GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes. Коэффициент или индекс Джини позволяют оценить экономическое неравенство в конкретной стране или между государствами. Как и коэффициент Джини, он позволяет сравнивать различные страны между собой и состояния одной страны в разные периоды времени. 7 Среднее значение коэффициента Джини в ЕС–28 отличается от коэффициента Джини в целом по ЕС– 28, так как является простой средней от значений коэффициента во всех странах союза. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%).
Коэффициент джини в России
Сравнение ситуации в США и Европе показало, что более выраженная налоговая нагрузка на богатых вовсе не гарантирует эффективного решения проблемы с неравенством в стране. Главный вывод таков: меньшим неравенством Европа обязана не налоговому перераспределению доходов, а так называемому предраспределению — политике, которая направлена на создание условий для более равномерного распределения доходов еще до налогообложения. К таким механизмам относятся регулирование рынка труда, защита прав работников, установление минимальной заработной платы, антимонопольное регулирование, инвестиции в образование и здравоохранение, которые дают равный доступ к этим услугам всем слоям населения и позволяют получить людям из низов более высокооплачиваемую работу. Чем выше значение, тем хуже ситуация с неравенством. Росстат приводит несколько другие данные: по его оценкам, коэффициент Джини составлял в России в 2021 году 0,408. Более того, из отчетов российского статведомства следует, что, несмотря на улучшения в отдельные годы, в целом ситуация с неравенством сейчас в стране несколько хуже, чем было в начале нулевых, когда коэффициент Джини составлял 0,395. В 2021-м он составил 15 раз против примерно 14 раз в начале нулевых чем выше это значение, тем больше разрыв в доходах между богатыми и бедными. При любом расчете выясняется, что в России ситуация с неравенством далека от лучших показателей европейских стран — несмотря на существующие возможности бесплатного лечения и обучения. Хотя, как уточняют эксперты, в России как раз остро проявляются различные виды неравенства, связанные с доступностью не просто бесплатного, а качественного образования и здравоохранения, с наличием рабочих мест, на которых гарантируется не минимальный, а достойный уровень оплаты труда, с возможностью обеспечить себя благоустроенным жильем, а не просто квадратными метрами.
Расчёт коэффициента Джини базируется на кривой Лоренца — для её построения требуется частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют 5 групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими. В России используется метод деления на 20-процентные группы [2].
Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения. Наиболее часто в современных экономических расчётах в качестве изучаемого признака берётся уровень годового дохода. Коэффициент Джини можно определить как макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.
Иван Иванов капитал 2 тысячи рублей. Средняков капитал 20 000 рублей. Игорь Альфаинвестор капитал 2 000 000 рублей. Вагит Алекперов капитал 200 000 000 рублей. Прошел год. Вася и Иван, не имея средств к существованию, обеспечивали себя мелкой подработкой, мелким воровством и потребительскими кредитами. В результате Вася оказался должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняков работал и продолжает работать. Его зарплата была увеличена на величину инфляции, и в конце месяца его капитал составляет 22 000 рублей. С учетом инфляции он сохранил прежний уровень благосостояния, в отличие от Васи и Вани, которые взяли кредиты. Игорь и Вагит инвестировали свой капитал в акции и ETF. Оба получили хороший доход. Игорь получил больше в процентах от капитала. Этот пример показывает, как трудно бедным не становиться беднее и как легко богатым становиться богаче. Даже ничего не делая, получая мизерные проценты на многомиллиардный капитал, вы все равно станете богаче за определенный период времени, чем человек с миллионом, создавший сверхприбыльную компанию и работающий как белка в колесе. В этом примере есть еще одна показательная фигура — Средняков. Это человек, живущий от зарплаты до зарплаты. Он не становится беднее, но и не становится богаче. Хотя он находится в ситуации, когда ему гораздо легче, чем Васе или Ивану, начать инвестировать, стремиться к жизни, в которой «деньги делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги…. С другой стороны, ему легче, чем Игорю или, тем более, Вагиту, оказаться в той ситуации, в которой оказались Вася и Иван. Что бы человек ни делал, он все равно «увязает» в своем финансовом положении. А для среднего класса, живущего от зарплаты до зарплаты, их намерения играют ключевую роль. Почему и как бороться с неравенством Широко распространено мнение, что высокий уровень неравенства препятствует «подъему общества», тормозит экономическое развитие и угрожает социальной стабильности хотя это не доказано. Однако неоспоримым является тот факт, что экономическое неравенство порождает недовольство среди беднейших слоев общества. Очевидно, что правительства должны обратиться к этим группам и принять меры по борьбе с неравенством. Наиболее эффективными мерами являются: бесплатное медицинское обслуживание и образование; пособия для малообеспеченных групп населения; развитие инфраструктуры в селах дороги, электрификация, газификация и т. Нужно ли нам бороться с неравенством? Существует также мнение, что с неравенством не нужно бороться, потому что люди реагируют на неравенство не так сильно, как на несправедливость. Стоит понимать, что неравенство и несправедливость — это разные понятия. И они часто путаются. Существует множество различных исследований на эту тему, которые показывают, что люди предпочитают справедливое неравенство несправедливому равенству. Подумайте над такой формулировкой. Когда люди оказываются в обществе, где все равны, многие испытывают обиду и раздражение, потому что тот, кто работает больше других, не получает за это вознаграждения, а тот, кто самый ленивый, получает незаслуженную награду. Вы согласны, что это несправедливо? Равенство неестественно. Вот почему важно бороться не с неравенством в обществе, а с несправедливостью. Конечно, сильные должны помогать слабым, давая им то, в чем они нуждаются.
Список стран по равенству доходов
Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period. Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if missing data account for more than one third of the observations in the series. Weighted Mean 66POP: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if countries with missing data represent more than one third of the total population of your custom group. Note 1: In none of the above methodologies are missing values imputed. Therefore, aggregates for groups of economies should be treated as approximations of unknown totals or average values. Note 2: Aggregation results apply only to your custom-defined groups and do not reflect official World Bank aggregates based on regional and income classification of economies. Results may be inappropriate e.
Во-первых, по их расчетам, уровень неравенства в России намного выше, чем говорит официальная статистика: так, коэффициент Джини по доходам составляет сейчас не 0,41, а 0,55. Во-вторых, его динамика выглядит совсем иначе. Пик неравенства пришелся на 1996 г. Еще одну историю, не имеющую ничего общего с двумя предыдущими, рассказывают эксперты Всемирного банка. По этим оценкам, за последние полтора десятилетия неравенство в России устойчиво и быстро снижалось. С 1998 по 2012 г. Сжатие неравенства более чем на 15 п. Наконец, в качестве завершающего штриха сошлюсь на оценки по 53 странам Питера Линдерта, одного из наиболее авторитетных современных исследователей проблем неравенства. Похоже, после такого экскурса не остается ничего другого, как признать, что реальных масштабов существующего в России неравенства не знает никто.
То ли оно высокое команда Пикетти , то ли среднее Росстат , то ли низкое Линдерт ; то ли оно сначала резко возросло, просев немного позднее команда Пикетти , то ли стояло на месте Росстат , то ли быстро снижалось эксперты Всемирного банка. Есть варианты на любой вкус. Спросим еще раз: можно ли исходя из этой статистической какофонии объявлять Россию страной с запредельно высоким неравенством, считая это общеизвестным фактом? Идейные истоки В заключение позволю себе дать политико-идеологическую оценку самой кампании по борьбе с неравенством. Ее внутренним мотором является попытка левых сил обновить свою идеологическую повестку. К концу XX в. Переход левых сил в контрнаступление стал возможен тогда, когда на передний план выдвинулась проблема неравенства. Это создало условия для дальнейшего усиления их дискурсивной власти над умами людей. По времени это совпало с введением в научный оборот огромного массива данных по распределению доходов и богатства. Важно учитывать, что для многих левых это всего лишь первый шаг — подготовка почвы для возрождения их прежних социалистических и полусоциалистических идеалов.
Но борьба с количественным неравенством — это борьба с тенью.
Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой. Таким образом, когда индекс Джини равен 0, это означает полное равенство, в то время как показатель 100 означает абсолютное неравенство.
Участники эксперимента могли добровольно перейти от демократии к автократии большинством голосов.
В эксперименте участвовали 228 добровольцев, которые играли роли бедных и богатых и участвовали в голосованиях. Игра показала, что играющие роли богатых очень редко 13 из 304 голосовали за смену режима. Переход к демократии почти полностью определялся голосами бедных. В группах, которые перешли на автократию, бедные получали выгоды, и уровень неравенства значительно снизился во всех циклах игры.
Это происходит при условии, что автократ выполняет свои обещания. Более подробный обзор литературы по проблемам неравенства можно найти в работе [13] Sukharev, 2020. Некоторые сложности с обработкой данных возникают из-за того, что административное деление РФ за эти годы изменялось: происходили переименования, объединения и присоединения. В частности, данные по индексам ВРП имеются с 1997 по 2016 г.
Данные по ВРП 2017—2018 гг. Для оценки темпов экономического роста по субъектам регионам удобнее использовать индексы ВРП, которые имеются в виде процентов прироста падения по сравнению с предыдущим годом, а не данные по физическому объему, которые нужно было бы нормировать к начальному уровню. В рамках модели Кузнеца-Пикетти предполагалось обнаружить зависимость между темпами роста и неравенства типа перевернутой U или S кривой, поскольку мы имеем набор данных за 21 год по более чем 80 регионам, значительно различающимся по своему экономическому развитию. Для анализа использовался Microsoft Excel 2013, строились точечные диаграммы диаграммы рассеяния с линиями полиномиальных трендов.
Кроме того, вычислялся коэффициент корреляции по каждому году. При этом были получены результаты с очень большим разбросом по годам, что затрудняет поиск каких-либо зависимостей. Однако можно заметить, что в последние годы 2015—2018 корреляция между коэффициентом Джини и индексом ВРП стала больше и более устойчивой по своей величине. Были исключены регионы, по которым в эти годы отсутствовали данные.
Также для повышения информативности диаграмм исключен город Москва, в котором неравенство постоянно значительно почти вдвое больше среднего по России точка статистического «выброса». Диаграммы также становятся плохо читаемыми, если снабдить все точки названиями регионов, поэтому поименованы только некоторые рис. Рисунок 1. Рисунок 2.
Рисунок 3. Рисунок 5. Коэффициент корреляции -0,224. Коэффициент корреляции 0,273.
По этим диаграммам можно видеть, что индекс ВРП регионов России в период 1997—2018 годов испытывал огромные колебания, годовой рост и падение могли составлять 10, 20 и более процентов. Причины для этого были различными для разных регионов, например, колебания мировых цен для нефтедобывающих и газодобывающих регионов, изменения в экспортном законодательстве для лесозаготовителей. Для небольших регионов причиной роста или спада могло быть строительство крупных объектов, закрытие крупных старых предприятий или федеральные дотации. Индекс Джини при этом изменялся незначительно, оставаясь для большинства регионов в пределах 0,27—0,45 с центром 0,33—0,35.
Коэффициенты корреляции невелики и то положительны, то отрицательны. Костромская, Тверская, Кировская, Оренбургская области, республики Калмыкия, Карелия, Дагестан, Карачаево-Черкесская и ряд других постоянно сохраняют низкий уровень неравенства в пределах 0,35 , хотя некоторые из них при этом имеют высокие темпы роста Дагестан, Тверская область, Владимирская область. Проверялось также предположение о том, что корреляция коэффициента Джини и индексов ВРП изменяется в периоды экономического роста и падения. Рисунок 7.
На этом графике, который нивелирует скачки региональной экономики, можно видеть более заметную положительную связь коэффициента Джини и индекса ВВП, особенно после 2002 года. Это подтверждает и коэффициент корреляции 0,224, хотя и небольшой, но уже превышающий уровень случайных колебаний.
Индекс Джини в странах мира
Коэффициент Джини | RikoNw | Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. |
Коэффициент джини в России: статистика, динамика, прогноз | Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку. |
Список стран по показателям неравенства доходов — Википедия с видео // WIKI 2 | По данным Росстата, в 2023-м году в стране коэффициент Джини вырос до 0,403 против 0,395 годом ранее. |
Коэффициент Джини по странам.
По коэффициенту Джини статистический показатель степени экономического неравенства в обществе Россия уступает лишь Бразилии. Но рекордный рост благосостояния в первую очередь в Северной Америке и Китае замедлился в 2022-м из-за сложной рыночной конъюнктуры и геополитических событий. Повышение процентных ставок в 2022 году уже негативно повлияло на цены облигаций и акций, а также, вероятно, будет препятствовать инвестициям в нефинансовые активы.
На основе данных Всемирного банка за период с 1992 по 2018 год. Это список стран или зависимостей по показателям неравенства доходов , включая коэффициенты Джини. Коэффициент Джини - это число от 0 до 1, где 0 соответствует полному равенству где у всех одинаковый доход , а 1 соответствует полному неравенству когда один человек имеет весь доход, а все остальные не имеют дохода.
Как мы показали раньше, все зависит от того, в рамках какой системы моральных ценностей мы будем говорить о справедливости.
Рассмотрим простой пример. Налоговая шкала является регрессивной — средняя ставка падает при росте дохода. Но является ли она несправедливой? Посчитаем сумму налога, уплаченную каждым индивидом. В результате индивид, зарабатывающий больше, платит и большую сумму налога. И в чем же здесь несправедливость?
Для оценки справедливости налоговой системы выделяются следующие постулаты: Принцип получаемых выгод: индивиды должны платить налоги в соответствии с выгодой, которую они извлекают из услуг государства. На этом принципе может быть основана идея, что богатые люди должны платить больше налогов, чем бедные. Поскольку государство является предоставителем общественных благ и гарантом прав собственности, богатые люди извлекают больше выгод от государства, чем бедные, потому что у них есть больше собственности. Также этот принцип оправдывает идею программ по борьбе с бедностью за счет богатых. Все мы хотим жить в обществе, которое не испытывает революций и социальных потрясений из-за неприемлемого уровня жизни беднейших слоев населения. Поэтому идея помощи бедным за счет богатых кажется оправданной.
Принципы платежеспособности: горизонтальная справедливость и вертикальная справедливость. Горизонтальная справедливость означает, что индивиды с одинаковыми доходами должны платить одинаковые налоги. Вертикальная справедливость означает, что индивиды с более высокими доходами должны платить более высокие налоги. Как мы увидели из примера выше, этим принципам может соответствовать не только прогрессивная система налогообложения, но и регрессивная. В зависимости от того, каким образом налоги собираются в государственный бюджет, различают прямые и косвенные налоги. Прямые налоги — это налоги, которые уплачивает тот, кто является носителем налога.
Например, налог на прибыль является прямым налогом, потому что его оплачивает фирма, которая получает эту прибыль. Подоходный налог является прямым налогом, поскольку его уплачивает индивид, который получает налогооблагаемый доход. Косвенные налоги — это налоги, которые уплачивает тот, кто не является носителем налога. Например, акцизы на алкоголь и сигареты уплачивают фирмы. Однако носителем налога в этом случае является потребитель, потому что акцизы «сидят» в цене товаров, покупаемых потребителем. Косвенными налогами в России являются НДС налог на добавленную стоимость и акцизы.
Все косвенные налоги являются регрессивными по отношению к доходам покупателей. Какие налоги являются более популярными: прямые или косвенные? Ответ заключается в том, что косвенные налоги легче собрать, поскольку фактически они вводятся на расходы потребителей. Прямые налоги собрать тяжелее, потому что они вводятся преимущественно на доходы, и в этом случае индивиды имеют стимулы к уклонению от налогов путем сокрытия доходов. Поэтому косвенные налоги более популярны в государствах с неразвитыми институтами, где индивиды могут и хотят уклоняться от налогов. Еще одним эффектом, который оказывают прямые или косвенные налоги на экономику, являются стимулы индивидов к сбережениям.
Прямые налоги обычно вводятся на текущие доходы индивидов, поэтому индивиды не имеют стимулов делать большие сбережения. Косвенные налоги стимулируют индивидов к сбережениям, потому что эти налоги вводятся на потребление.
А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Делается это следующим образом: Строится прямая Лоренца на основе собранных статистических данных. Затем рассчитывается коэффициент. Он берется, как отношение площади образованной фигуры к площади треугольника, отображающей прямую равенства.
Фактически ищут 2 площади. Если они будут идентичны, то коэффициент Джини будет равен нулю и означать полное равенство между всеми группами населения. Если же площади будут максимально отличаться, то коэффициент неравенства составит 1. Это свидетельство полного дисбаланса между бедными и богатыми в обществе.
Коэффициент Джини (индекс концентрации доходов)
Frequently Asked Questions How comparable is the World Bank data on household incomes across time or between countries? Because there is no global survey of incomes, researchers need to rely on available national surveys. Such surveys are designed with cross-country comparability in mind, but because the surveys reflect the circumstances and priorities of individual countries at the time of the survey, there are some important differences. In collating this survey data the World Bank takes steps to harmonize it where possible, but comparability issues remain. Pooling the data available from different kinds of survey data is unavoidable if we want to get a global picture of poverty or inequality. The two concepts are nevertheless closely related: the income of a household equals their consumption plus any saving, or minus any borrowing or spending out of savings.
Median: Aggregates are calculated as the median of available data for each time period.
Median 66: Aggregates are calculated as the median of available data for each time period. Values are not computed if more than a third of the observations in the series are missing. Min: Aggregates are set to the lowest available value for each time period. Sum: Aggregates are calculated as the sum of available data for each time period. Sum 66: Aggregates are calculated as the sum of available data for each time period. Sums are not shown if more than one third of the observations in the series are missing.
Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period. Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if missing data account for more than one third of the observations in the series.
Хотя последствия пандемии COVID-19 все еще подсчитываются, ранние оценки прогнозируют увеличение коэффициента Джини на 1,2—1,9 в год в 2020 и 2021 годах, что свидетельствует об увеличении неравенства доходов. Использование индекса Джини в мире Коэффициент Джини в ЕС в целом ниже, чем в других государствах мира, и по состоянию на 2020 год варьируется от 29 до 35 в зависимости от страны. Для сравнения индекс Соединенных Штатов Америки в том же году составлял 39,7. Показатель Джини позволяет определить наиболее достоверные данные, выделяя конкретные сегменты экономики, поэтому европейские государства решили начать использовать его и в торговом секторе. С учетом меняющейся экономической картины мира применение статистического показателя для измерения структуры торговли страны приводит экспертов к новому, более подробному показателю участия фирм в торговле — торговому индексу Джини GTI. Торговый индекс Джини измеряет асимметрию в торговле на основе количества экспортеров и их доли в стоимости экспорта. Основными источниками данных для корректного измерения GTI являются торговая статистики на уровне фирмы и база данных Евростата о торговле с разбивкой по характеристикам предприятий TEC. База данных TEC показывает количество микро менее 10 сотрудников , малых менее 50 сотрудников , средних менее 250 сотрудников и крупных фирм более 250 сотрудников , занятых в торговле, и категории товаров, экспортируемые каждым классом фирм. Торговый индекс Джини может быть рассчитан для всех этих четырех размерных классов экспортеров, начиная от микрофирм и заканчивая «суперэкспортерами» крупными предприятиями. Несмотря на то, что главы государств обычно не подкрепляют свои заявления торговой статистикой на уровне компаний, они стараются проводить целенаправленную торговую политику для поддержки участия своих МСП в глобальных цепочках поставок. Так, в ноябре 2023 года президент Франции Эммануэль Макрон, ссылаясь на статистические данные, которые указывают на неиспользованный экспортный потенциал, заявил, что доля французских МСП в общем объеме французского экспорта невелика и ниже, чем у немецких и итальянских коллег. Он также выступил в поддержку нескольких инициатив, направленных на увеличение числа французских фирм-экспортеров.
Что сделал Путин? Вопрос можно поставить иначе... Что он сделал полезного? Перечислять можно очень долго все минусы, по всем отраслям, от сельского хозяйства до космоса.
Россия занимает 1-е место в мире по неравенству благосостояния
Сравнение коэффициента Джини по странам, конечно, довольно условно, так как размер страны влияет на уровень неравенства: чем больше территория, население и ВВП, тем больше неравенство. всех стран мира представлены в таблицах по основным регионам мира а также флаги стран, изменения показателя на один период, дата и т.д. В РФ, по данным конца 2014 года, коэффициент Джини по доходам был равен 0,42, а по имуществу – 0,921, что свидетельствует о высоком уровне общественного неравенства. По данным Росстата, в 2023-м году в стране коэффициент Джини вырос до 0,403 против 0,395 годом ранее.
Список стран по равенству доходов
Gini inequality index - Country rankings | Income and wealth inequality remains a global concern with varying levels of disparity seen across countries. The Gini coefficient, a measure used by economists, offers a numerical representation of this distribution. Ranging from 0 to 1, or 0% to 100%, a Gini coefficient of 0 signals perfect equality. |
Коэффициент Джини | (Для педантов – между «индексом» и «коэффициентом» есть небольшое отличие, индекс Джини считается в процентах, а коэффициент Джини – в дробных числах от нуля до единицы. |
Индекс Джини: новые горизонты применения - Сетевое аналитическое СМИ «РЕПОСТ» | Индекс Джини по странам: коэффициент концентрации доходов. |
Россия занимает 1-е место в мире по неравенству благосостояния | Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). |
Социальное неравенство: в чем выражается, как посчитать с помощью индекса Джини и кривой Лоренца | Коэффициент Джини по странам мира. |
Индекс Джини: новые горизонты применения
Get Free Economic Indicators Charts, Historical Data and Forecasts for 196 Countries. Albania Algeria Angola Argentina Armenia Australia Austria Azerbaijan Bangladesh Belarus Belgium Belize Benin Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Bulgaria Burkina Faso Burundi Côte d'Ivoire Cabo Verde Cameroon Canada Central African Republic Chad Chile China Colombia. Ниже приведены коэффициенты Джини дохода для каждой страны, по которой в CIA World Factbook представлены данные. Самая высокая степень социального неравенства по коэффициенту Джини отмечена в странах Африки, Латинской Америки, Азии.
Среди населения России растет доходное неравенство: почему ускорился этот процесс?
Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки. Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В. Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления. Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А. Налоговые сборы при это составят 20 рублей их оплатит опять же только индивид А , и их получает государство. На этом простом примере мы убедились, что при налогообложении возникли безвозвратные потери в размере 10 рублей.
И они возникают потому, что индивид В поменял свое экономическое поведение, полностью отказавшись от потребления мороженого. Таким же образом любые налоги приводят к безвозвратным потерям, поэтому можно смело утверждать, что любые налоги неэффективны в этом смысле. Задача экономистов заключается в том, чтобы найти такие налоги, которые будут минимально искажать стимулы людей, а значит, и приводить к минимальным безвозвратным потерям. Налоги могут взиматься по-разному в зависимости от величины дохода. Для того, чтобы оказать это, нам будут нужны два типа налоговых ставок: средняя налоговая ставка и предельная налоговая ставка. У прогрессивного налога средняя ставка налога растет по мере увеличения дохода, а значит, предельная налоговая ставка превышают среднюю. Примеры прогрессивных налогов: налоги на доходы во Франции, налоги в Швеции, автомобильный налог в России.
У пропорционального налога средняя ставка не изменяется с ростом дохода, а значит, средняя налоговая ставка совпадает с предельной. В случае, если индивиду предложена одинаковая налоговая ставка при существовании некоего налогонеоблагаемого минимума или же предоставлен налоговый вычет , то данная налоговая система является уже не пропорциональной, а прогрессивной. Индивид сначала вообще не платит налогов, а потом, после превышения налогонеоблагаемого минимума, начинает платить налог по одинаковой ставке. У регрессивных налогов средняя ставка падает с ростом дохода, а значит, предельная ставка налога оказывается ниже средней. Примеры регрессивных налогов: акцизы - поскольку человек оплачивает их при покупке товара вне зависимости от его дохода. Например, от 10 до 30 рублей в стоимости каждой пачки сигарет составляют акцизные сборы, и человек оплачивает их вне зависимости от величины дохода при покупке каждой пачки сигарет. Таким образом, для бедняка этот налог составляет существенную часть его дохода, а для миллионера он будет несущественным.
Другие примеры регрессивных налогов — это любые фиксированные налоги и пошлины. Например, в РФ человек вынужден заплатить фиксированную пошлину в размере около 1000 рублей при регистрации номерного знака автомобиля. Данный вид налога является регрессивным, поскольку пошлина оставляет большую часть дохода для бедного человека, и меньшую часть дохода для богатого человека. Какой из данных видов налогов является более справедливым? Популярной является точка зрения, что прогрессивные налоги являются более справедливыми, а регрессивные менее справедливыми. Но эта точка зрения ошибочна. Как мы показали раньше, все зависит от того, в рамках какой системы моральных ценностей мы будем говорить о справедливости.
Рассмотрим простой пример. Налоговая шкала является регрессивной — средняя ставка падает при росте дохода. Но является ли она несправедливой? Посчитаем сумму налога, уплаченную каждым индивидом.
Из такого определения видно, что критерии бедности могут изменяться от страны к стране и в различные периоды истории данного общества. Сегодня за этой чертой живут примерно 700 миллионов человек. Когда бедность определяется через установленную денежную величину дохода или потребления черта бедности , говорят об абсолютной бедности.
Другой подход заключается в привязке к постоянно меняющимся стандартам уровня жизни. В этом случае говорят об относительной бедности: уровень бедности зависит от характеристик распределения доходов во всём обществе и на первый план выходит неравенство. Использование понятия относительной бедности связано с тем, что, начиная с определённого уровня развития экономики, помимо материальных лишений питание, одежда, условия жилья и т. В исследованиях и мониторингах также часто используется субъективная бедность, под которой понимается мнение самих респондентов о границах бедности и собственном благосостоянии.
Countries in Sub-Saharan Africa and South America, such as Brazil and Botswana, feature prominently among the nations with the highest wealth and income inequality. Conversely, several European nations, like Slovenia, Czech Republic, and Belarus, exemplified lower Gini coefficients, implying a more equitable distribution of wealth and income. Iceland had a Gini coefficient as low as 26. These insights equip us with a clearer understanding of financial inequality on a global scale, drawing attention to areas where action is needed to reduce economic disparities and foster more equitable growth. With lower values indicating equal wealth distribution and higher values suggesting greater wealth disparities.
В «официальных» оценках учитываются федеральные налоги, но не учитываются штатные и местные. В итоге после учета всех трансфертов и всех налогов коэффициент Джини для США сокращается вдвое — с 0,45 до 0,23 и из страны с самым высоким они становятся страной с самым низким неравенством среди всех развитых стран! В последние десятилетия он получил широкую популярность благодаря серии публикаций команды Пикетти, из которых следовало, что в США плоды экономического роста практически целиком достаются узкой группе сверхбогачей, тогда как на долю всех остальных не остается вообще ничего. Так, согласно новейшим подсчетам Пикетти и его соавторов, с 1979 по 2014 г. Однако два ведущих специалиста по налоговой статистике — Джеральд Аутен и Дэвид Сплинтер — подвергли оценки команды Пикетти пересчету и получили совершенно другие цифры. По их выкладкам, по сравнению с 1979 г. Иными словами, доходы сверхбогачей росли практически теми же темпами, что и у остального населения. Причина этих расхождений все та же: произвольные допущения плюс неполный учет налогов и трансфертов. И снова зададимся вопросом: неужели на столь хлипкой статистической основе можно выносить безапелляционные нормативные вердикты, призывая государство к принятию жесточайших мер по ограничению неравенства? Что касается России, то уж здесь, казалось бы, все ясно. Все знают, что в ней поддерживается чудовищное, сверхъестественное, запредельное экономическое неравенство по мнению многих, самое высокое в мире. Какие здесь могут быть сомнения? Как ни странно, но могут. Согласно официальным оценкам Росстата, в России коэффициент Джини по доходам после 1993 г. Много это или мало на фоне других стран? Строго говоря, ни то ни другое. Отталкиваясь от тех оценок, которые дает Росстат, Россию следовало бы отнести скорее к группе стран-середняков. В совершенно ином свете российская ситуация предстает в недавней работе Филипа Новокмета, Пикетти и Габриэля Цакмана. Во-первых, по их расчетам, уровень неравенства в России намного выше, чем говорит официальная статистика: так, коэффициент Джини по доходам составляет сейчас не 0,41, а 0,55. Во-вторых, его динамика выглядит совсем иначе.
Список стран по равенству доходов - List of countries by income equality
Коэффициент или индекс Джини позволяют оценить экономическое неравенство в конкретной стране или между государствами. Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой. Европейский союз коэффициенты Джини государств-членов, согласно Евростат. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.
Индекс Джини: в каких странах мира самая маленькая разница между доходами богатых и бедных
Коэффициент Джини (индекс концентрации доходов) | Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. |
Gini Coefficient | Индекс Джини по странам: коэффициент концентрации доходов. |
Коэффициент джини в России | Европейский союз коэффициенты Джини государств-членов, согласно Евростат. |