Задания 26, 27 позволяют набрать по 2 первичных балла каждый. ЕГЭ по информатике 9 мин 22 с. Видео от 23 апреля 2023 в хорошем качестве, без регистрации в бесплатном видеокаталоге ВКонтакте!
Разбор демоверсии 2024 по информатике ЕГЭ | Задание 26 | Новая Школа
Егэ информатика 26 задание решение | ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26". |
Задание КИМ 26. Обработка данных через сортировку. Источник: Поляков | Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград. |
ЕГЭ-2020: 23-е задание по информатике стало мемом, а 17-е по математике – песней | В варианте ЕГЭ-2024 две задачи по теории вероятностей — это №4 и №5. По заданию 5 в Интернете почти нет доступных материалов. |
ЕГЭ по информатике — 2024: структура и изменения ⋆ MAXIMUM Блог | Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике. |
Задания №26 ЕГЭ по информатике - cпособ решения без использования программирования
В статье рассматривается альтернативное решение типовой задачи №26 ЕГЭ по информатике и ИКТ, отличающееся от предлагаемого разработчиками ЕГЭ. ЕГЭ. Информатика. 26 задание. 3 апреля 2023. Некоторые из способов решения заданий данного задания. САМЫЙ ЛЕГКИЙ СПОСОБ решения ЗАДАНИЯ №26 ЕГЭ по Информатике! Тысячи заданий с решениями для подготовки к ЕГЭ–2024 по всем предметам. Разбор задания 26 из ЕГЭ по информатике с помощью Python.
Задание 26. Досрок 2023. ЕГЭ по информатике — Video
Второй способ с помощью Python. С помощью команды readline считываем первую строчку. С помощью команды split разбиваем строчку по пробелу на два числа. Переменная st — это список.
В st[0] — будет подстрока с первым числом, в st[1] со вторым. Переменная s — это размер свободного пространства на диске, n — это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой.
Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных.
Заводим список b. В него будем класть элементы, которые записываем на диск. С помощью цикла пробегаемся по всем элементам.
В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b. Таким образом, сможем найти максимальное количество. Чтобы найти максимальный элемент при максимальном количестве, удаляем из списка b последний самый большой элемент.
Пробегаемся по списку a, начиная с конца. Ищем кем можно заменить удалённый элемент.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Также следует учесть, что иногда Ваня может вместо создания этой особой позиции просто сразу выиграть, получив 77 и более камней в кучках. Все варианты перебраны. Так как мы ищем значения s, при которых Ваня выигрывает независимо от действий Пети, то мы должны взять пересечение победных для Вани значений s из всех четырёх веток перебора. А именно взять пересечение четырёх найденных множеств: 1.
Так как в условии требовалось найти минимальное подходящее s, то в ответ следует записать число 30. В заключение следует отметить, что на реальном экзамене не требуется предоставлять подробное решение данной задачи, поэтому выпускник может пропускать очевидные ему рассуждения, сокращая время выполнения рассмотренных задач. В итоге будет оценена только правильность ответа. Иванов Сергей Олегович, начальник отдела математики издательства «Легион» Похожие статьи.
Одновременно, при чтении числа из файла, будем формировать массив-вектор я. Массив-вектор объявляем глобальной переменной. Основной блок программы: a. Берем по три элемента из массива-вектора, сдвигаясь каждый раз всего на один элемент. Определяем количество трехзначных чисел среди этой тройки и сумму элементов всех трех чисел.
Разбор демоверсии 2024 по информатике ЕГЭ | Задание 26 | Новая Школа
2019 годов, материалов по подготовке к ЕГЭ с сайта К.Ю. Полякова () и разбор задачи на youtube Т.Ф. Хирьянова (). уроки для подготовки к экзаменам ЕГЭ ОГЭ. Разбор 26 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.). На уроке рассмотрен разбор 26 задания ЕГЭ по информатике: дается подробное объяснение и решение задания 2017 года. В данной статье публикую полный разбор досрочного апрельского варианта по информатике ЕГЭ 2024 года. Всего 27 заданий. Задания графически и наглядно разобраны, приведены коды программ.
Рубрика «Информатика варианты»
Задание 26. ЕГЭ. Исправление ошибок в программе | Личный сайт Рогова Андрея: информатика, программирование и робототехника. |
Задание КИМ 26. Обработка данных через сортировку. Источник: Поляков | Задача 26. Во многих компьютерных системах текущее время хранится в формате «UNIX-время» – количестве секунд от начала суток 1 января 1970 года. В одной компьютерной системе проводили исследование загруженности. |
5 самых сложных задач из ЕГЭ по информатике в 2023 году — и как их решать | В ЕГЭ по информатике 27 заданий разного уровня: и ряд из них требует особого подхода. |
ЕГЭ по информатике 2023 - Задание 26 (Сортировка) | В ЕГЭ по информатике 27 заданий разного уровня: и ряд из них требует особого подхода. |
26 задание егэ информатика 2023 excel | Рассмотрим ряд сложных задач типа 14 из ЕГЭ по информатике. Тип 14 это задачи на позиционные системы счисления. |
Информатика ЕГЭ 2021. Задание 26 в Excel. № 2650 с сайта Полякова
Задание 26 ЕГЭ-2019 по информатике: теория и практика | 40 Информатика. ЕГЭ по информатике 2022: задание 26. |
Разбор 26 задания ЕГЭ 2023 по информатике ( python )+ досрочный период 2023 | ЕГЭ по информатике 9 мин 22 с. Видео от 23 апреля 2023 в хорошем качестве, без регистрации в бесплатном видеокаталоге ВКонтакте! |
Информатика ЕГЭ (спрашивает Anonymous) в 3618528 топике | Разбор всей демоверсии ЕГЭ по информатике 2024 в плейлисте. |
ВСЕ ЗАДАЧИ 26 с официальных ЕГЭ | Информатика ЕГЭ 2023 | Умскул - YouTube | Инфоурок › Информатика ›Конспекты›Разбор задания №26 ЕГЭ (Информатика). |
Информатика ЕГЭ | Задание 27. Во всех задачах этого типа необходимо выделить из всех данных те из них, которые лучше подходят для целей задачи и распределить их по остаткам. |
Вы точно человек?
Решение Первым делом определяем какими могут быть x и y. В первом слагаемом x и y являются цифрами 18-тиричного числа, следовательно x и y натуральные числа меньшие 18. Теперь, когда мы нашли область определения x и y, можно подумать и об алгоритме решения. Перебор допустимых значений для x и y; Подсчет количества различных значений выражения.
Строится двоичная запись числа N. К этой записи дописываются справа ещё два разряда по следующему правилу: а складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа справа. Полученная таким образом запись в ней на два разряда больше, чем в записи исходного числа N является двоичной записью результирующего числа R.
Укажите такое наименьшее число N, для которого результат работы алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления. Решение: Здесь мы также можем объединить условия А и Б.
От предыдущей задачи эта отличается только тем, что в ответе нужно указать не число R, а число N. Последняя цифра двоичной записи удаляется. Если исходное число N было нечётным, в конец записи справа дописываются цифры 10, если чётным — 01.
Результат переводится в десятичную систему и выводится на экран. Алгоритм работает следующим образом. Двоичная запись числа N: 1101.
Удаляется последняя цифра, новая запись: 110.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные.
В первой строке входного файла 26. В следующих N строках находятся значения объёмов файлов каждого пользователя все числа натуральные, не превышающие 100 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Пример входного файла: 100 4 80 30 50 40 При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера: 2 50 2.
Основы работы с файлами и извлечение данных Для начала научимся считывать файлы. В Python, чтобы считать файл, нужно открыть этот файл. S: Если текстовый файл лежит в одной директории с py-файлом, то достаточно указать только его имя.
В нашем случае это будет выглядеть так: Отлично, Вы открыли файл! Теперь перейдём к считыванию файла построчно! Считывание одной строки файла происходит функцией readline Замечу, что readline возвращает строку тип str!
Давайте заведём переменные S сумма и N кол-во чисел Подробнее о map можно посмотреть тут Теперь давайте сделаем список размера N и заполним его содержимым из 26. Пожелание: после работы с файлом, закройте его вот так 3. Такого файла нет!
Значит, мы учитываем 80 в ответ! Теперь аналогичные операции проводим с числом 30. Этому условию удовлетворяют 40 и 50.
Однако максимальное заполнение архива будет при упаковки файлов 30 и 50.
Есть повод расслабиться и определиться с дальнейшим местом учебы. Нынешний выпуск запомнится прежде всего коронавирусом: ни последних звонков, ни выпускных. ЕГЭ с опозданием на месяц с лишним и жарой, проверкой температуры, масками с перчатками и социальной дистанцией. Когда еще такое было? Результат он показал в своем Твиттере. Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике. В Интернете разыскивали счастливчиков, которые смогли его решить.
Тем более, что при переводе из первичных во вторичные баллы для максимума, то есть 100, актуальны и 35, и 34 балла, то есть с учетом одного невыполненного задания.
Вы точно человек?
В следующих N строках находятся значения длин сторон коробок все числа натуральные, не превышающие 10 000 , каждое — в отдельной строке. Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе. Скачать Вариант 2. В текстовом файле записан набор натуральных чисел, не превышающих 109. Гарантируется, что все числа различны. Необходимо определить, сколько в наборе таких пар чётных чисел, что их среднее арифметическое тоже присутствует в файле, и чему равно наибольшее из средних арифметических таких пар. Входные данные Первая строка входного файла содержит целое число? Каждая из следующих? В ответе запишите два целых числа: сначала количество пар, затем наибольшее среднее арифметическое.
Ответ: 4 Задание 3 10268 На рисунке представлена схема дорог около города Максимовка. Определите, какие номера населенных пунктов в таблице могут соответствовать населенным пунктам Ж и З на схеме. Заметим, что пункт А уникален том смысле, что из него выходит уникальное число дорог, а именно одна. Заметим, что городов, от которых выходит по четыре дороги, всего два — Б и Ж. Теперь поймем, какой номер соответствует городу З. Так как из него выходят две дороги так же, как из пункта В, то и З, и В могут соответствовать номера 7 и 8. Заметим из таблицы, что П8 связан с П2, следовательно, П8 — это город В. В ответ запишем номера искомых пунктов в порядке возрастания — 17.
Ответ: 17 Задание 4 10269 Аня и Таня нашли карту сокровищ. На рисунке представлена схема мостов между островами в океане Z. В таблице содержатся сведения о длине моста от одного острова к другому. Отсутствие значения означает, что такого моста нет. Каждому острову на схеме соответствует его номер в таблице, но неизвестно, какой именно. Чтобы спланировать путешествие, Ане и Тане нужно определить длину моста между островами Ж и Е. Заметим, что острова Д и Е уникальны в том смысле, что от них построено уникальное число мостов: от Д — два, от Е — четыре. Заметим, что от остальных островов отходит по три моста.
Далее по таблице определяем, с каким номером у О1 и О6 общая связь смотрим на строки О1 и О6 и видим, что есть мост между О1 и О5 — и мост между О6 и О5.
Входные данные. Каждая строка входного файла содержит натуральное число и букву A или B. Число обозначает размер контейнера в условных единицах, буква — цвет этого контейнера буквами A и B условно обозначены два цвета. В ответе запишите два целых числа: сначала максимально возможное количество контейнеров в одном блоке, затем минимальное количество ячеек для хранения всех контейнеров.
Отсутствие значения означает, что такой тропинки нет. Каждому дубу на схеме соответствует его номер в таблице, но неизвестно, какой именно номер. Помогите Саше и Максиму определить длину тропинки между дубами Ж и З. Заметим, что дубы Б и А уникальны в том смысле, что от них выходит уникальное число тропинок: из Б — одна, из А — пять. Нам нужно определить номер дуба З.
Эти номера могут соответствовать дубам В и З. По таблице определяем искомую длину тропинки между Д5 и Д6 — 4. Ответ: 4 Задание 3 10268 На рисунке представлена схема дорог около города Максимовка. Определите, какие номера населенных пунктов в таблице могут соответствовать населенным пунктам Ж и З на схеме. Заметим, что пункт А уникален том смысле, что из него выходит уникальное число дорог, а именно одна. Заметим, что городов, от которых выходит по четыре дороги, всего два — Б и Ж. Теперь поймем, какой номер соответствует городу З. Так как из него выходят две дороги так же, как из пункта В, то и З, и В могут соответствовать номера 7 и 8. Заметим из таблицы, что П8 связан с П2, следовательно, П8 — это город В. В ответ запишем номера искомых пунктов в порядке возрастания — 17.
Ответ: 17 Задание 4 10269 Аня и Таня нашли карту сокровищ. На рисунке представлена схема мостов между островами в океане Z.
Задание 26 ЕГЭ по информатике
Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. Задание 1. Опишите выигрышную стратегию Васи. Задание 2.
Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася. Для каждого указанного значения S опишите выигрышную стратегию Паши. Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы. При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней. Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче.
Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней. После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз.
Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше.
В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии.
Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом.
Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом. Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S. Соответственно, выигрышными являются и все позиции 7;больше 19.
Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19. Везде следующим ходом выиграет Ваня, см. Это задание из второй части высокого уровня сложности.
Примерное время выполнения задания 30 минут.
Строится двоичная запись числа N. К этой записи дописываются справа ещё два разряда по следующему правилу: а складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа справа. Полученная таким образом запись в ней на два разряда больше, чем в записи исходного числа N является двоичной записью результирующего числа R. Укажите такое наименьшее число N, для которого результат работы алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления. Решение: Здесь мы также можем объединить условия А и Б. От предыдущей задачи эта отличается только тем, что в ответе нужно указать не число R, а число N. Последняя цифра двоичной записи удаляется. Если исходное число N было нечётным, в конец записи справа дописываются цифры 10, если чётным — 01.
Результат переводится в десятичную систему и выводится на экран. Алгоритм работает следующим образом. Двоичная запись числа N: 1101. Удаляется последняя цифра, новая запись: 110.
При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней. Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче. Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней. После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40.
Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз. Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии.
Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом. Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом.
Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S. Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19. Везде следующим ходом выиграет Ваня, см. За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 31.
Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней. При меньших значениях S за один ход нельзя получить кучу, в которой больше 30 камней. Паше достаточно увеличить количество камней на 10. При S 1. Тогда после первого хода Паши в куче будет 21 камень или 30 камней. В обоих случаях Ваня увеличивает количество камней на 10 и выигрывает в один ход. Возможные значения S: 10, 19. В этих случаях Паша, очевидно, не может выиграть первым ходом. В ней игрок, который будет ходить теперь это Вова , выиграть не может, а его противник то есть Паша следующим ходом выиграет.
Возможное значение S: 18. После первого хода Паши в куче будет 19 или 28 камней. Если в куче станет 28 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 19 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Вова , выигрывает своим вторым ходом. Гость 26. Константин Лавров Да, 9 - тоже является правильным ответом. Достаточно указать хотя бы одно верное значение. Два игрока, Паша и Вова, играют в следующую игру.
Игра завершается в тот момент, когда количество камней в куче становится не менее 41. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 41 или больше камней. Описать стратегию игрока - значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания. Во всех случаях обосновывайте свой ответ. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы. Опишите выигрышную стратегию Вовы. Укажите два значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход, но может выиграть своим вторым ходом независимо от того, как будет ходить Вова. Для указанных значений S опишите выигрышную стратегию Паши.
Укажите значение S, при котором у Вовы есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, однако у Вовы нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вовы. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вовы в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход, в узлах - количество камней в куче. При меньших значениях S за один ход нельзя получить кучу, в которой больше 40 камней. Тогда после первого хода Паши в куче будет 31 камень или 40 камней.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Входные данные: В первой строке входного файла находятся два числа: S— размер свободного места на диске натуральное число, не превышающее 10 000 и N— количество пользователей натуральное число, не превышающее 4000. В следующих N строках находятся значения объёмов файлов каждого пользователя все числа натуральные, не превышающие 100 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
ЕГЭ по информатике 2023
Файл Алгоритм решения задач №26 ЕГЭ информатика. Предлагаем вашему вниманию разбор задания №26 ЕГЭ 2019 года по информатике и ИКТ. Этот материал содержит пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ. Официальный информационный портал единого государственного экзамена. ЕГЭ. Информатика. 26 задание. 3 апреля 2023. Некоторые из способов решения заданий данного задания. Разбор Демоверсии ЕГЭ по информатике 2024 | Артем Flash (26 мероприятия Excel).
Формулировка задания №26 ЕГЭ 2024 из демоверсии ФИПИ
- Задачи для тренировки
- 26 задание егэ информатика 2021 excel скидки
- Информатика ЕГЭ (спрашивает Anonymous) в 3618528 топике
- Разбор досрочного апрельского варианта 2024 по информатике
- Чем запомнились экзамены: шутки про экзамены и баллы из интернета.
Информатика ЕГЭ 2021. Задание 26 в Excel. № 2650 с сайта Полякова
Определите наибольшее … Е26. В лесополосе осуществляется посадка деревьев. Причем саженцы высаживают рядами на одинаковом расстоянии. Через какое-то время осуществляется аэросъемка, в результате которой определяется, какие саженцы прижились. Необходимо определить ряд с максимальным номером, в котором есть подряд ровно 11 неприжившихся саженцев, при условии, что справа и слева от них саженц прижились. В ответе запишите сначала наибольший номер ряда, затем … Е26. При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда целое число от 1 до 10 000 и номер позиции в ряду целое число от 1 до 10 000. Точка экрана, в … Е26. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а … Е26. По заданной информации о цене каждого из товаров и количестве товаров, на которые будет скидка, определите … Е26.
Гарантируется, что все числа различны. Необходимо определить, сколько в наборе таких пар чисел, что числа в паре имеют разную чётность, а их сумма тоже присутствует в файле, и чему равна наибольшая из сумм таких пар. Входные данные Первая строка входного файла содержит целое число N … Е26. Причем файлы размером больше 400 МБ записывает на диск A, а меньшего размера на диск F. Системный администратор старается сохранить как можно больше файлов. Необходимо найти, сколько файлов на каждом диске может сохранить системный администратор и максимальный размер сохраненного … Е26. Перед обработкой серии измерений из неё исключают K наибольших и K наименьших значений как недостоверные. По заданной информации о значении каждого из измерений, а также количестве исключаемых значений, определите наибольшее достоверное измерение, а также целую часть среднего значения всех достоверных измерений. Входные … Е26.
Необходимо определить, сколько в наборе таких пар чётных чисел, что их среднее арифметическое тоже присутствует в файле, и чему равно наибольшее из средних арифметических таких пар. Входные данные Первая строка входного файла содержит целое число N — общее количество чисел … Похожие публикации:.
Объём диска может быть меньше, чем требуется для переноса файлов за один раз. Свободный объём на диске и размеры файлов известны. По заданной информации об объёме файлов на компьютере и свободном объёме на диске определите максимальное число файлов, которые могут быть перенесены за один раз на внешний жесткий диск, а также максимальный размер файла, записанного на этот диск, при условии, что перенесено наибольшее возможное число файлов.
Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.
Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии.
Например, полное дерево игры не является верным ответом на это задание. Тогда после первого хода Пети в куче будет 15 или 28 камней. В обоих случаях Ваня удваивает кучу и выигрывает в один ход.
Выигрывает Ваня 14 - проигрышная позиция Задание 2. Возможные значения S: 7, 13. В этих случаях Петя, очевидно, не может выиграть первым ходом.
Однако он может получить кучу из 14 камней: в первом случае удвоением, во втором — добавлением одного камня. Эта позиция разобрана в п. В ней игрок, который будет ходить теперь это Ваня , выиграть не может, а его противник то есть Петя следующим ходом выиграет.
Выигрывает Петя 7, 13 - выигрышные позиции со второго хода Задание 3. Возможные значения S: 12. После первого хода Пети в куче будет 13 или 24 камня.
Если в куче их станет 24, Ваня удвоит количество камней и выиграет первым ходом. Ситуация, когда в куче 13 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Ваня , выигрывает своим вторым ходом.
Выигрывает Ваня вторым ходом! В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня подчеркнуты.
На рисунке это же дерево изображено в графическом виде. Задание 26: Два игрока, Паша и Вася, играют в следующую игру. Игроки ходят по очереди, первый ход делает Паша.
За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней.
Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S. Опишите выигрышную стратегию Васи. Задание 2.
Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася. Для каждого указанного значения S опишите выигрышную стратегию Паши. Задание 3.
Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы.
При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней. Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче. Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней.
После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз.
Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73.
Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию.
Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии.
В демоварианте в заданиях 20 и 21 используется одна и та же игра. Если сократить её описание, отбросив пояснения и примеры, получим следующие правила. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч по своему выбору один камень или увеличить количество камней в куче в два раза. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77.
Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 77 или больше камней.