Новости нервные импульсы поступают непосредственно к железам по

Слайд 6 Нервные импульсы поступают непосредственно к железам по. ответ: 7. чем питается кит? 1) планктоном 2) придонными организмами 3) крупными рыбами 4)морскими млекопитающими 8. нервные импульсы, 919107520220418, Відповідь:Тіршіліктің пайда болуының алғышарттарыҒылыми деректер бойынша Күн жүйесіне жататын Жер.

Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон

  • Топ вопросов за вчера в категории Биология
  • Страница 47
  • Нервные импульсы поступают непосредственно к железам по - ВПР 2024
  • Физиология мышечного сокращения
  • Нервные импульсы поступают непосредственно к железам по - ВПР 2024

Химическая передача нервного импульса

Импульсы, исходящие от коры, затормозили нервные центры продолговатого мозга. Путь, по которому проходит нервный импульс при реализации рефлекса, называется рефлекторной дугой. Проведение нервного импульса в ЦНС.

Задание №9 ОГЭ по Биологии

Ответ: Большое влияние на становление и развитие головного мозга оказывает щитовидная железа и ее гормоны. При недостатке этих гормонов гипотиреозе развивается заболевание кретинизм. Больные этой болезнью страдают умственной и физической отсталостью. Вопрос Каковы функции гипофиза и щитовидной железы? Ответ: гипофиз — это железа внутренней секреции непосредственно связанная с мозгом. Гипофиз вырабатывает гормон роста воздействующий на рибосомы клеток, которые вырабатывают клеточные белки.

В результате клетки быстрее растут и делятся. Гормоны гипофиза и их функции обеспечивают важнейшее одно явление во всяком живом развитом организме — гомеостаз. Гипофиз регулирует работу щитовидной, паращитовидной, надпочечниковой железы, контролирует состояние водно — солевого баланса. Функция щитовидной железы — это выработка гормонов, которые поддерживают нормальный обмен веществ во всем организме. Функции гормонов щитовидной железы следующие: — повышают интенсивность окислительных реакций в клетках; — оказывают влияние на процессы, происходящие в митохондриях, клеточной мембране; — поддерживают гормональную возбудимость основных нервных центров; — участвуют в нормальном функционировании сердечной мышцы; — обеспечивают функционирование иммунной системы: стимулируют образование т — лимфоцитов, ответственных за борьбу с инфекцией.

Вопрос Раскройте роль гормонов в обмене веществ, росте и развитии организма. Ответ: Гормоны регулируют обмен веществ, рост и развитие организма, поддерживают постоянство внутренней среды, обеспечивают приспособление организма к работе различной интенсивности. Например: при избыточном действии гормона роста в детском возрасте развивается гигантизм, при недостатке этого гормона прекращается рост тела. При недостатке гормонов щитовидной железы у детей развивается кретинизм, у взрослых — слизистый отек, при избытке — базедова болезнь. Поджелудочная железа выделяет инсулин, регулирующий поступление глюкозы в мышцы и печень.

Она поддерживает постоянство содержания глюкозы в крови. Недостаток инсулина приводит к сахарному диабету. Гормоны надпочечников содействуют приспособлению организма к напряженной работе. Вопрос Что происходит при сахарном диабете? Как помочь больному диабетом при передозировке инсулина, чтобы не допустить обморока?

Ответ: Гормон поджелудочной железы — инсулин — поддерживает в крови постоянное количество глюкозы, при окислении которой организм получает нужную ему энергию. При отсутствии инсулина вместо глюкозы окисляются другие вещества, что ведет к нарушению углеводного обмена. При заболевании сахарным диабетом инсулина выделяется недостаточно, в крови накапливается глюкоза, которая не может использоваться клетками и выводится почками из организма. В случае передозировки инсулина происходит резкое падение содержания глюкозы в крови и может случиться обморок. Для того чтобы его предупредить, больному надо дать сладкий чай, кусок сахара, булочку.

Вопрос Просмотрите рис.

Классификация нервной системы по функциям По функциям нервная система подразделяется на соматическую и вегетативную автономную. Соматическая нервная система от греческого «сома» — «тело» регулирует работу скелетных мышц.

Благодаря ей организм через органы чувств поддерживает связь с внешней средой. С ее помощью мы можем произвольно по собственному желанию управлять деятельностью скелетной мускулатуры. Деятельностью внутренних органов, реакциями обмена веществ, поддержанием постоянства внутренней среды организма человека управляет автономная или вегетативная нервная система.

Ее название происходит от греческого слова «автономия» — самоуправление. Работа этой системы не подчиняется воле человека. Нельзя, например, по желанию ускорить процесс пищеварения или сузить кровеносные сосуды.

Автономная нервная система Автономная система представлена двумя отделами — симпатическим и парасимпатическим. Симпатический отдел система сложных ситуаций включается во время интенсивной работы, требующей затраты энергии что-то услышал неожиданное — расширяются зрачки, возрастает частота сокращений сердца, замедляется деятельность пищеварительной системы, учащается дыхание. Парасимпатический отдел можно назвать системой отбоя.

Она возвращает организм в состояние покоя, создает условия для отдыха и восстановления организма. Рефлексы Основной принцип работы нервной системы — рефлекторный. Любая ответная реакция организма на раздражитель, осуществляемая и контролируемая нервной системой, называется рефлексом.

Основу рефлекторной реакции составляет рефлекторная дуга. В состав рефлекторной дуги входит рецептор, воспринимающий раздражение. По аксону чувствительного нейрона возбуждение попадает в центральную нервную систему и может распространиться непосредственно на двигательный нейрон или сначала на вставочные нейроны, а уже через них на эфферентный нейрон.

По аксону эфферентного нейрона возбуждение достигает исполнительного органа, чаще всего мышцы. В результате возбуждения деятельность этого органа изменяется, например, мышца сокращается. Рефлекторная дуга Рефлексы подразделяются на соматические, заканчивающиеся сокращением скелетных мышц, и вегетативные, в результате которых меняется работа внутренних органов.

Длинные отростки нервной клетки аксоны покрыты миелиновой оболочкой. Скопления таких отростков, покрытых миелином жироподобным веществом белого цвета , в центральной нервной системе образуют белое вещество головного и спинного мозга. Короткие отростки дендриты и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга. Синапс Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона.

Место контакта одного нейрона с другим называется синапсом. На теле одного нейрона насчитывается 1200—1800 синапсов. Синапс — пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому.

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla? Эта информация доступна зарегистрированным пользователям Высшая нервная деятельность человека Высшая нервная деятельность- это деятельность высших отделов центральной нервной системы, которая обеспечивает наиболее совершенное приспособление животных и человека к окружающей среде. Термин «высшая нервная деятельность» впервые введён в науку И. Основная роль в осуществлении высшей нервной деятельности у высших животных и человека принадлежит коре больших полушарий. К высшей нервной деятельности относят познание, речь, память и абстрактное мышление, сознание и др.

Мышление интеллект - процесс обобщённого отражения действительности с её связями, отношениями и закономерностями. С помощью мышления познается содержание и смысл воспринимаемого. Мышление представляет собой самую сложную форму психической деятельности человека, вершину её эволюционного развития. Мышление построено на двух функциях высших нервных центров: на анализе и синтезе информации и ответных действий организма.

Нервные импульсы поступают непосредственно к железам по...?

Нервная система. Общие сведения медиаторов нервного импульса.
Нервная ткань. Нейрон. Синапс. Нервы — урок. Биология, 9 класс. Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов.
Как нервная система регулирует работу эндокринной системы? 2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов.

Химическая передача нервного импульса

Нервные импульсы поступают непосредственно к мышцам и железам по1)аксонам вставочных. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. Нервные импульсы поступают непосредственно к железам по.

Как нервная система регулирует работу эндокринной системы?

Нервные импульсы поступают непосредственно к железам по...? — Ваш Урок Если нервная система посылает свои импульсы по нервам, точно к определённым органам, и быстро изменяет их работу, то поступившие в кровь гормоны достигают цели медленнее, но зато они охватывают сразу больше органов и тканей.
Как устроена периферическая нервная система человека? По аксонам нервные импульсы поступают к. Нервный Импульс в нейронах.
Анатомия: Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон. Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов.

Регуляция желудочной секреции.

Б) Передача нервных импульсов от внутренних органов в мозг. Нервные импульсы поступают непосредственно к железам по 1) аксонам. Б) Передача нервных импульсов от внутренних органов в мозг. Добавить в избранное 0. Вопрос пользователя. Нервные импульсы поступают непосредственно к железам по. Ответ эксперта. аксонам двигательных нейронов. Слайд 6 Нервные импульсы поступают непосредственно к железам по.

Остались вопросы?

Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Нервные импульсы поступают непосредственно к мышцам и железам по 1)аксонам вставочных нейронов 2)аксонам двигательных нейронов 3)белому веществу спинного мозга 4)серому веществу спинного мозга. Какие железы выделяют синтезирующиеся в них гормоны непосредственно в капилляры кровеносных сосудов? Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа). Получается такая последовательность прохождения нервного импульса в анализаторе: 213.

Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…

Сок, полученный на мясо, имеет более щелочную реакцию, чем сок, выделяющийся на хлеб и молоко. При употреблении пищи, богатой жирами, в поджелудочном соке содержание липазы в 2—5 раз больше, чем в соке, который выделился на мясо. Преобладание в пищевом рационе углеводов приводит к увеличению количества амилазы в поджелудочном соке. При мясной диете в поджелудочном соке обнаруживается значительное количество протеолитических ферментов.

Состав, свойства желчи и ее значение в пищеварении. Желчь — продукт секреции печеночных клеток, представляет собой жидкость золотисто-желтого цвета, имеющую щелочную реакцию рН 7,3—8,0 и относительную плотность 1,008—1,015. Основными компонентами сухого остатка являются желчные кислоты, пигменты и холестерин.

Кроме того, в желчи содержатся муцин, жирные кислоты, неорганические соли, ферменты и витамины. У здорового человека в сутки выделяется 0,5—1,2 л желчи. Секреция желчи осуществляется непрерывно, а поступление ее в двенадцатиперстную кишку происходит во время пищеварения.

Вне пищеварения желчь поступает в желчный пузырь. Желчь относят к пищеварительным сокам. Желчь повышает активность ферментов панкреатического сока, прежде всего липазы.

Желчные кислоты эмульгируют нейтральные жиры. Желчь необходима для всасывания жирных кислот, а следовательно, жирорастворимых витаминов А, В, Е и К. Желчь усиливает сокоотделение поджелудочной железы, повышает тонус и стимулирует перистальтику кишечника двенадцатиперстная и толстая кишка.

Желчь участвует в пристеночном пищеварении. Она оказывает бактериостатическое действие на кишечную флору, предупреждая развитие гнилостных процессов. Методы изучения желчеобразовательной и желчевыделительной функции печени.

В желчевыделительной деятельности печени следует различать желчеобразование, то есть продукцию желчи печеночными клетками, и желчеотделение — выход, эвакуацию желчи в кишечник. Для изучения секреции желчи у человека применяют рентгенологический метод и дуоденальное зондирование. При рентгенологическом исследовании вводят вещества, не пропускающие рентгеновские лучи и удаляющиеся из организма с желчью.

С помощью этого метода можно установить появление первых порций желчи в протоках, желчном пузыре, момент выхода пузырной и печеночной желчи в кишку. При дуоденальном зондировании получают фракции печеночной и пузырной желчи. Регуляция желчеобразовательной и желчевыделительной функций печени.

Блуждающие и правый диафрагмальный нервы при их возбуждении усиливают выработку желчи печеночными клетками, симпатические нервы ее тормозят. На образование желчи оказывают влияние и рефлекторные воздействия, идущие со стороны интерорецепторов желудка, тонкого и толстого кишечника и других внутренних органов. Отделение желчи усиливается во время еды в результате рефлекторного влияния на все секреторные процессы, осуществляемые в желудочно-кишечном тракте.

Желчегонным эффектом обладают молоко, мясо, хлеб. У жиров это действие выражено в большей степени, чем у белков и углеводов. Наибольшее количество желчи выделяется при смешанном питании.

Механизмы опорожнения желчного пузыря. Под влиянием блуждающих нервов сокращается мускулатура желчного пузыря и одновременно с этим расслабляется сфинктер печеночно-поджелудочной ампулы сфинктер Одди , что приводит к поступлению желчи в двенадцатиперстную кишку. Под влиянием симпатических нервов наблюдается расслабление мускулатуры желчного пузыря, повышение тонуса сфинктера и его закрытие.

Опорожнение желчного пузыря осуществляется на основе условных и безусловных рефлексов. Условнорефлекторное опорожнение желчного пузыря происходит при виде и запахе пищи, разговоре о знакомой и вкусной пище при наличии аппетита. Безусловнорефлекторное опорожнение желчного пузыря связано с поступлением пищи в ротовую полость, желудок, кишечник.

Сфинктер Одди остается открытым в течение всего процесса пищеварения, поэтому желчь продолжает свободно поступать в двенадцатиперстную кишку. Как только последняя порция пищи покидает двенадцатиперстную кишку, сфинктер Одди закрывается. Кишечное пищеварение завершает этап механической и химической обработки пищи.

В тонкий кишечник поступает секрет дуоденальных желез, поджелудочной железы и печени. Здесь пищеварительные соки продолжают свое переваривающее действие, так как в тонком кишечнике имеется также щелочная среда. К влиянию этих пищеварительных секретов присоединяется мощное действие кишечного сока.

В кишечнике различают полостное и пристеночное, или мембранное, пищеварение. Полостное пищеварение обеспечивает начальный гидролиз пищевых веществ до промежуточных продуктов. Мембранное пищеварение обеспечивает гидролиз промежуточной и заключительной его стадий, а также переход к всасыванию.

Состав, свойства кишечного сока и его значение в пищеварении. У взрослого человека за сутки отделяется 2—3 л кишечного сока слабощелочной реакции. Представителями пептидаз являются лейцина-минопептидаза и аминопептидаза, расщепляющие продукты переваривания белка, образующиеся в желудке и двенадцатиперстной кишке.

В кишечном соке содержатся кислая и щелочная фосфатазы, участвующие в переваривании фосфолипидов, липаза, которая действует на нейтральные жиры. В кишечном соке содержатся карбогидразы амилаза, мальтаза, сахараза, лактаза , расщепляющие полисахариды и дисахариды до стадии моносахаров. Специфическим ферментом кишечного сока является энтерокиназа, которая катализирует превращение трипсиногена в трипсин.

Регуляция деятельности желез кишечника. За счет нервных воздействий регулируется образование ферментов. В условиях денервации тонкого кишечника наблюдается «разлад» в работе секреторной клетки: сока выделяется много, но он беден ферментами.

Кора большого мозга принимает участие в регуляции секреторной активности тонкого кишечника. Стимулирует секрецию кишечных желез гормон энтерокринин. Этот гормон образуется и выделяется при соприкосновении содержимого кишечника со слизистой оболочкой.

Энтерокринин стимулирует отделение главным образом жидкой части сока. Моторная функция тонкого кишечника и ее регуляция.

Желчь участвует в пристеночном пищеварении. Она оказывает бактериостатическое действие на кишечную флору, предупреждая развитие гнилостных процессов. Методы изучения желчеобразовательной и желчевыделительной функции печени. В желчевыделительной деятельности печени следует различать желчеобразование, то есть продукцию желчи печеночными клетками, и желчеотделение — выход, эвакуацию желчи в кишечник. Для изучения секреции желчи у человека применяют рентгенологический метод и дуоденальное зондирование. При рентгенологическом исследовании вводят вещества, не пропускающие рентгеновские лучи и удаляющиеся из организма с желчью.

С помощью этого метода можно установить появление первых порций желчи в протоках, желчном пузыре, момент выхода пузырной и печеночной желчи в кишку. При дуоденальном зондировании получают фракции печеночной и пузырной желчи. Регуляция желчеобразовательной и желчевыделительной функций печени. Блуждающие и правый диафрагмальный нервы при их возбуждении усиливают выработку желчи печеночными клетками, симпатические нервы ее тормозят. На образование желчи оказывают влияние и рефлекторные воздействия, идущие со стороны интерорецепторов желудка, тонкого и толстого кишечника и других внутренних органов. Отделение желчи усиливается во время еды в результате рефлекторного влияния на все секреторные процессы, осуществляемые в желудочно-кишечном тракте. Желчегонным эффектом обладают молоко, мясо, хлеб. У жиров это действие выражено в большей степени, чем у белков и углеводов.

Наибольшее количество желчи выделяется при смешанном питании. Механизмы опорожнения желчного пузыря. Под влиянием блуждающих нервов сокращается мускулатура желчного пузыря и одновременно с этим расслабляется сфинктер печеночно-поджелудочной ампулы сфинктер Одди , что приводит к поступлению желчи в двенадцатиперстную кишку. Под влиянием симпатических нервов наблюдается расслабление мускулатуры желчного пузыря, повышение тонуса сфинктера и его закрытие. Опорожнение желчного пузыря осуществляется на основе условных и безусловных рефлексов. Условнорефлекторное опорожнение желчного пузыря происходит при виде и запахе пищи, разговоре о знакомой и вкусной пище при наличии аппетита. Безусловнорефлекторное опорожнение желчного пузыря связано с поступлением пищи в ротовую полость, желудок, кишечник. Сфинктер Одди остается открытым в течение всего процесса пищеварения, поэтому желчь продолжает свободно поступать в двенадцатиперстную кишку.

Как только последняя порция пищи покидает двенадцатиперстную кишку, сфинктер Одди закрывается. Кишечное пищеварение завершает этап механической и химической обработки пищи. В тонкий кишечник поступает секрет дуоденальных желез, поджелудочной железы и печени. Здесь пищеварительные соки продолжают свое переваривающее действие, так как в тонком кишечнике имеется также щелочная среда. К влиянию этих пищеварительных секретов присоединяется мощное действие кишечного сока. В кишечнике различают полостное и пристеночное, или мембранное, пищеварение. Полостное пищеварение обеспечивает начальный гидролиз пищевых веществ до промежуточных продуктов. Мембранное пищеварение обеспечивает гидролиз промежуточной и заключительной его стадий, а также переход к всасыванию.

Состав, свойства кишечного сока и его значение в пищеварении. У взрослого человека за сутки отделяется 2—3 л кишечного сока слабощелочной реакции. Представителями пептидаз являются лейцина-минопептидаза и аминопептидаза, расщепляющие продукты переваривания белка, образующиеся в желудке и двенадцатиперстной кишке. В кишечном соке содержатся кислая и щелочная фосфатазы, участвующие в переваривании фосфолипидов, липаза, которая действует на нейтральные жиры. В кишечном соке содержатся карбогидразы амилаза, мальтаза, сахараза, лактаза , расщепляющие полисахариды и дисахариды до стадии моносахаров. Специфическим ферментом кишечного сока является энтерокиназа, которая катализирует превращение трипсиногена в трипсин. Регуляция деятельности желез кишечника. За счет нервных воздействий регулируется образование ферментов.

В условиях денервации тонкого кишечника наблюдается «разлад» в работе секреторной клетки: сока выделяется много, но он беден ферментами. Кора большого мозга принимает участие в регуляции секреторной активности тонкого кишечника. Стимулирует секрецию кишечных желез гормон энтерокринин. Этот гормон образуется и выделяется при соприкосновении содержимого кишечника со слизистой оболочкой. Энтерокринин стимулирует отделение главным образом жидкой части сока. Моторная функция тонкого кишечника и ее регуляция. В тонком кишечнике различают перистальтические и неперистальтические движения. Перистальтические сокращения обеспечивают продвижение пищевой кашицы по кишечнику.

Этот вид двигательной активности кишечника обусловлен координированным сокращением продольного и циркулярного слоев мышц. При этом происходит сокращение кольцевых мышц верхнего отрезка кишки и выдавливание пищевой кашицы в одновременно расширяющийся за счет сокращения продольных мышц нижний участок. Неперистальтические движения тонкого кишечника представлены сегментирующими сокращениями. К ним относят ритмическую сегментацию и маятникообразные движения. Ритмические сокращения делят пищевую кашицу на отдельные сегменты, что способствует ее лучшему растиранию и перемешиванию с пищеварительными соками. Маятникообразные движения обусловлены сокращением круговых и продольных мышц кишечника. Маятникообразные движения способствуют тщательному перемешиванию химуса с пищеварительными соками. В регуляции моторной активности тонкого кишечника участвуют нервные и гуморальные механизмы, объединенные в единую регуляторную систему, за счет деятельности которой усиливается или ослабляется моторная функция тонкого кишечника.

Нервный механизм. Моторная функция кишечника регулируется интрамуральной и экстрамуральной нервной системой. К интрамуральной нервной системе относят мышечно-кишечное ауэрбаховское , глубокое межмышечное и подслизистое мейсснеровское сплетения. Они обеспечивают возникновение местных рефлекторных реакций, которые возникают при раздражении слизистой оболочки кишечника его содержимым. Экстрамуральная нервная система кишечника представлена блуждающими и чревными нервами. Блуждающие нервы при их возбуждении стимулируют моторную функцию кишечника, чревные тормозят ее.

Филогенез нервной системы.

Трубчатая нервная система. Развитие отделов мозга: промежуточный, передний, конечный. Новый мозг. Первая сигнальная система. Вторая сигнальная система. Эмбриогенез нервной системы. Понимание физико-химической природы генерации нервного сигнала, путей передачи информации с одной нервной клетки на другую или на мышечную клетку позволит вплотную подойти к объяснению механизма деятельности нервной системы.

Нервные клетки передают информацию с помощью сигналов, представляющие собой электрические токи, генерируемой поверхностной мембраной нейрона. Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора. От наружной среды внутреннее пространство нейрона отделено клеточной мембраной, которая является плохим изолятором и допускает некоторую утечку ионов в обоих направлениях. Если бы мембрана была проницаема только для ионов калия, разность потенциалов на ней могла бы достигать величин, определяемой уравнением Нернста 1 для калиевого электрода. По данным различных авторов, эта величина соответствует 70-75 мВ. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну.

Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой — для измерения разности потенциалов на мембране. Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет. Ток, направленный наружу, также не вызывает возбуждения. Однако, генератор срабатывает каждый раз, когда напряжение на мембране уменьшается ниже определенной величины, которую принято называть порогом возбуждения. Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы.

В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания — места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса.

Вся грамматика источника сохранена. Химическая передача нервного импульса Относится к «Сборник статей по исследованиям психических явлений» ВВЕДЕНИЕ Проблема передачи информации в организме, в частности в нервной системе, является одним из ключевых вопросов нейробиологии и медицины. Эта тема актуальна на рубеже двух тысячелетий, поэтому не случайно Нобелевская Премия в области медицины за 2000 год досталась ученым, которые внесли большой вклад в исследование данной области.

Передача импульса в нервной системе происходит в несколько этапов: проведение по нервному волокну электрического импульса; процесс химической передачи в синапсе с помощью нейромедиатора либо процесс в электрическом синапсе ; проведение электрического импульса по следующему нервному волокну, либо реакция мышечной сокращение миоцита или железистой ткани экзоцитоз секрета. С физиологической и биохимической точки зрения второй этап является наиболее сложным. Он представляет собой цепь процессов, суть которых сводится к преобразованию электрического сигнала в химический, а затем — химического в электрический. Данные о периферической нервной системе получить было достаточно легко. Любой орган можно изолировать, стимулировать его нервный аппарат, собирать и анализировать венозную кровь или перфузат. В ЦНС совсем другое положение: масса волокон и нейронов, "упакованных" глиальными клетками, кровоснабжение которых точно установить невозможно, а также "центры", имеющие много различных входов и локализуемые различно разными физиологами и анатомами.

Обычными методами, ставшими почти классическими, было показано, что в ЦНС имеются ацетилхолин, катехоламины и холинэстеразы. Эта трудоёмкая работа дала возможность нарисовать своего рода химическую карту головного мозга. Ацетилхолин обнаруживается почти везде, но в особенно значительных количествах он содержится в коре головного мозга; с помощью высокоспецифичных и чувствительных тестов обнаружили присутствие ацетилхолинэстеразы в некоторых синапсах, но показали также, что её очень мало в других. Во многих центрах был обнаружен норадреналин, но его непосредственный предшественник — дофамин был найден в значительных количествах только в определённых областях. В различных центрах был идентифицирован также серотонин. Нейронная теория, разработанная Рамон-и-Кахалом, знаменитым испанским гистологом, подтверждена биохимически.

Нейрон, его аксон и окончания синтезируют медиатор, который хранится в особых пузырьках, видимых с помощью электронного микроскопа. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Пузырьки образуются в теле нейрона, заполняются молекулами медиатора и транспортируются вдоль аксона к нервному окончанию. Химическими посредниками в процессе передачи нервного импульса являются биологически активные вещества, выделяемые нервными окончаниями. Эти вещества называются нейромедиаторы синоним — нейротрансмиттер. Для краткости можно употреблять термин медиаторы.

Медиаторы были открыты австрийским ученым Лёви в результате достаточно простого опыта. В физиологический раствор он поместил два изолированных сердца лягушек и соединил их между собой тонкой трубочкой. Раствор Рингера, перфузируемый в одно сердце, переходил во второе. При раздражении симпатического нерва первого сердца, второе также начинало сокращаться. Возникла гипотеза о том, что раздражение нервов влечёт появление в перфузате некоторых веществ, которые оказывают действие на другое сердце, подобное эффекту раздражения симпатического нерва. Сначала были открыты адреналин и ацетилхолин.

Человек и его здоровье (стр.51-75)

Импульсы, исходящие от коры, затормозили нервные центры продолговатого мозга. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа). Какая железа относится к железам внутренней секреции?

Похожие новости:

Оцените статью
Добавить комментарий