | Примеры
Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований
Поделиться Впервые в истории на людях испытывается лекарство от смертельной болезни, разработанное ИИ. Его создал выходец из СССР Средство для лечения идиопатического легочного фиброза было создано целиком искусственным интеллектом. Сейчас оно проходит уже вторую фазу испытаний с применением плацебо. Только в США от этого заболевания сейчас страдают до 100 тыс. Без лечения оно способно свести пациента в могилу в течение 2-5 лет. Применяемые на сегодняшний день лекарства преимущественно нацелены на замедление развития заболевания, но нередко дают крайне неприятные побочные эффекты.
Работы много, но все поставленные нами цели — абсолютно конкретны и достижимы», — подытожил Собянин. По материалам: сайт Сергея Собянина. Картина дня.
Также при внедрении ИИ в работу службы лучевой диагностики, было доказано, что цифровые технологии могут спасти жизнь и повысить качество лечения. Например, анализируя КТ, МРТ, маммографию или рентген, компьютерное зрение распознает 37 заболеваний. Собянин сообщил, что благодаря использованию ИИ врачи Москвы получат «цифровых помощников», которые помогут подобрать лечение пациентам.
Кстати, постер к нашему репортажу тоже создан нейросетью — так одна из российских систем представляет себе использование искусственного интеллекта в медицине. В этой сфере в нашей стране сейчас применяются полсотни систем, но не всегда все идет гладко. В этом убедился наш корреспондент Леонид Клименчук. Поделиться Технологии искусственного интеллекта активно внедряют в медицину в РФ Технологии искусственного интеллекта активно внедряют в медицину в РФ "Искусственному интеллекту потребуется всего четыре минуты, чтобы выдать свое заключение по поводу состояния челюсти", — рассказал корреспондент. Нейросеть от российских разработчиков помогает на каждом этапе лечения полости рта. Кариес, пульпит или болезни десен — искусственный интеллект видит все детали. Причем в десять раз быстрее стоматолога. Он просто пишет признаки пародонтита легкой степени. И, соответственно, выставляет процент, на какой процент он уверен, что это признаки пародонтита", — объяснил пародонтолог Константин Наам. Несмотря на проценты, решающее слово в лечении за врачом и пациентом. Нейросеть сегодня — лишь помощник медика. Она выделяет проблемные места на снимках цветами, умеет виртуально корректировать расположение будущих протезов, воссоздавать 3D-модель челюсти.
Что хотите найти?
Технологии искусственного интеллекта для системы здравоохранения. Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. Многие россияне опасаются применения ИИ в медицине. Возможность делать прогнозы с помощью искусственного интеллекта в медицине применяют и иначе.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Среди важнейших вопросов — обработка колоссального объема биомедицинских данных, их подготовка и анализ для прогнозирования и лечения различных заболеваний. Конференция "Вычислительная биология и искусственный интеллект для персонализированной медицины — 2024" - яркое ежегодное событие для врачей, ученых, представителей IT-отрасли и всех специалистов, которых волнуют вопросы медицины будущего. Программа конференции подробно отразит все современные возможности применения информационных технологий в биомедицинских исследованиях и клинической деятельности.
В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN [4] , которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине. Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны. Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей. Новые подходы, связанные с теорией нечётких множеств , сетей Байеса и искусственных нейронных сетей , были созданы, чтобы отражать развитие потребности здравоохранения в интеллектуальных вычислительных системах. Однако с 2002 года технологии сделали большой шаг вперед, а к программам внедрения искусственного интеллекта в медицину подключились и IT-гиганты, и целые государства. Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной или прецизионной медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности.
Сегодня к ИИ относят программные средства с набором алгоритмов и методов, которые могут решать интеллектуальные задачи так же, как это сделал бы человек. К примеру, искусственный интеллект способен: Прогнозировать различные ситуации Оценивать информацию и формулировать заключительную оценку Анализировать данные и искать скрытые закономерности Стоит отметить, что на настоящий момент компьютеру не доступно моделирование сложных процессов высшей нервной системы человека: творчество, эмоции и т. Все это может возникнуть со временем и с появлением более сильного искусственного интеллекта. Однако компьютеры уже научились решать задачи так называемого «слабого искусственного интеллекта». Машина может работать по заранее установленным человеком правилам. Кроме того увеличивается количество проектов, в которых компьютеры не только работают по установленным алгоритмам, но также самообучаются, совершенствуются и решают более сложные задачи. Первые создаются программистами, которым не нужно обладать информацией обо всех зависимостях между входными параметрами и ответом — полученным результатом. Такие программные продукты прекрасно справляются со многими задачами, в том числе медицинскими — системы используются для расчетов статистик, формирования реестров и т. Искусственный интеллект нужен там, где невозможно задать четкие правила и алгоритмы. К примеру, как простая программа может на рентгенологическом снимке выявить наличие патологии? Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни. Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы. Как работают нейронные сети в медицинской сфере? Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению. Механизм работы искусственных нейросетей повторяет принцип биологических. В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой. В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше. Нейросети могут применяться в медицине разными способами. Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос. Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства. Алгоритм разработан с помощью технологий машинного обучения в медицине. Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии. Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений.
Оно предполагает диагнозы, исходя из полученных данных, подсказывает, к какому специалисту нужно обратиться. Это помогает пациенту внимательно следить за состоянием своего здоровья, быстро получать нужную врачебную помощь без нерациональной траты времени на запись, ожидание и посещение непрофильных специалистов. Снижается нагрузка на медперсонал, увеличивается время общения доктора с пациентом. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Любой человек может получить точную информацию о том, как скорректировать образ жизни, питания, чтобы избежать проблем со здоровьем. Для врачей ИИ стал надежным помощником при установлении наиболее вероятного диагноза и разработке эффективной схемы лечения. Применение искусственного интеллекта в медицине для разработки новых препаратов Чтобы разработать вакцину или новое лекарственное средство, требуется много времени и средств на дорогостоящие исследования и испытания. ИИ помогает сократить время на разработку новых препаратов в несколько раз. Искусственный интеллект анализирует структуру существующих медикаментов на молекулярном уровне, предлагает новые, с учетом заданных требований. В 2019 году компания Insilico Medicine при помощи ИИ создала несколько препаратов для эффективного лечения мышечного фиброза. Раньше для этого назначали множество медикаментов, терапия не всегда была эффективной. Искусственный интеллект всего за 3 недели создал нужный алгоритм, ученые выбрали наиболее подходящие варианты, за 25 дней провели тестирование новых лекарств на животных. Для выбора оптимального варианта потребовалось 46 дней. Без ИИ на это потребовалось бы более 8 лет и несколько миллионов долларов. Активное внедрение искусственного интеллекта в медицину — это возможность наконец-то найти лекарства от заболеваний, которые на сегодняшний день считаются неизлечимыми. Это болезнь Альцгеймера, рассеянный склероз и множество других патологий, которые становятся причиной преждевременной инвалидности или смерти. Использование искусственного интеллекта в медицине для автоматизации данных о пациентах Информация о пациентах обычно хранится в медицинских карточках. У каждого медучреждения своя картотека. Из-за этого процесс сбора анамнеза и постановки диагноза затягивается на неопределенное время. Врачу не всегда удается правильно интерпретировать результаты анализов, тестов и других видов обследований, потому что у него нет полной картины со всеми необходимыми данными. Технология блокчейн — это новый подход в хранении и управлении данными пациентов. Позволяет сегментировать и защитить информацию, быстро обмениваться всеми необходимыми медицинскими данными.
Обзор Российских систем искусственного интеллекта для здравоохранения
Например, для аудиовизуального распознавания речи визуальное описание движения губ объединяется с аудиовходом для предсказания произнесенных слов. Информация, поступающая из источников различных модальностей, может иметь различную предсказательную силу и топологию шума, а в некоторых источниках данные могут отсутствовать. Неоднородность мультимодальных данных затрудняет построение моделей. Важно изучить, как представлять входные данные и обобщать их таким образом, чтобы они отражали несколько модальностей. Например, текст представляется символами, а аудио и визуальные модальности — сигналами. В контексте медицинского применения вся диагностическая информация о пациенте может быть интегрирована в такие мультимодальные данные и обрабатываться системой ИИ, обученной рассматривать как внешнее изображение человека и фрагментов его тела, так и результаты анализов, МРТ- и КТ-изображения, аудиозаписи ответов на вопросы и т. Все это приближает нас к построению универсального диагноста, использующего холистический подход к диагностике заболеваний, и сокращению количества посещений разных врачей-специалистов для назначения эффективного лечения. Приложения для здоровья на базе искусственного интеллекта Самое большое потенциальное преимущество искусственного интеллекта — возможность помочь людям оставаться бодрыми, чтобы им не приходилось посещать врача или по крайней мере делать это не слишком часто. Искусственный интеллект и интернет медицинских вещей IoMT уже постепенно меняют парадигму с «реактивного» здравоохранения на «проактивное». Сочетание искусственного интеллекта и IoMT со временем сделает подключенные устройства для мониторинга состояния здоровья более интеллектуальными.
ИИ и огромные объемы данных, генерируемые IoMT, также могут использоваться для постановки диагноза. Различные приложения для здорового образа жизни на основе искусственного интеллекта, такие как MyFitnessPal и HealthTap, предоставляют людям полный контроль над своим здоровьем и благополучием, обратную связь с медучреждением и рекомендации для поддержания здоровья. Например, HealthTap узнает о симптомах пациента и их изменении с течением времени и координирует процесс лечения: отправляет напоминания, предоставляет текстовые ответы, сопоставленные с данными об истории болезни, руководствами, созданными врачами, а также обеспечивает возможность проведения онлайн-консультаций по видеоконференцсвязи. ИИ в медицине — это прорыв? Можно ли назвать применение ИИ прорывом в диагностике и лечении? На мой взгляд, сегодня прорыв еще не произошел. Поэтому я бы использовал количественную оценку развития технологии, например, число успешных исследовательских проектов в этой области или число публикаций. Если такой показатель растет экспоненциально, то можно говорить о быстром продвижении вперед.
ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
И в итоге такие решения оказываются верными. Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык. Но есть у естественного интеллекта не только преимущества, но и слабые места — тот самый человеческий фактор. Любому биологическому организму свойственна усталость, влекущая потерю концентрации и риск совершить ошибку. Огромный поток интерактивных данных и массив исторически накопившихся данных в виде анамнеза заболеваний, предыдущих исследований, динамики показателей здоровья пациента, множество факторов для принятия решений и катастрофическая нехватка времени — неподъемная ноша для обычного врача. Медработнику нужно осознать, проанализировать, сопоставить, пропустить через себя и выйти на принятие решения, на которое есть только минуты, а то и секунды. А если специалист не в настроении или плохо себя чувствует, то эффективность его диагностики снижается в разы. Хочу отдельно коснуться потенциальной пользы применения ИИ в медицине. Почему потенциальной? Потому, что сейчас систем ИИ, которые быстро определяют риски и учитывают множество входных параметров, не очень много и порядок их применения пока полностью не урегулирован. ИИ и нейросети способны в будущем преобразить современное здравоохранение. Изменить к лучшему систему диагностики, повысить качество оказания медицинских услуг при одновременном снижении расходов. Искусственный интеллект учится на клинических данных и историях заболеваний пациентов. Учитывает множество входных параметров при вычислениях и потенциально способен быстро определить риски возникновения заболеваний, предсказать динамику их течения. О морали и экономической целесообразности Работник здравоохранения должен принимать решения на основе фактов, и эти решения должны быть рациональными и практичными. Но не менее важны ценности, на которых строится этот выбор: этика, мораль, представления о добре и зле, о благе для пациента. Порой рациональным решением кажется отказ от дальнейшей борьбы за жизнь и здоровье пациента.
Автоматизация и улучшение Бывает, что пациент отменяет визит к врачу, и это несёт клинике убытки: в США подсчитали, что система здравоохранения страны ежегодно теряет около 150 миллиардов долларов. Чтобы снизить эти показатели нужен новый подход к организации и управлению. С такой задачей может справиться только ИИ, который будет учитывать нюансы и грамотно наладит поток пациентов в медицинские учреждения. Касательно автоматизации, ИИ может помочь специалисту при проведении анализа УЗИ, всевозможных снимков и анализов. IBM разработала сервис Arterys который совмещает в себе визуализацию работы сердца и аналитику. Основой сервиса выступает нейросеть, способная анализировать изображения. Создание лекарственных препаратов Препараты представляют собой сложные органические соединения, и поиск правильной структуры занимает много времени. ИИ призван точнее моделировать состав препаратов. В будущем исследователи смогут задавать свойства, а искусственный интеллект будет формировать химическую структуру препарата. Уже сегодня компания Atomwise применяет ИИ для поиска оптимальных лекарственных формул. А как в России В России ведётся работа сразу по нескольким направлениям из сферы медицинского искусственного интеллекта. Популярны распознаватели речи и сервисы онлайн-диагностирования болезней по снимкам. В 2017 году запущен проект Voice2Med , призванный сократить время на заполнение бумаг.
AI-платформа для анализа медицинских изображений
— Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность? Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов.
Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни
Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. Области применения технологий на основе искусственного интеллекта быстро расширяются, в частности, умные технологии приходят на помощь врачам и пациентам. Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ.