О природе ков Виталий7 (Высоцкий В С.). Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах.
Случайность как художник: учёные обнаружили первую фрактальную молекулу
Каждое соцветие копируется точно таким же только меньше. Фото сделано снизу, чтобы разглядеть это во всей красе. Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна. Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии. Облака - Посмотрите в окно. Практически в любой момент вы можете увидеть фракталы на небе.
Это совершенно непохоже на сборку любых других белков, которые мы видели раньше». Ученые смогли установить, как возникла такая необычная форма молекул. В процессе самосборки белки становятся симметричными: каждая отдельная цепочка белков организована так же, как ее соседи. Такая симметрия приводит к тому, что в крупном масштабе форма выглядит однородной. Фрактальный белок нарушает правило симметрии. Разные цепочки белков вступают в различных точках фрактала в не полностью идентичные взаимодействия. Пока исследователям не ясно, несет ли такая фрактальная структура фермента цианобактерии какую-то пользу.
Последние постепенно сливаются в более крупные вены, самые крупные из них впадают в сердце. Значительно упрощённая схема кровообращения приведена ниже: Рис. Схема кровообращения Такое фрактальное строение обеспечивает максимальное снабжение тканей кислородом и питательными веществами, в том числе и при незначительных повреждениях. Интересный факт: у больного человека часто срабатывают компенсаторные механизмы. К примеру, у пациента, длительное время страдающего частичной закупоркой стенозом сосуда, со временем наблюдается появление новой сети мелких сосудов коллатералей , которые начинают доставлять кровь к обделённому участку в обход закупоренного. Именно поэтому последствия инфаркта миокарда у возрастных больных с историей хронических сердечно-сосудистых заболеваний намного легче, чем у молодых пациентов. У возрастных больных кровоснабжение быстрей восстановится благодаря имеющимся коллатералям. Другими словами инфаркт в молодом возрасте опасней, чем в пожилом. Благодаря фрактальному строению коронарной системы, обеспечивающей кровоснабжение сердечной мышцы, во многих случаях удаётся избежать инфаркта миокарда. К тому же именно фрактальное строение сердечных мышечных волокон при повреждении какой-либо её части инфаркт миокарда зачастую позволяет сердцу продолжать свою работу. Фрактальное строение сердечной мышцы и коронарных сосудов. Дыхательная система Дыхательная система ещё один яркий пример фрактала. Её структурными элементами являются трахея, бронхи, бронхиолы, которые в совокупности образуют бронхиальное дерево; а также альвеолы, соединяющиеся в пирамидальные дольки, из которых и состоит лёгкое. Удивительно, но благодаря фрактальному принципу строения лёгких, в человеческой грудной клетке возможно разместить площадь теннисного корта. Именно столько занимает дыхательная поверхность лёгких. Сами же дыхательные пути искусно пронизаны артериями и венами в виде лабиринтов. Строением бронхиальное дерево напоминает H-фрактал, о котором мы говорили в предыдущей части «Что такое фракталы? Мир вокруг нас. Часть первая»: Рис. Изображение Н-фрактала и бронхиального дерева На рисунке 14 мы видим переплетение двух фрактальных систем — лёгочной слева и кровеносной справа. Говорить про фрактальное строение человеческого организма можно много.
Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютер Показать больше.
Фрактальные узоры в природе и искусстве эстетичны и снимают стресс
Геометрия природы» пользователя Мария Иванова в Pinterest. Посмотрите больше идей на темы «фракталы, фрактальное искусство, природа». Папоротник — один из основных примеров фракталов в природе. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. Когда вы думаете о фракталах, вам могут прийти на ум плакаты и футболки Grateful Dead, пульсирующие всеми цветами радуги и вызывающие завихрение сходства. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств.
Открытие первой фрактальной молекулы в природе — математическое чудо
Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Просмотрите доску «Фракталы» пользователя Katrine в Pinterest. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе». По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.
Созерцание великого фрактального подобия
В бесконечном же пространстве вещество соберется в бесчисленное множество сферических масс звезд. Сегодня мы знаем, что под давлением гравитации образуются не только звезды, но и всевозможные космические структуры. Я солидарен, далее, с лауреатом Нобелевской премии по физике за 1977 год Филипом Андерсоном, утверждающим, что «на каждом уровне сложности появляются совершенно новые свойства». При этом на разных уровнях организации материи, возникающих один за другим в ходе ее материи самоорганизации, начинают действовать все новые законы — физические, химические, биологические, социальные. Эволюция под давлением взаимодействий протекает тем успешнее, чем то позволяют обстоятельства.
Это касается и феномена жизни. Как писал Роберт Чемберс в своей «Естественной истории мироздания» 1844 , жизнь «появлялась всюду и постоянно, когда только возникали благоприятные для того условия». Скажем, из всех планет Солнечной системы жизнь в ее развитых формах возникла только на Земле. На других планетах давление взаимодействий оказалось не столь результативным.
Отбор отбору рознь Главным конкурентом автогенетической теории эволюции сегодня продолжает оставаться теория естественного отбора. Отбор в ней — только один из трех компонентов естественного отбора, включающего в себя: 1 возникновение множества наследуемых малых случайных направленных «во все стороны» мутаций; 2 выживание наиболее адаптивных из этих мутаций в результате конкуренции особей и их взаимодействия со средой собственно отбор ; 3 накопление малых мутаций, выживающих на протяжении ряда поколений, в адаптивные признаки. Второй компонент, который часто некорректно отождествляют со всем естественным отбором, вполне реален, тогда как первый и третий реальности не отражают. Если бы Господь здесь это метафора положился только на естественный отбор, то никакой эволюции не происходило бы.
Первый аргумент. Темпы органической эволюции превосходят темпы эволюции неорганической среды, так что сама по себе адаптация к среде не могла бы двигать эволюцию органического мира. Второй аргумент. Появляющиеся в ходе эволюции все более сложные формы зачастую не превосходят по адаптированности старые, скажем, бактерии или лишайники, проявляющие чудеса выживаемости в самых невероятных условиях.
Третий аргумент. В ходе эволюционных изменений данный органический вид становится другим видом, репродуктивно обособленным от старого, который после того зачастую гибнет. Объяснить это адаптацией к среде старого вида невозможно. Четвертый аргумент.
Позиции теории естественного отбора подрывает и возникшая в последние десятилетия эволюционная биология развития evo-devo. Получаемые здесь результаты позволяют все увереннее утверждать, что органическая эволюция осуществляется посредством макромутаций, для появления которых оказывается достаточно изменений в нескольких и даже одном-двух генах. В научной литературе обсуждаются и другие аргументы против теории естественного отбора. Я знаю, что ничего не знаю Эти слова, обычно приписываемые Сократу, в полной мере могут быть отнесены к нашим представлениям о Вселенной.
После открытия космического расширения стало понятно, что наблюдаемый мир ограничен для нас горизонтом видимости радиусом около 13,8 млрд световых лет. Так как никакой сигнал не может распространяться быстрее света, а расширение началось около 13,8 млрд лет назад, то события, происходящие вне этой сферы, в принципе не могут нами наблюдаться. Весь не ограниченный горизонтом видимости материальный мир называют Вселенной, сферический же ее участок, находящийся в пределах горизонта видимости, то есть наблюдаемый нами мир, — Метагалактикой. Более строго нашей Метагалактикой было бы называть относительно компактную космическую макроструктуру, включающую в себя наблюдаемый нами мир и отделенную от других метагалактик во Вселенной расстояниями, многократно превышающими ее собственные размеры.
Ниоткуда не следует, что размеры нашей Метагалактики совпадают с размерами наблюдаемого мира. Радиус горизонта видимости определяется не законами формирования компактных космических макроструктур, а временем, прошедшим после начала наблюдаемого Большого взрыва. Размеры нашей Метагалактики могут существенно превышать размеры наблюдаемого мира. Из сказанного следует, что у космологии, изучающей Вселенную в целом, начисто отсутствует эмпирическая база.
Я объяснил этот процесс с точки зрения эффекта фрактальной беглости, который улучшает процессы распознавания образов людей. Фрактальные чернильные шарики низкой сложности сделали этот процесс счастливым, заставляя наблюдателей видеть изображения, которых там нет. Поллоку не понравилась идея, что зрители его картин были отвлечены такими воображаемыми фигурами, которые он назвал «дополнительным грузом». Он интуитивно увеличил сложность своих работ, чтобы предотвратить это явление. Коллега по абстрактному экспрессионизму Поллока Виллем де Кунинг также рисовала фракталы. Когда ему поставили диагноз слабоумие, некоторые искусствоведы призывали уйти в отставку на фоне опасений, что это уменьшит воспитательную составляющую его работы. Все же, хотя они предсказывали ухудшение его картин, его более поздние работы передали спокойствие, отсутствующее в его более ранних частях. Недавно было показано, что сложность фрактала его картин неуклонно снижается, когда он впадает в слабоумие.
Исследование было сосредоточено на семи художниках с различными неврологическими состояниями и выявило потенциал использования произведений искусства в качестве нового инструмента для изучения этих заболеваний. Для меня самое вдохновляющее сообщение заключается в том, что, борясь с этими болезнями, художники все еще могут создавать прекрасные произведения искусства. Признание того, как взгляд на фракталы уменьшает стресс, означает, что можно создавать имплантаты сетчатки, имитирующие механизм. Изображение Nautilus через www. На первый взгляд эта цель кажется далекой от искусства Поллока. Тем не менее, именно его работа дала мне первый ключ к беглости фракталов и той роли, которую фракталы природы могут сыграть в контроле уровня стресса людей. Чтобы мои био-вдохновленные имплантаты вызывали такое же снижение стресса при взгляде на фракталы природы, как нормальные глаза, они близко имитируют дизайн сетчатки. Когда я начинал свое исследование Поллока, я никогда не думал, что это послужит основой для создания искусственных глаз.
Это, однако, сила междисциплинарных усилий - мышление «из коробки» приводит к неожиданным, но потенциально революционным идеям.
Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности. Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность. А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача.
Получается, что рынок, как минимум, имеет фрактальные свойства. Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части. Что еще интересного можно найти на основе модели Мандельброта? К примеру, можно взглянуть на соотношение частей этого фрактала: Фрактальную теорию тесно связывают с принципом золотого сечения и числами Фибоначчи.
В природе они встречаются повсеместно. Есть много примеров фракталов, с которыми мы сталкиваемся в повседневной жизни. Ананасы растут по фрактальным законам, а кристаллы льда образуют похожие фрактальные формы. Фракталы позволяют растениям максимизировать воздействие солнечного света. Они позволяют сердечно-сосудистым системам эффективно доставлять кислород ко всем частям тела. Здесь мы приводим 9 удивительных и красивых примеров фракталов в природе. Склонность этого овоща к ускоренному образованию бутонов обуславливает спиралевидный рисунок и коническую форму. Верхушка становится все выше и выше по мере роста Романеско. Другие золотые спирали в природе — это спиральные галактики и раковины наутилусов. Вы, несомненно, заметили приятную спираль их чешуи, за которой прячутся семена.
Фракталы в природе и в дизайне: сакральная геометрия повсюду
Приходим к выводу, что все рассеянные во Вселенной метагалактики и еще большие системы из-за доминирования в них гравитационного взаимодействия нестационарны. Поскольку же метагалактики могут только расширяться и сжиматься, не достигая устойчивого состояния, то они это циклически и делают. Впрочем, расширение и сжатие метагалактик из-за необратимости этих процессов характеризуются, надо полагать, своего рода остаточной деформацией, которая от цикла к циклу накапливается, пока однажды метагалактики не прерывают свою пульсацию, переходя к бесконечному расширению. Таким образом, при всей своей глобальной стационарности фрактальная Вселенная локально на всем ее протяжении живет бурной жизнью. Составляющие ее метагалактики переживают квазициклические пульсации. Все они имеют свой срок жизни, по истечении которого тают в бесконечном расширении, а их содержимое либо подбирается другими метагалактиками, либо служит материалом для самоорганизации новых. Эволюция и охлаждение В ходе расширения нашей Метагалактики после ее персонального Большого взрыва она эволюционирует в сторону усложнения.
На стадии сжатия все структуры, возникшие в ходе расширения, будут разрушены. Согласно концепции Большого взрыва, в ходе расширения наша Метагалактика вот уже около 13,8 млрд лет охлаждается. Это охлаждение означает глобальное в масштабах метагалактики превращение тепла беспорядочного движения частиц в другие формы энергии. Но энергия — это мера количества взаимодействий материи. Поскольку этот глобальный процесс длится и длится уже миллиарды лет, то он и стимулирует возникновение все более сложных материальных структур. Один однонаправленный процесс — глобальная эволюция материи в сторону усложнения — стимулируется другим однонаправленным процессом — глобальным превращением тепла в другие формы энергии.
Сказанное может быть отнесено ко всем метагалактикам и еще бoльшим космическим системам: их материальное содержимое эволюционирует в ходе расширения по всем канонам универсальной эволюции, которых мы коснулись в начале статьи. Результаты этих локальных эволюций уничтожаются в ходе сжатия этих космических систем. Переходим ко Вселенной. Если бы она глобально расширялась, то в ней происходила бы глобальная эволюция в сторону усложнения, а если бы сжималась, то происходило бы уничтожение всех структур. Невозможность для фрактальной Вселенной глобального сжатия и расширения означает, что она глобально не эволюционирует. Да и как она могла бы глобально эволюционировать, если во время циклических сжатий и расширений составляющих ее метагалактик все результаты локальных эволюций обнуляются?
Все опять и опять повторится сначала Как говорилось выше, жизнь возникает в ходе эволюции везде, где это позволяют условия. В нашей Солнечной системе только восемь планет, и высокоорганизованная жизнь возникла на одной из них. В галактиках намного более разнообразные условия, так что вероятность возникновения жизни в каждой из них много больше. Ну а в метагалактиках вероятность возникновения жизни, надо полагать, и вовсе близка к единице. Возникая на очередной стадии расширения метагалактики с подходящими параметрами, жизнь каждый раз начинает с чистого листа, ничего не зная о своих предшественниках, и бесследно исчезает при ее метагалактики сжатии. В высокотемпературной плазме, в которую превращается содержимое метагалактик при их сжатии, у живой материи нет шансов уцелеть.
Так что, вопреки Анри Бергсону и Владимиру Ивановичу Вернадскому, жизнь возникает каждый раз абсолютно заново из неживой материи. Контакты между очагами жизни в разных метагалактиках исключены из-за гигантских расстояний между ними, многократно превосходящих их собственные грандиозные размеры, составляющие миллиарды световых лет. И если даже какому-то очагу жизни довелось возникнуть в метагалактике на такой стадии ее расширения, которая завершится рассеянием содержимого метагалактики в межметагалактическом пространстве, то рано или поздно оно будет подобрано другими метагалактиками — уже существующими или вновь образовавшимися — и опять окажется ввергнутым в мясорубку расширений и сжатий теперь уже своих новых пристанищ. Человеческие индивиды тоже обречены на гибель, что не мешает каждому из нас проживать более или менее полноценную жизнь, наполненную радостями и горестями. Однако имеется кардинальное различие. У индивида есть шанс продолжить себя делами в потомках, сделав вклад в эволюцию своего социума, жизни на Земле и жизни в данной метагалактике.
У всего очага жизни в метагалактике ничего такого нет: она жизнь просто захлопывается, не оставляя после себя следа. Человечеству, полагаю, придется смириться с эфемерностью жизни, с отсутствием у нее — по космологическим меркам — прошлого и будущего.
Тем более что так называемые "регулярные", в которых структуры повторяются почти в точности на всех масштабах, очень сложны с геометрической точки зрения. Это микробный фермент, отвечающий за клеточный метаболизм в цианобактериях Synechococcus elongatus, фотосинтезирующих бактериях, которые живут как в воде, так и на суше. Самостоятельная сборка треугольников Серпинского Исследователи объясняют, что фермент, точную форму которого им удалось обнаружить, спонтанно образует треугольники Серпинского. Это фрактальный объект, состоящий из основного треугольника, состоящего из более мелких треугольников Серпинского, каждый из которых сам делится на еще более мелкие варианты, и так далее. По словам ученых, по мере развития фрактальной структуры треугольные пустоты становятся все больше и больше. Они утверждают, что никогда раньше не наблюдали подобной сборки белков. Сборка белков, как правило, очень симметрична, поскольку белковая цепочка копирует положение своих соседей.
В случае с изученным ферментом сборка демонстрирует асимметрию, которая и лежит в основе фрактальной структуры.
Удивительный кусочек агата вот за что мы так любим крупные подвески и другие украшения из агата! Агаты выглядят в украшениях волнующе!
Прозрачные слои перемежаются с непрозрачными, отчего кажется, будто удивительные агаты знают какую-то особенную тайну! Кольцо из бижутерного сплава с агатом. Размер кольца регулируется.
Агатовый браслет. Кольцо из меди. Декоративный элемент оформлен вставкой из агата цвета фуксия.
Бусы с агатами. Безразмерное кольцо. Размер, форма и цвет вставки может отличаться по причине натурального происхождения камня.
Красное колье с агатом.
Именно поэтому, смотря на график, крайне сложно определить, какой на нем представлен таймфрейм: Такой график может соответствовать как 1 минутному таймфрейму, так и месячному. Это и есть принцип фрактальности на биржевых графиках — малое подобно большому, и наоборот. Для нас, трейдеров в этом есть неоспоримое преимущество.
Ведь научившись торговать на одном таймфрейме, мы можем масштабировать нашу торговлю: Если хотим меньше тратить времени и реже торговать — тогда можно увеличивать таймфрейм. Если хотим больше торговать, и для этого у нас есть больше времени — тогда можно уменьшать таймфрейм. Хотя, конечно, у каждого таймфрейма есть свои особенности, но общий характер рыночных движений сохраняется благодаря фрактальности. Фракталом в трейдинге принято называть локальный экстремум, состоящий из нескольких баров. Стрелками на графике показаны фракталы, которые являются экстремумами — то есть, локальными минимумами или максимумами на текущем графике.
Билл Уильямс определяет, что: для образования верхнего фрактала бар должен иметь самый высокий максимум по сравнению с 2-мя барами слева и 2-мя барами справа; для образования нижнего фрактала бар должен иметь самый низкий минимум по сравнению с 2-мя барами слева и 2-мя барами справа. Как следствие, фракталы не могут появиться на самом правом краю графика. Для его образования, нужно, как минимум, 5 баров.
Фракталы вокруг нас
Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского. Если посмотреть на фрактал с близкого или дальнего расстояния, можно увидеть, как повторяются одни и те же узоры.
Самое популярное
- Предварительный просмотр:
- ФРАКТАЛ • Большая российская энциклопедия - электронная версия
- 1 из 9: Романеско
- Самое популярное
- Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать
- Предварительный просмотр:
Фракталы в природе
Исходя из этого простого наблюдения, можно выставлять отложенные ордера на пробой фракталов в соответствии с перемещением объема. Далее контролируйте риски. В конце американской сессии можно закрывать все сделки, независимо от результата. Этот подход более спокойный, так как на анализ и выставление ордеров вы можете потратить не более 10 минут в день. Активный поход в торговле по фракталам Определите тренд в каком направлении перемещается объём и торгуйте в течение дня только в направлении тренда. Этот индикатор может быть хорошим фильтром для ваших сделок. Если на рынке присутствует восходящий тренд, и внутри дня цена пробила нижний фрактал, выйдя из области Value area, а потом в неё вернулась — то, скорее всего, это был ложный пробой, и движение вверх вероятно продолжится. Пример на графике: Если на рынке присутствует восходящий тренд, и внутри дня цена пробила верхний фрактал, выйдя из области Value area — то, скорее всего, движение вверх продолжится. Пример на графике: Контролируйте риски, правильно выбирая размер позиции. Такой тип трейдинга позволит вам совершать сделки более точно, но будет требовать больше времени в день для работы. Выводы Окружающий нас мир нелинеен и фрактален.
Наша природа удивительна и у нее есть свои закономерности, которые ученые постоянно изучают. Одним из таких исследований является изучение фракталов в природе. Благодаря спутниковым снимкам мы также можем полюбоваться красотой нашей планеты и необычными рисунками, сделанными природой в разных странах.
Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность.
А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача. Получается, что рынок, как минимум, имеет фрактальные свойства. Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части. Что еще интересного можно найти на основе модели Мандельброта? К примеру, можно взглянуть на соотношение частей этого фрактала: Фрактальную теорию тесно связывают с принципом золотого сечения и числами Фибоначчи.
Опять же, не будем вдаваться в сложные математические вычисления и доказательства.
Структура исследовательской работы определялась логикой исследования и поставленными задачами. Она включает в себя введение, две главы, заключение, список использованной литературы, приложения. История появления понятия «фрактал» Первые идеи фрактальной геометрии возникли в 19 веке. Георг Кантор Cantor, 1845-1918 - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной повторяющейся процедуры превратил линию в набор несвязанных точек.
Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Получалась, так называемая, Пыль Кантора приложения 1, 2. Джузеппе Пеано Giuseppe Peano; 1858-1932 — итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком.
И так до бесконечности. Уникальность такой линии в том, что она заполняет всю плоскость. Позднее аналогичное построение было осуществлено в трехмерном пространстве приложения 3, 4. Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту приложение 5. Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный».
Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе. Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому». Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM.
В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным. Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час.