Внедрение искусственного интеллекта (ИИ) в медицину открывает новые возможности для диагностики, лечения и исследований. Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья. Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей.
Для чего в российских регионах используют ИИ в медицине
Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции. В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине.
Эксперт объяснил провал искусственного интеллекта в медицине
Если сервис выявляет патологию, то ещё помогает врачу составить маршрутизацию пациента — к каким специалистам дальше его необходимо направить. Прогноз течения заболевания. ИИ-технологии помогают врачам обнаружить неизвестные корреляции и скрытые закономерности течения заболевания путем изучения больших массивов данных, после чего подбирается индивидуальный план лечения с наиболее подходящими препаратами. Кроме того, использование ИИ позволяет выявлять людей, подверженных риску заболеваний, с более высокой вероятностью предсказывать хронические заболевания у пациентов, чтобы принимать соответствующие профилактические меры и давать рекомендации пациентам. Ещё одно преимущество — повышение эффективности управления оказанием медпомощи. Анализ исторических данных, электронных медкарт и данные о потоках пациентов позволяют предотвращать скопление заражённых и здоровых людей в помещениях или нехватку коек в стационарах. Создание цифровых двойников пациентов. Виртуальные пациенты могут использоваться для изучения различных патологий, тестирования лекарств и методов лечения.
На данный момент уже есть симуляции отдельных органов или систем, однако в ближайшей перспективе возможно создание моделей, имитирующих целые тела. Созданием цифровых двойников группы наиболее распространенных заболеваний в области кардиологии и онкологии занимаются ученые Сеченовского университета. Разработку прототипов цифровых двойников планируется завершить к 2025 году. Обучение медперсонала.
Одним из ключевых направлений стратегии является развитие рынка программных продуктов на основе ИИ для здравоохранения нашей страны. В настоящее время мы нашли информацию о 65 разнообразных ИИ-системах для медицины и здравоохранения, созданных и продвигаемых на рынке нашей страны. Условно существующие продукты можно объединить в несколько основных групп: Анализ медицинских изображений и цифровая диагностика Профилактика и лечение состояний, заболеваний и осложнений Прочие направления.
Результат работы ИИ в виде дополнительной серии в изображении с цветовой маркировкой находок и текстовым описанием в формате Dicom SR автоматически возвращается в ЕРИС. Врач-рентгенолог при интерпретации исследования может воспользоваться выводами и расчетами искусственного интеллекта. Готовое описание сохраняется в ЕРИС и сразу доступно лечащему врачу и пациенту в электронной медицинской карте. Результаты Реализация проекта позволила создать рынок сервисов искусственного интеллекта в лучевой диагностике, где поддерживается конкурентная среда разработчиков ИИ-сервисов. В результате эксперимента разработаны и внедрены уникальные научные методологии, на основе которых подготовлено свыше 200 эталонных наборов данных, создана первая в Российской Федерации официальная библиотека наборов данных для сферы здравоохранения. На основе научных результатов эксперимента разработаны, утверждены и вступили в силу 11 национальных стандартов в сфере применения искусственного интеллекта в здравоохранении.
Например, анализируя КТ, МРТ, маммографию или рентген, компьютерное зрение распознает 37 заболеваний. Собянин сообщил, что благодаря использованию ИИ врачи Москвы получат «цифровых помощников», которые помогут подобрать лечение пациентам. Информация будет регистрироваться и обрабатываться только в цифровом формате, врачи смогут больше времени уделять задачам, где нужны их компетенции.
Искусственный интеллект в медицине и здравоохранении
Руководитель исследовательской группы Центра прикладного ИИ Сколтеха, кандидат физико-математических наук Максим Шараев Источник: Анастасия Пешкова Словарь Коллинс, который издает одна из крупнейших англоязычных издательских компаний «ХарперКоллинс», назвал искусственный интеллект ИИ, AI словом 2023 года. Эксперты связывают с появлением этой технологии новую техническую революцию, и она действительно может сильно повлиять на многие сферы жизни. Ученые из Сколковского института наук и технологий Сколтех занимаются применением методов машинного обучения и искусственного интеллекта в медицине. Об этом рассказал руководитель исследовательской группы Центра прикладного ИИ Сколтеха, кандидат физико-математических наук Максим Шараев. Учился на кафедре биофизики. Максим — эксперт в области нейровизуализации, нейротехнологий и машинного обучения, автор ряда исследований в области когнитивных технологий и нейроинтерфейсов. Мне с детства было очень интересно находить новую информацию, которую приходилось буквально собирать по крупицам. Когда начал работать в науке, стало понятно, что и здесь много рутины. Это только в кино каждый день какие-то прорывы, а в реальности работа ученого — это в основном кропотливый труд. Больше всего раздражают бюрократические, административные вопросы, которые отвлекают от научной деятельности и сильно выматывают.
Но зато, когда что-то получается, подтверждается гипотеза и есть результат — например, научная статья в авторитетном журнале — это радует и вдохновляет. Максим с детства хотел заниматься наукой Источник: Анастасия Пешкова — А почему вы выбрали биофизику? Еще с ранних лет мне было интересно всё, что связано с изучением мозга. Когда я был маленьким, мне казалось, что для этого нужны знания по биологии, нейрофизиологии, психологии. Но потом, в том числе благодаря родителям и учителям, я понял, что современные науки, особенно те, где есть большое количество экспериментальных данных, сложные приборы, установки, невозможно постичь без естественно-научного образования в качестве базы. Эмпирическая биология и нейрофизиология, когда было достаточно простых наблюдений и анализов, давно закончилась. Сейчас любая сложная наука — это наука данных, а методы их анализа одни и те же в любых областях. Биохимическая физика — это применение физико-математических методов к биологическим системам. Исследования по большей части имеют прикладной характер Источник: Анастасия Пешкова — Наша лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией — получением и анализом данных работы мозга.
Для этого применяются математическое моделирование, методы машинного обучения и искусственного интеллекта. Но в процессе решения прикладных задач часто возникают и фундаментальные, например, касающиеся методов: разработка новых типов нейронных сетей, новых архитектур, подходов к анализу данных. Также мы занимаемся так называемой персонализированной медициной.
А если не получится?
Ухудшим показатели. Это моральные и организационно-методические проблемы людей. Но может ли здесь помочь искусственный интеллект? А это зависит от того, как настроен этот инструмент, на какой результат он нацелен.
И не забываем, что инструмент — просто набор алгоритмов, зависящий от объема и качества данных «на входе», настройки, обучения и целеполагания. В некоторой степени он лишен моральных критериев. Они задаются человеком. Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации.
Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов. Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ.
Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать. И здесь возникает вызов — как научиться делать это быстро.
Итак, для корректной работы ИИ нужны «чистые» машиночитаемые данные, подготовленные и размеченные высококвалифицированными специалистами выборки данных для обучения нейросетей, оцифрованные порядки оказания медицинской помощи, клинические рекомендации и стандарты оказания медицинской помощи.
Первого российско-американского конкурса стартапов Сбер500Startups Первый поставщик специализированного сервиса видеоаналитики для здравоохранения Финалист конкурса "Новатор Москвы" на медицинские изделия по 3-му классу риска В 2019 году команда "Третье Мнение" победила в акселерационной программе Сбер500Startups и продолжила развитие в Кремниевой долине США В 2020 году сервис "Третье Мнение. ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Это приложение предназначено для распознавания симптомов и формирования общей клинической картины. Оно предполагает диагнозы, исходя из полученных данных, подсказывает, к какому специалисту нужно обратиться. Это помогает пациенту внимательно следить за состоянием своего здоровья, быстро получать нужную врачебную помощь без нерациональной траты времени на запись, ожидание и посещение непрофильных специалистов. Снижается нагрузка на медперсонал, увеличивается время общения доктора с пациентом.
Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Любой человек может получить точную информацию о том, как скорректировать образ жизни, питания, чтобы избежать проблем со здоровьем. Для врачей ИИ стал надежным помощником при установлении наиболее вероятного диагноза и разработке эффективной схемы лечения. Применение искусственного интеллекта в медицине для разработки новых препаратов Чтобы разработать вакцину или новое лекарственное средство, требуется много времени и средств на дорогостоящие исследования и испытания. ИИ помогает сократить время на разработку новых препаратов в несколько раз. Искусственный интеллект анализирует структуру существующих медикаментов на молекулярном уровне, предлагает новые, с учетом заданных требований. В 2019 году компания Insilico Medicine при помощи ИИ создала несколько препаратов для эффективного лечения мышечного фиброза.
Раньше для этого назначали множество медикаментов, терапия не всегда была эффективной. Искусственный интеллект всего за 3 недели создал нужный алгоритм, ученые выбрали наиболее подходящие варианты, за 25 дней провели тестирование новых лекарств на животных. Для выбора оптимального варианта потребовалось 46 дней. Без ИИ на это потребовалось бы более 8 лет и несколько миллионов долларов. Активное внедрение искусственного интеллекта в медицину — это возможность наконец-то найти лекарства от заболеваний, которые на сегодняшний день считаются неизлечимыми. Это болезнь Альцгеймера, рассеянный склероз и множество других патологий, которые становятся причиной преждевременной инвалидности или смерти. Использование искусственного интеллекта в медицине для автоматизации данных о пациентах Информация о пациентах обычно хранится в медицинских карточках.
У каждого медучреждения своя картотека. Из-за этого процесс сбора анамнеза и постановки диагноза затягивается на неопределенное время. Врачу не всегда удается правильно интерпретировать результаты анализов, тестов и других видов обследований, потому что у него нет полной картины со всеми необходимыми данными. Технология блокчейн — это новый подход в хранении и управлении данными пациентов.
Искусственный интеллект в медицине: главные тренды в мире
Платформа Искусственного интеллекта Минздрава России — первый национальный проект, объединяющий медицинское сообщество и разработчиков решений на основе технологий машинного обучения и искусственного интеллекта (ИИ). Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Внедрение искусственного интеллекта (ИИ) в медицину открывает новые возможности для диагностики, лечения и исследований. Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями. Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность.
Собянин: ИИ превратится в базовую медицинскую технологию в Москве
В то время как на создание ИИ ушло всего 150 тысяч долларов. Слева — нормальная мышечная ткань. Справа — ткань с развитием фиброза При этом Insilico подчеркивают, что они еще не доказали, что новый препарат эффективнее существующих лекарств. Однако время и затраты, которые ушли у ученых на создание потенциальных лекарств, куда меньше, чем у традиционных методов фармации. Их работа должна была продемонстрировать огромный потенциал систем на основе искусственного интеллекта в сфере разработки новых лекарственных средств. Сейчас же ученые нацелены на совершенствование технологии и, естественно, на проверку эффективности новых препаратов, разработанных ИИ.
Впереди только транспорт и логистика. Но, несмотря на эти рекорды, с прошлого года все острее становится дискуссия о доверии и ответственном отношении всех участников сферы ИИ. Слишком много спекуляций. Большая часть ни к чему плохому не привела, однако 18 процентов причинили вред разной степени тяжести, в том числе были зафиксированы 4 смертельных случая.
Будет доказанная безопасность, будет и доверие. Стандарты — залог доверия По мнению Дмитрия Павлюкова, которое он высказал на форуме, в условиях формирования доверия ключевую роль играет стандартизация в области применения ИИ. Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна. С одной стороны, высок уровень технологической зрелости, с другой — не менее высок уровень ответственности, связанной с рисками для граждан в результате некорректной работы системы. Поэтому стандарты — это инструмент нахождения компромисса между безопасностью системы новой технологии для людей и простотой продвижения новых технологий на практике. В прошлом году была разработана перспективная программа стандартизации по приоритетному направлению «Искусственный интеллект» на 2021-2024. В ней есть раздел, посвященный стандартам ИИ в области здравоохранения. При разработке программы подразумевался обязательный этап обучения на прецедентах. Значительная часть систем ИИ рассчитана на автоматизацию естественных интеллектуальных способностей человека. Технический комитет является представительным органом РФ в международной организации по стандартизации ИИ, и сейчас по инициативе российской стороны там рассматривается возможность разработки международного стандарта клинических испытаний систем с ИИ.
Опыт и мудрость не заменить Медицина все больше переходит на цифру, и требуются новые цифровые инструменты обработки цифровых данных. Два года назад начались клинические испытания ПО на основе технологий лучевая диагностика. В 2020-21 гг.
А это в несколько десятков раз быстрее, чем традиционные методы. Причем что примечательно, у руля компании стоит наш соотечественник Алекс Жаворонков.
Господин Жаворонков еще в середине 2000-х годов получил степень магистра в Университете Джона Хопкинса, а затем и докторскую степень в Московском Государственном Университете, где его исследования были сосредоточены на использовании машинного обучения для изучения физики молекулярных взаимодействий в биологических системах. В 2014 году Алекс основал уже упомянутую Insilico Medicine, имея за плечами опыт работы в индустрии высоких технологий и заинтересовавшись вопросами фармации. Это интересно: Как работает искусственный интеллект Если вернуться к ИИ, то сами разработчики называют основную технологию работы искусственного интеллекта «генеративным тензорным обучением». Она позволяет ИИ, если не вдаваться в подробности, более эффективно и быстро обучаться требуемым навыкам. Мы подумали: можем ли мы заставить машины придумывать с нуля новые молекулы с определенными свойствами вместо того, чтобы заставлять их перебирать десятки доступных вариантов, — говорит Алекс Жаворонков.
Все это говорит о необходимости освободить врачей от рутины, заполнения бумаг и медкарт пациентов. Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных. Как российские медики применяют ИИ сейчас Компьютерное зрение Эта разработка — одна из наиболее востребованных сейчас в медицине технологий на базе нейросетей. Она помогает врачу определить правильный диагноз и была очень полезна для медиков, работавших в ковид-госпиталях во время пандемии. Компьютерное зрение способно: анализировать изображения; определить состояние органов и тканей при различных заболеваниях; быстро обнаружить патологии на КТ-снимках легких. Он помогает медику быстрее и точнее интерпретировать флюорограммы и рентгенограммы. Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям.
Искусственный интеллект создал новое лекарство всего за 21 день
Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями. Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья. Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи.
Будущее рядом: как нас будет лечить искусственный интеллект?
В России здравоохранение — это общественная система, основанная на коллективизме и вере в авторитетность врача. А американские пациенты часто ожидают более тесного взаимодействия с врачом и более персонализированного подхода к лечению. Еще одним фактором оптимизма россиян может быть восприятие технологий в целом, их применение часто рассматривается как символ прогресса и успеха, поэтому отношение к ИИ и его влиянию может быть более положительным. В США же система здравоохранения более коммерциализирована, и пациенты могут опасаться, что внедрение ИИ приведет к уменьшению внимания и заботы со стороны врачей. Также возможно, что американские граждане более скептически относятся к новым технологиям в целом и ожидают от них больших рисков и проблем. Кроме того, в США есть свои особенности доступа к услугам здравоохранения — в частности, высокая стоимость медицинской страховки. Это может усиливать опасения, что использование ИИ усугубит проблемы доступности качественных услуг и взаимоотношений с врачами. Еще один вопрос касался проблемы предвзятости врачей: в американской версии опроса речь шла о предвзятости врачей в отношении пациентов разных рас и этнических групп, в российской версии — о предвзятости к пациентам разных возрастов. Наибольший технооптимизм в вопросах использования ИИ в медицине присущ российской молодежи до 25 лет, тем, кто быстрее усваивает новации и лучше в них разбирается.
СМИ сетевое издание «Городской информационный канал m24. Средство массовой информации сетевое издание «Городской информационный канал m24.
Учредитель и редакция - АО «Москва Медиа». Главный редактор сетевого издания И.
С помощью AI появилась возможность генерировать в 4,8 раза больше белковых кластеров, чем существует в природе. Некоторые из созданных с помощью искусственного интеллекта редакторов генов демонстрируют сравнимую или улучшенную активность.
Компания выложила OpenCRISPR-1 в открытый доступ, чтобы способствовать развитию технологии и её использованию в научных исследованиях и коммерческих проектах. Статью с научным исследованием можно почитать тут. Предоставить доступ к еще большему разнообразию. С помощью AI появилась возможность экстраполировать на новые белковые пространства, которые еще не были освоены, тем самым выходя за рамки природных белков.
Активировать новые функции, ранее не доступные ученым.
По словам Андрея Наташкина, основателя и СЕО Mirey Robotics, сегодня в рамках общей хирургии уже выделилось отдельное направление — телехирургия. Технология позволяет хирургу управлять роботизированным манипулятором, который способен совершать сверхточные движения. Но здесь есть две опасности. Первая — разрыв интернет—соединения, вторая — это кибератаки. А во время операционного вмешательства эти факторы, которые ведут к потере управления процессом, могут стать фатальными для пациента". По словам эксперта, в связи с этим сейчас на первый план выходит вопрос обеспечения безопасных условий во время операций с использованием роботов, и недавно российские учёные представили своё решение данной проблемы: в условиях возникновения чрезвычайной ситуации манипулятор сможет автономно завершить оперативное вмешательство, без контроля со стороны хирурга. Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире. По данным сайта Da Vinci, с 2007 по 2022 год в России американскими роботами—хирургами было выполнено около 28 тыс.
Однако в ближайшее время в больницах страны появятся первые роботы—хирурги отечественного производства, разработанные учёными Института конструкторско—технологической информатики РАН. Российские роботы—хирурги смогут делать операции в брюшной полости, в области гинекологии и урологии, а также в сфере нейро— и кардиохирургии.
Комплексный анализ работы сервисов ИИ в медицине провели в Москве
Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.
Нейросеть для медиков: искусственный интеллект научился ставить диагнозы
Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества.