Новости скорость гиперзвука

Переход на сверхзвуковую скорость – это скорость более 1200 км/ч.

От «Икса» до гиперзвука: какие ракеты есть у России и в чем их особенность

Ракета летит с гиперзвуковой скоростью, перехватить ее в принципе очень сложно. Помимо этого, менять курс во время полета может и «Искандер», имеющий в запасе две квазибаллистических ракеты. То есть она как бы рыскает траекторию полета, — пояснил Литовкин. Две ступени поражения: как будет работать система защиты от дронов «Пятница» Эксперт сообщил, что в арсенале у России также есть крылатая ракета «Калибр», которая может прижиматься к рельефу местности и огибать его на высоте 30 метров.

Однако «Циркон» — не сугубо противокорабельное оружие, как могло показаться изначально. В конце мая 2022 года практически одновременно произошло два любопытных события.

Во-вторых, впервые появились официальные сообщения о разработке берегового ракетного комплекса под новую гиперзвуковую ракету.

По словам представителя Lockheed Martin, длина Mako — 13 футов 4 м , диаметр 13" 33 см , вес 1300 фунтов 600 кг. Но в отношении гиперзвука в материале «Военного обозрения» отмечено, что позиционирование ракеты таким образом вызывает вопросы: Mako может развивать скорость до пяти Махов только на определённой части траектории полёта, но на конечном участке полёта такая скорость теряется. Также отмечается, что, видимо, по этой причине и не было широкого освещения презентации ракеты, поскольку в США понимают ситуацию.

Самолет как будто просто врезается в стенку и пытается ее проломить. То есть при увеличении скорости увеличивается плотность воздуха. Самолету нужно это преодолеть, так и происходит «хлопок». С данным эффектом многие сталкивались в жизни — это хлыст. Когда пастух взмахивает кнутом, на кончике хлыста образуется этот эффект перехода на сверхзвуковую скорость, и мы слышим хлопок.

Как далеко разносится звук? Звук будет слышим там, где человек может уловить его своим ухом.

Ставка на гиперзвук: Российские ракеты заставят американцев отправить свою ПРО «в утиль»

Если скорость воздушного судна превысила значение 5 М — это гиперзвуковая скорость. Великобритания планирует к 2030 году поставить на вооружение гиперзвуковую крылатую ракету собственного производства, сообщает The Telegraph. Во время проведения тестовых запусков новая российская противокорабельная гиперзвуковая ракета "Циркон" разогналась в воздухе до скорости 8 Махов, скорости. Причем в Америке в текущее время только пытаются добиться стабильных полетов на сверхзвуковой скорости. Пуск гиперзвуковой ракеты «Циркон» с борта фрегата «Адмирал Горшков» в Баренцевом море.

Ответ российскому "Кинжалу": Что известно об американской гиперзвуковой ракете HAWC

После отделения от катапульты космоплан запускает свои двигатели и разгоняется до скорости, семикратно превышающей скорость звука. Тем самым будет достигаться колоссальная экономия на топливе. Момент отделения 50-т машины размерами больше лайнера Boeing 737 будет критическим для системы и именно ему посвящены многочисленные эксперименты в аэродинамической трубе. Как выяснили учёные, при преодолении космопланом звукового барьера на катапульте между самолётом и землёй запускается каскад ударных волн. Нижняя часть аппарата начинает испытывать многочисленные ударные нагрузки из-за отражений ударных волн от близкой поверхности земли. Эти же ударные волны нарушают воздушный поток, создавая очаги воздушного потока дозвуковой скорости между аппаратом, электромагнитными салазками и треком. Когда салазки достигают заданной скорости, они резко останавливаются, и происходит отделение космоплана. Хаотичный поток воздуха сначала поддерживает аппарат, но через четыре секунды, как показало испытание в аэродинамической трубе, поток срывается в нисходящую тягу. Для гипотетических пассажиров судна и экипажа в этот момент возникла бы кратковременная невесомость. Но по мере увеличения расстояния между самолетом и взлётной полосой интенсивность воздушного потока уменьшается, пока полностью не исчезнет. К этому моменту двигатели самолёта должны достичь необходимой тяги и создать ему условия для набора высоты.

Моделирование показало, что конструкция космоплана требует усиления в местах наиболее сильно подверженных аэродинамическим ударам. Но в целом, этот подход признан безопасным и осуществимым, как написали учёные в своей статье. Очевидно, что предложенный подход будут проверять на практике. Для этого уже построены две экспериментальные трассы. Трассы, что показательно, построены не только и не столько для аэрокосмического проекта, а для разработки поездов на магнитной подушке. На трассе будут проверяться возможности электромагнитного разгона, управления и всего прочего, что также найдёт применение в катапультах для космических запусков. Аналогичную площадку также создали в Цзинане, столице восточной провинции Шаньдун, там проводятся похожие эксперименты со сверхскоростными электромагнитными санями под наблюдением Академии наук Китая CAS. Наконец, в Китае также создаются обычные боевые рельсотроны , если слово «обычные» применимо к подобным проектам. Всё вместе означает, что Китай понемногу развивает материально-техническую базу, которая в перспективе может произвести революцию в сфере запусков в космос. Прежде запускался только прототип без двигателя, который просто планировал.

Источник изображений: Stratolaunch Сообщается, что самолёт Roc взлетел из аэрокосмического порта Мохаве 9 марта в 10:17 по восточному времени 17:17 мск , направившись на запад над Тихим океаном у побережья центральной Калифорнии, где в неустановленное время запустил ТА-1. Спустя более чем через четыре часа после взлёта Roc совершил посадку в Мохаве. Сегодняшний запуск был 14-м испытательным полётом Roc. Запуску ТА-1 с двигателем предшествовали испытания на отделение прототипа TA-0 без двигателя и два испытательных полёта Roc в режиме «captive-carry» с подвешенным TA-1. Также в ходе вчерашних испытаний впервые был задействован ракетный двигатель Hadley компании Ursa Major Technologies. Основные задачи нынешних испытаний включали безопасное отделение ТА-1 от самолёта-носителя, запуск двигателя Hadley, ускорение, устойчивый набор гиперзвуковым планером высоты и управляемое приводнение в Тихом океане. Руководители Stratolaunch заявили в беседе с журналистами, что не могут раскрыть максимальную скорость или высоту полёта ТА-1, сославшись на «собственные соглашения» с неуказанными заказчиками. Аарон Кассбир Aaron Cassebeer , старший вице-президент по проектированию и эксплуатации в Stratolaunch, сообщил, что все основные цели испытаний были выполнены. Следующий прототип ТА-2, в отличие от ТА-1, предназначен для многоразового использования. Его лётные испытания планируется начать во второй половине года.

Ещё один прототип многоразового использования ТА-3 находится в стадии строительства. Согласно моделированию, двигатель сможет разгонять воздушное средство до скорости 16 Маха. Это самая смелая на сегодня заявка в сфере гиперзвуковых полётов, реализация которой может не задержаться. Источник изображения: ИИ-генерация Кандинский 3. Но это не только разговоры. Достаточно много становится известно о практических шагах. В сентябре этого года, например, в небо поднимался беспилотник с детонационным ротационным двигателем. Также сообщается о многочисленных испытаниях прототипов в аэродинамических трубах. Есть даже экзотические случаи, как гиперзвуковые двигатели на угле на угольной пыли , точнее. Наверняка о многом не сообщается по соображениям секретности, но отрицать движение вперёд тоже нельзя.

Новые разработки быстро доводят до прототипов и либо отбрасывают, либо продолжают доводить до ума. Идея нового комбинированного детонационного ротационного двигателя заключается в том, что до достижения скорости 7 Маха двигатель работает на принципе создания вращающегося фронта волны детонирующего топлива. Такой двигатель способен работать в большом диапазоне мощностей и сможет поднять самолёт с взлётной полосы и также позволить приземлиться на полосу с малой дозвуковой скоростью. На скорости выше 7 Маха скорость набегающего воздуха начинает мешать работе двигателя. Топливо перестаёт нагреваться, и детонация может сорваться. Китайские инженеры предложили добавить к задней части двигателя небольшой кольцевой блок с наклонной детонационной камерой. Тогда на скорости свыше 7 Маха вращательная детонация прекратится, и начнёт работать линейная и, фактически, прямоточная. Источник изображения: Beijing Power Machinery Institute Разработчики из Пекинского института энергетического машиностроения признают, что моменты перехода от одного вида детонации к другому остаются сложным процессом, когда двигатель может работать неустойчиво. По крайней мере, об этом говорит моделирование. Дальнейшая работа и испытания в аэродинамической трубе помогут добиться оптимальной конструкции рабочих камер и перейти к созданию масштабного прототипа.

Следует сказать, что примерно по такому же пути пошла американская компания GE Aerospace. Но она после стадии разгона на принципе вращательной детонации переходит на прямоточный ракетный реактивный двигатель. В этом есть плюсы и минусы. КПД топлива падает, и растёт его расход, хотя устойчивость перехода между режимами будет выше. Установка выполнена в виде турбины, сочетающей прямоточный реактивный двигатель и ротационный детонационный двигатель. Такая конструкция обеспечит движение на скорости как до 3 Маха, так и свыше 5 Маха, делая воздушные средства самодостаточными и высокоманёвренными. Источник изображения: GE Aerospace Современные гиперзвуковые летательные аппараты подразумевают разгон на носителе с переходом границы 5 и более Махов после перехода в режим пикирования с ограниченной манёвренностью. С универсальными двигателями, которые поддерживали бы широкий диапазон скоростей для взлёта и посадки, а также для движения и манёвров на гиперзвуковой скорости, пока не складывается. Компания GE Aerospace пытается решить эту задачу, фактически скрестив прямоточный реактивный двигатель и ротационный детонационный двигатель. Более того, заявлено, что новый дизайн в сочетании с достижениями компании в области высокотемпературных материалов, высокотемпературной электроники, 3D-печати и технологий терморегулирования приведёт к созданию практичного двигателя, который не только сможет обеспечить широчайший спектр скоростей, но также будет меньше и легче аналогичных двигателей.

Сами по себе прямоточные реактивные двигатели, способные работать в гиперзвуковых условиях, плохо работают при низких числах Маха, поэтому транспортному средству всё равно необходимо разгоняться ракетой или другим носителем, пока оно не наберет достаточную скорость для включения двигателя. Двигатель на принципе ротационной детонации или вращения, когда топливо и воздух сгорают в зазоре между двумя цилиндрическими камерами, что создаёт вихреподобный фронт взрывной волны, работает как на малых, так и на гиперзвуковых скоростях. Комбинированный двигатель использует преимущества первых и вторых, представляя универсальное решение для гиперзвука. Пример ротационного детонационного двигателя. Прямоточную схему компания отчасти позаимствовала у небольшой компании Innoveering LLC из Нью-Йорка, у которой были собственные разработки по гиперзвуку. Эта компания была куплена летом нынешнего года. Ротационные детонационные двигатели компания GE Aerospace разрабатывает самостоятельно около 10 лет. А пока свои версии беспилотников с подобными двигателями потихоньку запускают в небо китайцы. Последний работает на жидком топливе и со временем отправится в самостоятельный полёт. Самолёт стал для него испытательным стендом, благодаря которому компания начнёт продавать услуги по тестированию гиперзвукового оборудования и технологий всем желающим.

Полёт длился 3 ч 22 мин. Для крепления полезной нагрузки — прототипа гиперзвукового планера Talon-A — между двух фюзеляжей под крылом закреплён специальный пилон с лебёдками.

Ответный доступ Подписаться Он почти в пять раз превысил скорость звука Проекты летальных аппаратов, способных перемещаться на гиперзвуковых скоростях, то есть как минимум в пять раз быстрее звука, начинали реализовывать еще в прошлом веке, и некоторые из них давали результаты. Но если преодолеть теоретические проблемы при разработке сверхзвуковых самолетов ученым удалось, и даже были запущены в эксплуатацию пассажирские лайнеры - то гиперзвуковые аппараты, в основном, запускались для сообщения с орбитой Земли, и широко внедрить технологию пока не удавалось. Поэтому новое гиперзвуковое транспортное средство модели Talon-A, которое впервые испытано в полноценном полете, является заметным шагом к созданию нового вида летательных аппаратов. Оно смогло развить необходимую скорость, продержаться в полете долгое время, успешно совершить посадку на воду - и при этом собрало все необходимые данные. О полете сообщает разработчик самолета - американская венчурная аэрокосмическая компания Stratolaunch.

Ракета, класс которой не уточняется, в ходе летного испытания в пять раз превысил скорость звука. Это стало третьим успешным испытанием такого оружия с 2013 года. Развитие гиперзвуковых возможностей нашей страны является важнейшим национальным императивом, и это был важный шаг вперед.

Несмотря на то что США активно работают в области систем, способных перемещаться в пять раз быстрее звука, обогнать Россию и Китай Америке не удалось. При этом Россия обладает наиболее полной линейкой гиперзвукового оружия, большая часть которого уже принята на вооружение. Оно особенно опасно для авианосцев — главной ударной силы американских ВМС. Они играли ключевую роль во многих вооруженных конфликтах с участием США, поэтому для любого противника Америки должны быть приоритетной целью. Однако в СССР, несмотря на всю опасность этих кораблей, практически не было эффективных средств борьбы с ними. Система защиты авианосца, включающая и ПВО, и самолеты, была настолько сильной, что для уничтожения лишь одного корабля требовалось выслать до 100 дальних бомбардировщиков и быть готовыми к тому, что половина из них будет сбита. По мнению экс-руководителя НАСА , бывшего первого заместителя главы Пентагона по исследованиям и разработкам Майкла Гриффина , именно наличие гиперзвуковых планирующих аппаратов теперь дает России и Китаю преимущество перед США. Он добавляет, что обладание подобными системами вскрывает ужасающее соотношение затрат Москвы и Пекина на производство ракет, которые могут уничтожить американский авианосец, к стоимости самого корабля. Они запускают ракеты стоимостью, может быть, несколько миллионов долларов или даже десятки миллионов долларов каждая, но всего двух или трех из них достаточно, чтобы уничтожить авианосец [ценой в десять миллиардов] Майкл Гриффинбывший замглавы Пентагона Наличие на вооружении гиперзвуковых крылатых ракет полностью меняет соотношение сил на морях и океанах. И гарантированного способа борьбы с ними у стран Запада все еще нет, хотя гонка вооружений в этой сфере идет с середины прошлого века. Столетняя мечта В разгар Второй мировой гитлеровская Германия принялась за создание оружия, способного пересечь Атлантический океан и бомбить США. Ни один бомбардировщик того времени не мог преодолеть такое расстояние, но это не остановило нацистское руководство. Я был бы чрезвычайно счастлив обладать таким бомбардировщиком, который наконец заткнул бы рот высокомерной Америке», — говорил Герман Геринг в 1938 году. С решением этой задачи пришел австрийский инженер Ойген Зенгер, который с середины 1930-х вместе с женой Ирен Брендт работал над частично-орбитальным бомбардировщиком-космолетом Silbervogel «Серебряная птица». Перенося до шести тонн бомб, «Серебряная птица» могла долететь до США всего за несколько минут, разбомбить центр города, после чего приземлиться в Японии. Впрочем, «Серебряная птица» так и не взлетела: проект закрыли к началу 1942 года, как и многие другие перспективные разработки нацистской Германии, переключившейся на производство более привычного оружия. В 1944 году его пытались воскресить как «оружие возмездия», но, поскольку создание подобного изделия было не под силу науке того времени, дальше чертежей работа не продвинулась. После войны Зенгер, как и другие ученые вермахта, стал работать на Западе — во Франции , Англии и Швейцарии , однако уже в 1957-м вернулся в Германию, где создавал ракетные двигатели. Его идеи, лежавшие в основе Silbervogel, не пропали даром: основатель тяжелого ракетного машиностроения нацистской Германии генерал-майор вермахта Вальтер Дорнбергер и ракетостроитель Крафт Эрике начали работу над гиперзвуковым оружием, но уже для США. В то время американцы хотели создать способ доставки ядерного оружия, против которого были бы бессильны любые системы обороны. Для этого предложили использовать беспилотные и пилотируемые гиперзвуковые летательные аппараты, одним из которых стал ракетоплан X-15, похожий на немецкую ракету Фау-2. Параллельно подобными исследованиями занимались и в СССР. Уже в 1946 году в Союзе планировали реализовать наработки «Серебряной птицы». Главный маршал авиации Константин Вершинин утверждал, что «при успехе проекта наша страна получит в руки страшное и неотразимое оружие». Несмотря на то что США к тому моменту уже отказались от X-20, Советский Союз планировал построить собственный орбитальный самолет, выводимый в космос гиперзвуковым носителем-разгонщиком. В рамках этой программы было проведено семь успешных пусков дозвукового прототипа орбитального самолета МиГ-105, причем испытатели положительно отзывались о машине. Но гиперзвуковые самолеты так и остались экспериментом, поскольку большие перегрузки, создаваемые ракетными двигателями, предъявляли экстремальные требования к организму человека. Тем не менее технологии, полученные в ходе подобных исследований, позволили США и Советскому Союзу создать баллистические ракеты с ядерными боеголовками, способные перемещаться в 20 раз быстрее звука. К тому же эти разработки продвигали вперед и гражданскую космонавтику. К примеру, созданные для проекта «Спираль» жаростойкие материалы использовались при строительстве легендарного «Бурана».

Гиперзвуковая суета: в погоне за скоростью

Также в Иране была представлена ракета с гиперзвуковым планирующим блоком. Ранее в КНДР заявили об испытании новой гиперзвуковой баллистической ракеты. Подпишитесь и получайте новости первыми Читайте также.

Верный союзник США Япония уже представила план по разработке до 2025-2026 годов гиперскоростного «парящего блока» HVGP , снабжённого широким набором боеголовок. Предполагается, что HVGP будет состоять из твердотопливной ракеты-носителя, доставляющей «парящий» разгонный блок на нужную высоту, где он, в свою очередь, сумеет набрать необходимую гиперзвуковую скорость. Заявленная Токио дальность составит 1300 километров. Никаких, впрочем, подтверждений таких деклараций пока в объективной реальности не наблюдается. Не правда ли, напоминает слова одного бывшего президента США, грозившегося побить всех своей «супер-пупер-ракетой», которую никто не видел и непонятно когда увидит? Французский гиперзвук Ещё одной страной западного блока, способной теоретически достигнуть вершин гиперзвука, является Франция. Программа носит кодовое обозначение ASN4G. Стоит вспомнить, что Франция имеет собственный космодром и современное ракетное вооружение, а также владеет ядерными технологиями. Не исключено, что отсутствие медийной шумихи свидетельствует о быстром продвижении к конечной цели. По некоторым данным, исследования возглавляет именитый 80-летний французский физик Жан-Пьер Пти. Конечно, о создании боевого гиперзвука мечтают многие государства. Так, ещё в 2017 г. В этом справочном документе фигурируют сведения о гиперзвуковых проектах и академических исследованиях, которые ведут такие страны, как Израиль, Канада, Иран, Пакистан, Южная Корея, Бразилия и даже… Тайвань и Сингапур. Однако, по заключению американских специалистов, учёным из этих государств не хватает ни знаний, ни необходимых капиталовложений. В заключение стоит отметить, что быстро догнать Россию вряд ли получится. Ведь создание гиперзвукового летательного аппарата военного назначения предполагает овладение совершенно новыми технологиями. Один из исследователей сравнил полёт на скорости, превышающей 4,5-5 Махов это порог гиперзвука в плотных слоях атмосферы со скольжением предмета по наждачной бумаге. Любое материальное тело, разогнанное до такой скорости, окутывает облако плазмы. И тут самое время сослаться на главного идеолога создания гиперзвукового боевого блока «Авангард», конструктора ракетной и ракетно-космической техники, бывшего гендиректора НПО машиностроения Герберта Ефремова. Он посвятил более 30 лет созданию гиперзвуковой техники. Вот что он сказал по поводу особенностей полёта на гиперзвуке: «При гиперзвуковых скоростях начинаются всякие турбулентные обтекания, завихрения и тряска аппарата. Температура — многие тысячи градусов. А сталь держит всего 1200 градусов Цельсия. Это же крохи». То есть металл поверхности аппарата начинает буквально течь. Поэтому для покрытия своих боевых гиперзвуковых блоков Россия использует ниобиевый сплав с дисилицидом молибдена. Он был разработан ещё для советского космического челнока «Спираль». Подобных синтетических материалов у других стран нет.

При этом всех могу заверить: наши шаги по укреплению национальной безопасности были сделаны своевременно и в достаточном объеме", — заявлял глава государства в послании Федеральному собранию РФ уже в этом году. Он отметил, что уже сейчас обороноспособность страны обеспечена на десятилетия вперед, однако "здесь нам нельзя почивать на лаврах и расслабляться, а нужно идти вперед, внимательно наблюдая и анализируя то, что происходит в этой сфере в мире, разрабатывать боевые комплексы и системы будущих поколений". Он также отметил, что у других государств такого оружия нет. Кстати, гиперзвуковое ударное оружие стало одним из главных приоритетов в военном бюджете США на 2021 финансовый год начинается 1 октября 2020 года. Еще в июне 2018 года Пентагон сообщил, что военно-морские силы возглавят разработку универсального планирующего гиперзвукового блока для использования в соответствующих программах флота, армии и ВВС. Армия установит такие блоки на двухступенчатой ракете-носителе наземного базирования. Из материалов CRS следовало, что летные испытания будут проводиться в 2020-22 годах, а сами разработки продлятся до 2024 года. В марте Пентагон объявил об успешном испытании на Гавайских островах ракеты, способной двигаться со скоростью в несколько раз больше скорости звука. Отмечалось, что испытание было проведено совместными усилиями армии США и ВМС США, а данные о полете объекта собирало Агентство по противоракетной обороне Пентагона: собранная информация должна послужить для разработки средств противодействия гиперзвуковому оружию, которым могут располагать противники США.

От дозвука до гиперзвука Скорость звука в воздухе давно принята за некую эталонную точку отсчета для самых разных научных и практических измерений. Впервые об этой величине как о достаточно стабильной упоминал еще Аристотель. Он использовал ее для сравнения и характеристики движения тел. Первым же человеком в истории, преодолевшим звуковой барьер, стал в 1947 году американский летчик-испытатель Чарльз Йегер на экспериментальном самолете Bell Х-1. Первый советский пилот, капитан Олег Соколовский, разогнался до скорости звука годом позже — на Ла-176, также экспериментальном. Правда, сверхзвуковые полеты середины ХХ века были весьма условными по нынешним понятиям. Ла-176 достигал скорости звука лишь в пологом пикировании, а Bell Х-1 для этого и вовсе поднимался в небо не собственными силами, а с помощью самолета-носителя, дабы не потратить все топливо на взлете. Сверхзвуковым принято называть диапазон от 1 до 5 скоростей звука, ну а 5 «звуковых» скоростей и далее — это тот самый «гиперзвук», о котором сегодня так много говорят. Правда, пока он упоминается чаще всего применительно к ракетному оружию, ибо пилотируемые и беспилотные самолеты, перемещающиеся на таких скоростях, в массе своей представляет штучные тестовые модели. Наиболее характерным представителем этой категории летающих машин стоит назвать американский NASA X-43, ставший в первой половине прошлого десятилетия относительно открытой компиляцией всех аналогичных секретных военных разработок России и США, начавшихся еще в 1950-е гг. Этот небольшой беспилотник достиг почти десяти скоростей звука.

Гиперзвуковая скорость и смена траектории: какие ракеты используют ВС РФ на Украине

Ракета, по данным объективного контроля, прямым попаданием успешно поразила цель на расстоянии 450 километров. Скорость гиперзвуковой ракеты превысила 8 Махов. По данным Минобороны, лётные испытания ракеты продолжатся. Комплексом «Циркон» планируется оснащать подлодки и надводные корабли ВМФ. Предполагается, что ракета «Циркон» будет иметь максимальную скорость 9 Махов то есть до 10,7 тысяч километров в час и дальность полёта более тысячи километров. По плану, на вооружение ракетный комплекс будет принят в 2020—21 годах.

Корабль запустил ракету из Белого моря, морскую мишень боеприпас поразил в Баренцевом море. Максимальная скорость «Циркона» на испытаниях составила 8 скоростей звука, максимальная высота полёта — 28 км.

Ляхович пишет: «Не знаю, какие медицинские или другие меры предпринял Володя это его интимный вопрос , но в последующие почти двадцать лет никаких контактов с алкоголем не было». Возможно, рецептом избавления от алкогольной зависимости стала новая интересная работа.

Институт занялся созданием бортового радиолокатора для первой отечественной гиперзвуковой крылатой ракеты Х-90 на фото ниже , которую под руководством главного конструктора И. Селезнева разрабатывало МКБ «Радуга», г. Ее расчетная скорость не превышала 6 М, однако и в этом случае обтекатель и антенна под ним разогревались так, что радиолокатор слеп. Фрайштадт предложил охлаждать обтекатель фреоном.

Была даже подготовлена коллективная заявка на открытие физического явления, однако когда она попала на рецензию к специалистам по металлургии, они ответили, что с этим эффектом они всю жизнь мучаются, сжигая кокса намного больше, чем нужно для расплавления чугуна. Огромное количество тепла забирает конверсия углеводородов из угля, при которой образуется водород. Именно размышления над этим феноменом навели Фрайштадта на идею, которая была оформлена в 1981 г. Так родилась концепция «Аякс».

Кстати, о названии: свою концепцию Фрайштадт развивал в долгих беседах со своим… псом по кличке Аякс. Фрайштадт в основном кидал идеи. У него из пяти одна была хорошая. В итоге в дальнейшем он дофантазировался до того, что стал летать на самолете в атмосфере со скоростью 14 махов», — так охарактеризовал коллегу один из его сослуживцев.

Но одно дело фантазировать, другое — найти поддержку идее. Вот одна из таких «шекспировских» историй. Фрайштадта по причинам, которые мы изложили в первой статье, поначалу обвиняли в том, что он придумал очередной вечный двигатель, поэтому в 1987 г. Вот как это описывает Ляхович: «Капитан госбезопасности, курирующий уже несколько лет В.

Фрайштадта, позвонил ему и спросил: «Ты можешь завтра взять местную командировку? Капитан зашел в первый отдел, взял отчеты В. Фрайштадта и повез его на машине непосредственно к самолету. Самолетом в Москву.

Далее — на машине из Москвы к зданию Академии наук. Там уже ждали три академика. Пожали руки, В. Фрайштадт отдал им материалы, и они пошли читать.

А он сидел и ждал, когда они закончат. Полдня они читали материалы, вышли и пожали руку В. Написали заключение, что предложение не противоречит законам природы, и, в принципе, может быть реализовано».

Температурные режимы просто запредельные. Никто в мировой практике ракетостроения не смог решить эту техническую проблему, кроме российских ученых и конструкторов. Вихрь плазмы, который образуется вокруг головной части ракеты «Циркон», помимо обеспечения преодоления плотных слоев атмосферы, также поглощает и радиоволны, и в результате крылатая ракета, набравшая гиперзвуковую скорость, как бы накрывается «плащом-невидимкой», в связи с чем радары противника перестают видеть данный объект крылатую ракету [3, 7]. Первые сообщения о разработке гиперзвуковой крылатой ракеты «Циркон» относятся к 2011 году. Тогда в средствах массовой информации появились сведения о том, что экспортным вариантом «Циркона» может стать российско-индийский проект противокорабельной ракеты Brahmas-2 рис. Макет противокорабельной ракеты Brahmas-2 Предполагалось, что данная ракета будет двухступенчатая: первая ступень — пороховой ускоритель, вторая — жидкостной реактивный двигатель. У фюзеляжа ракеты ярко выраженный расплющенный лопатовидный нос и рубленые формы самого корпуса.

Такой необычный внешний вид ракеты необходим для обеспечения нормального скоростного горения топлива в ракетном двигателе. При гиперзвуковом полете невозможно обеспечить этот процесс, не снизив скорость поступающего в камеру сгорания реактивного двигателя воздуха до сверхзвукового порога. Поэтому длительный гиперзвуковой полет летательного аппарата могут обеспечить исключительно жидкостные топливные реактивные или прямоточные ракетные двигатели [3, 8]. Ракетный комплекс с гиперзвуковой крылатой ракетой «Циркон» морского базирования является новейшей разработкой российских конструкторов. При этом она может активно маневрировать на всем протяжении полета и особенно на конечном участке, когда происходит наведение на цель с помощью уникальной головки самонаведения, гарантирующей захват и последующее уничтожение намеченной цели. Уже первая модификация этой крылатой ракеты должна иметь дальность около 1000 км и скорость около 2 км в секунду, а впоследствии, предположительно, скорость «Циркона» должна возрасти, по утверждениям специалистов и конструкторов, до 3 км в секунду, а дальность — до 2000 км [2, 8]. Зенитные ракеты-перехватчики также не успевают догнать «Циркон» и могут быть применены только на встречных курсах. Кроме того, «Циркон» — групповая ракета, она может работать как одиночно, так и использоваться в залпе, при этом обмениваясь данными и определяя главную цель в ордере группировке [3, 10]. Предположительно, к 2012 году относятся первые испытания гиперзвуковой крылатой ракеты «Циркон» с авиационного носителя. В декабре 2015 г.

НПО машиностроения, а вслед за ним и Министерство обороны России также сообщили об испытании гиперзвуковой ракеты на полигоне под Архангельском. В марте 2016 г. Презентация новейшей российской крылатой ракеты 3М-22 рис. Проектное изображение гиперзвуковой ракеты шифр «Утконос» 3М-22 Также в 2016 году появилась информация, что испытания ракеты идут, и после их окончания в 2021 году «Циркон», возможно, будет запущен в серийное производство уже в 2022 году. Кроме того, появились предположения и приблизительная информация относительно закрытых тактико-технических характеристик ТТХ нового детища российской оборонной промышленности. В открытых источниках, средствах массовой информации приводятся приблизительные ТТХ крылатой ракеты «Циркон»: длина — около 8—10 м; вес боевой части — приблизительно 300—400 кг; скорость — около 4—6M на испытаниях достигла 8M ; дальность — около 400 км [3, 9, 10]. Путина, в частности, на расширенном заседании Коллегии Минобороны РФ 22. Ее применение предусмотрено с морских носителей — серийных подводных и надводных кораблей и подводных лодок, в том числе уже произведенных и строящихся под ракетные комплексы высокоточного оружия «Калибр». Все это будет для нас незатратно» [1].

Некоторые из них даже достигают невероятных скоростей, превышающих скорость звука более чем в 20 раз. Среди них российская ракета "Авангард", которая в настоящее время является самой быстрой в мире. Ракета - это управляемое оружие, приводимое в движение с помощью реактивного двигателя. Его задача: доставить обычный или ядерный боезаряд с максимально возможной точностью. И, как правило, на высокой скорости. Существует множество типов ракет. Их можно классифицировать в соответствии с их диапазоном, например.

Новый гиперзвуковой самолет впервые испытан в полете

Аппарат под названием TA-1 предназначен для проведения испытаний на гиперзвуковых скоростях. Пуск гиперзвуковой ракеты «Циркон» с борта фрегата «Адмирал Горшков» в Баренцевом море. При выполнении маневров на гиперзвуковой скорости «Циркон» становится неуязвим для современных средств ПВО. На гиперзвуковой скорости кинетическая энергия ракеты настолько высока, что ее будет достаточно, чтобы уничтожить определенные классы целей даже без использования заряда. Причем в Америке в текущее время только пытаются добиться стабильных полетов на сверхзвуковой скорости.

Крылатая ракета Х-555

  • Эти три российские ракеты держат в страхе весь мир | 02.09.2022, ИноСМИ
  • Топ-5 новинок российского оружия, которое вызывает трепет у Запада
  • В России начались испытания патрона, способного развивать скорость свыше 1500 м/с
  • В Европе пытаются создать ПРО для перехвата российского «гиперзвука»
  • Гиперзвуковое оружие США

Sky News: Британия рассчитывает догнать Россию в гиперзвуковой гонке к 2030 году

Военный аналитик подчеркнул, что американские специалисты не могут создать двигатель, который смог бы развить скорость, равную гиперзвуковой. Испытания новейшей гиперзвуковой ракеты «Циркон» продолжатся в этом году на мишенях, имитирующих авианосцы и стратегические объекты. Российское гиперзвуковое оружие представляет собой, в частности, высокоточный авиационно-ракетный комплекс «Кинжал» (скорость до 10 Махов) и управляемый боевой блок «Авангард». Скорость самого быстрого гиперзвукового самолета — более 12 тыс. км/ч.

В Европе пытаются создать ПРО для перехвата российского «гиперзвука»

Напомним, что гиперзвуковыми называются ракеты, которые развивают скорость выше 6000 километров в час у поверхности Земли. За счет такой скорости они почти не уязвимы для современных систем ПВО. Гиперзвуковым оружием обладают Китай и Россия, Соединенные Штаты проводят его испытания. Также в Иране была представлена ракета с гиперзвуковым планирующим блоком.

Пуск осуществляется из универсальной пусковой установки вертикального пуска 3С-14-22350. Считается, что это адаптированный для более тяжелых «Цирконов» вариант обычной установки 3С-14 в варианте размещения на океанских фрегатах проекта 22350. В стартовой конфигурации носовая часть ракеты, где, очевидно, находится воздухозаборник маршевого прямоточного воздушно-реактивного двигателя, закрыта специальным обтекателем. Ракета универсальная и предназначена как для надводного, так и для подводного стартов. Поэтому в задачи обтекателя входит и защита изделия при движении сквозь толщу воды при старте с подводной лодки, и поворот ракеты после вертикального выхода из пусковой установки. Судя по всему, боеприпас использует систему послестартового поворота и ориентации в пространстве, аналогичную подобной системе противокорабельной крылатой ракеты «Оникс» разработки того же «НПО машиностроения». Система твердотопливных двигателей ориентации разворачивает изделие на курс к цели, приводит в горизонтальное положение, снимает и уводит в сторону обтекатель. После этого запускается маршевая ступень твердотопливной первой ступени ракеты. Первая ступень «Циркона» также необычна и включает в себя стартовую часть двигателя, которая обеспечивает выход ракеты из пусковой установки, прохождение через толщу воды при подводном пуске или взлет на безопасную высоту над кораблем-носителем. Маршевая часть твердотопливной стартовой ступени обеспечивает изделию разгон до гиперзвуковой скорости. После отделения разгонной первой ступени маршевую скорость поддерживает прямоточный воздушно-реактивный двигатель. В такой конфигурации ракета может начинать маневрировать в атмосфере, используя аэродинамические поверхности.

Жертвы скорости Почетный гендиректор и почетный генконструктор ОАО "ВПК "НПО машиностроения" Герберт Ефремов отметил, что двигатель такого аппарата может быть "исключительно воздушно-реактивным" — в отличие от других, только он способен обеспечить длительный гиперзвуковой полет. ТАСС здесь вообще не годится, потому что он может разогнать, но лететь долго с ним невозможно. В случае с гиперзвуковыми ракетами это неприемлемо. На нашей ракете "Оникс" твердотопливный только стартовый ускоритель. Дальше она летит на жидкостном прямоточном воздушно-реактивном двигателе", — приподнял завесу тайны Герберт Ефремов. При этом, по его словам, необходимо еще и специальное топливо. Воздушно-реактивный двигатель питается одним горючим: керосином, децилином или бицилином. Окислитель — набегающий воздух. Бицилин — топливо, получаемое из вакуумного газойля с применением гидрогенизационных процессов. Это жидкое горючее имеет очень большую плотность, позволяющую делать бак меньшего объема", — сообщил конструктор.

Двигатель «Кинжала» — твердотопливный, как и у всех ракет, разработанных в недрах коломенского КБМ. Воздушный носитель позволил существенно расширить и гибкость скорость реакции применения ракетного комплекса, и его радиус поражения. Носитель может быть в кратчайшие сроки переброшен на любой подходящий аэродром. При наличии достаточного количества ракетоносцев их совместное применение — парой, эскадрильей или даже полком — способно создать залп из десятков ракет, несущих противнику колоссальный ущерб. В экспертной среде считается, что «Кинжал» не имеет мировых аналогов и может преодолеть любую существующую и перспективную систему ПВО и ПРО, доставляя к цели ядерные и обычные боезаряды. Основные испытания авиационно-ракетного комплекса «Кинжал» проводились на аэродроме Государственного летно-испытательного центра Минобороны им. Но «Кинжал» испытывали и в различных климатических условиях, в том числе в Арктике. Испытания комплекса в северных широтах велись несколько лет: проводились не только учебно-боевые патрулирования, но и пуски ракет в ходе учений. К примеру, в ноябре 2019 года сообщалось, что МиГ-31К успешно выполнили пуски «Кинжалов», поразив объект на полигоне Пембой. Ведь эта машина изначально создавалась в качестве вовсе не ракетоносца, а тяжелого истребителя-перехватчика. Все дело в высочайшей скорости, которую способен достичь МиГ-31, а также в дальности его применения. Характеристики у самолета действительно высочайшие: крейсерская скорость — 2,5 тыс.

ВКС Ирана показали гиперзвуковую ракету «Фатх-2». Что о ней известно

К гиперзвуковым относятся скорости от пяти махов и выше. В России продолжается работа по совершенствованию гиперзвуковых ракет: планируется увеличить их скорость, дальность и точность, сообщил глава Минобороны РФ Сергей Шойгу. Сверхзвуковая скорость судна составляла 1104 км/час, на которой он мог пройти порядком тысячи километров без дозаправок. После пуска блок осуществлял полет на гиперзвуковой скорости и поразил мишень в заданной точке.

Крылатые ракеты

  • Против гиперзвука - Россия || Интерфакс Россия
  • Гиперзвук: недостижимая мечта авиации –
  • Быстрее звука: у кого есть гиперзвуковое оружие
  • ВКС Ирана показали гиперзвуковую ракету «Фатх-2». Что о ней известно

Похожие новости:

Оцените статью
Добавить комментарий