Шерк и Шварц объявили, что теория струн — это не просто теория сильного взаимодействия, это квантовая теория, которая, помимо всего прочего, включает гравитацию.{27}. Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки. Ученые в качестве объяснения краткой сути теории струн пытались ввести понятие нулевого измерения.
Войти на сайт
Дополнительное измерение На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы. Теория струн требует от нас принять существование дополнительного измерения во вселенной. Суперсимметрия Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл.
Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения. Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн. Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн. Объединение сил Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика. Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц. Не совсем понятно, как гравитация влияет на мельчайшие частицы.
Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн. Открытые и закрытые струны 5 фундаментальных взаимодействий струны типа I Струны в теории струн имеют две формы: открытые и закрытые струны. Две открытые струны могут соединяться с обоих концов, образуя закрытую струну. Или несколько открытых струн могут присоединиться к одному концу, чтобы сформировать новую открытую струну. Такие струны, известные как струны типа I, могут проходить через 5 основных типов взаимодействий. Эти взаимодействия зависят от способности струны соединять и разделять концы концов.
Ученые считают, что у замкнутых струн есть особые атрибуты, которые могут описывать гравитацию в квантовой механике. Считается, что характерная шкала длины струн составляет порядка 10 -35 метров, или длины Планка.
Выход из положения состоит в использовании моделей с суперсимметрией. Пять простейших моделей суперструн оказались связаны простыми дуальностями друг с другом и с простейшей моделью мембран, т. Главным препятствием для использования этой теории в качестве обобщения Стандартной модели элементарных частиц является то, что она 10- или 11-мерна, а число 4-мерных фаз, полученных компактификацией лишних пространственных измерений, велико. Динамических принципов, позволяющих выбрать из этих фаз одну, отвечающую нашему миру, пока не найдено, поэтому модель часто соединяют с Мультиленной и апеллируют к антропному принципу. Потребности развития методов теории струн вызвали прогресс в традиционных разделах математики от алгебраической геометрии до теории чисел , от теории узлов до теории групп и породили новые парадигмы от квантовой геометрии до голографического принципа. Теория струн позволила чётко поставить задачу и обеспечила понимание чёрных дыр , ведущее к созданию квантовой теории информации. Опубликовано 10 октября 2023 г.
Сама по себе эта теория является попыткой избавиться от расхождений релятивистской квантовой теории и общей теории относительности. Первые идеи были предложены еще в 1960-х годах при исследовании адрона. Дальнейшее развитие теоретической физики привело к появлению нескольких типов теории струн. Объединяющую их единую теорию называют М-теорией.
Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий. Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях. Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи. Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку.
Струны Вселенной
- Теория струн
- Историческая справка
- Комментарии
- Теория струн | это... Что такое Теория струн?
- Теория струн. Теория всего
Теория струн
Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на развлекательном портале Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. Антропный принцип в теории струн. О чем теория струн? Самое простое и понятное объяснение. В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно.
Популярно о теории струн
Основные положения одной из наиболее известных «теорий всего» сводятся к следующему: Основу мироздания составляют протяженные объекты, которые по форме напоминают струны; Этим объектам свойственно совершать различные колебания, словно на музыкальном инструменте; В результате этих колебаний образуются различные элементарные частицы кварки, электроны и т. Масса полученного объекта прямо пропорциональна амплитуде совершенного колебания; Теория помогает по-новому взглянуть на черные дыры; Также с помощью нового учения удалось раскрыть силу тяжести во взаимодействиях между фундаментальными частицами; В отличии господствующих ныне представлений о четырехмерном мире, в новой теории вводятся дополнительные измерения; В настоящее время концепция еще не принята официально в широком научном сообществе. Не известно ни одного эксперимента, который бы подтверждал эту гармоничную и выверенную на бумаге теорию. Историческая справка История данной парадигмы охватывает несколько десятилетий интенсивных исследований. Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику. Основные этапы ее развития: 1943—1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки; 1959—1968 гг. Были обнаружены частицы с высокими спинами моментами вращения. Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг.
Эти бесконечные струны совершают колебания, которые похожи на движения струн. Согласно науке, если постоянно увеличивать любой предмет под микроскопом, сначала можно увидеть молекулы, которые состоят из атомов, они состоят из электронов и ядер, ядра состоят из протонов и нейтронов, внутри нейтрона мы увидим кварки. Считается, что после этого больше ничего нет. Однако согласно теории струн, внутри этих кварков существуют тончайшие вибрирующие струны. Эта недоказанная теория в физике элементарных частиц объединяет квантовую механику и общую теорию относительности Эйнштейна. Некоторые физики считают, что при объединении квантовой физики и гравитации в одну именно у этой теории больше всего шансов стать "теорией всего" гипотетический фундамент, который объясняет абсолютно все физические явления. Однако есть и другие учёные, которые думают, что она является почти псевдонаукой, поскольку её практически невозможно проверить экспериментальным путём. Теория суперструн Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации: учитывает фермионы частица с полуцелым значением спина , учитывает бозоны частица с целым значением спина , включает суперсимметрию связь между фермионами и бозонами.
По аналогии с гитарными струнами, разные вибрации их - порождают разное звучание музыкальных нот. Известно 4 измерения: длина, ширина, высота и время. Одна из необычных черт струнной теории состоит в том, что форма частиц определяется размером и формой дополнительных измерений. Физики, разрабатывающие теорию струн, рассматривают вселенную, имеющую более 4 пространственно-временных измерений. Пока неизвестно какова геометрическая форма дополнительных измерений.
К сожалению, полного сходства с реальностью не получалось. Однако ученые заметили, что в спектре струны возникали частицы, которые имели те же свойства, что и фотоны в случае открытой струны , и гравитоны в случае замкнутой струны. Так и возникла идея попробовать применить создаваемую теорию для описания гравитации и других фундаментальных теорий, а не к описанию поведения адронов — частиц, возникающих в ядерных реакциях. Футурология Загадочные частицы: что ученые знают о космических лучах Как теория струн стала «теорией всего» Где-то к началу 1980-х ученые поняли, что теория струн, изначально придуманная для описания взаимодействий адронов, имеет более фундаментальный характер. Тогда и началась так называемая «струнная революция». Около 20 лет эта концепция была основным локомотивом развития фундаментальной физики. Существовала надежда, что она объяснит не только природу всех элементарных частиц, но и размерность того пространства-времени, в котором мы живем. Важно также, что появлялся единый общий взгляд на все существующие типы частиц. Однако не все чаяния оправдались, поэтому где-то в 2000-х годах интерес к теории струн начал угасать, и сейчас ажиотаж стих. Тем не менее, теория струн обогатила физику и математику методами вычисления, новыми фактами и формулами. Теория струн правда предсказывает дополнительные измерения в пространстве-времени? Теория суперструн может быть сформулирована логически непротиворечиво только в 10 измерениях — в 9 пространственных и одном временном. Наш же мир является четырехмерным.
Что такое Теория струн и существует ли 10-ое измерение
Предсказания теории струн. | Ученые в качестве объяснения краткой сути теории струн пытались ввести понятие нулевого измерения. |
Теория струн, или Теория всего | Теория струн для чайников, предполагает объединение идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. |
Теория струн: простое объяснение неоднозначной идеи
Мы заколебались: объясняем простым языком теорию струн | Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. |
Что такое Теория струн и существует ли 10-ое измерение | Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества». |
Что такое теория струн и может ли она открыть дверь в другие измерения
После того, как плавная и предсказуемая Общая теория относительности оказалась в неразрешимом конфликте с плутоватой квантовой механикой, лучшие умы человечества, начиная с Эйнштейна, принялись формулировать новую теорию. Так, начал вырисовываться фундаментальный физический принцип, получивший прекрасное название Теория всего или Теория струн, которая стала воплощением мечты всех физиков по объединению двух противоречащих друг другу ОТО и квантовой механики. Теория струн пытается объединить четыре силы – электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию – в одну. Теория струн пытается объединить четыре силы – электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию – в одну. И тут теория струн очень сильно пригодилась, связала все между собой, а через десятки лет ее постигла участь предшественников. Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном.
Вы точно человек?
теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни.
Войти на сайт
Что такое Теория струн и существует ли 10-ое измерение | Тегичто такое теория струн для чайников, о чем теория струн кратко, m теория струн, теория струн и м теория современное введение, теория струн сумма всех натуральных чисел. |
Войти на сайт | Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано[7], связанных со струнными моделями строения адронов. |
Теория суперструн кратко и понятно
Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн. Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на развлекательном портале Заметьте, что теория струн совсем не противоречит, а скорее дополняет Стандартную модель, в основу которой заложена теория строения атома Бора, критикуемая в начале этой статьи. теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов.
Теория струн кратко и понятно
Если быть точными, то не в сферы, а в пространства Калаби-Яу. Это такие трёхмерные фигурки, внутри которых свой собственный мир с собственной размерностью. Двухмерная проекция подобный многообразий выглядит приблизительно так: Таких фигурок известно более 470 миллионов. Которая из них соответствует нашей действительности, в данный момент вычисляется. Нелегко это — быть теоретическим физиком.
Да, это кажется немного притянутым за уши. Но может, именно этим и объясняется, почему квантовый мир так отличается от воспринимаемого нами. Давайте немного окунемся в историю В 1968 г. Венециано, который в то время работал в ЦЕРНе, Европейской ускорительной лаборатории, находящейся в Женеве Швейцария , трудился над этой проблемой в течение нескольких лет, пока однажды его не осенила блестящая догадка.
К большому своему удивлению он понял, что экзотическая математическая формула, придуманная примерно за двести лет до этого знаменитым швейцарским математиком Леонардом Эйлером в чисто математических целях — так называемая бета-функция Эйлера, — похоже, способна описать одним махом все многочисленные свойства частиц, участвующих в сильном ядерном взаимодействии. Подмеченное Венециано свойство давало мощное математическое описание многим особенностям сильного взаимодействия; оно вызвало шквал работ, в которых бета-функция и ее различные обобщения использовались для описания огромных массивов данных, накопленных при изучении столкновений частиц по всему миру. Однако в определенном смысле наблюдение Венециано было неполным. Подобно зазубренной наизусть формуле, используемой студентом, который не понимает ее смысла или значения, бета-функция Эйлера работала, но никто не понимал почему.
Это была формула, которая требовала объяснения. Габриеле Венециано Gabriele Veneziano Положение дел изменилось в 1970 г. Эти физики показали, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами сильное взаимодействие этих частиц в точности описывается с помощью функции Эйлера. Если отрезки струн являются достаточно малыми, рассуждали эти исследователи, они по-прежнему будут выглядеть как точечные частицы, и, следовательно, не будут противоречить результатам экспериментальных наблюдений.
Хотя эта теория была простой и интуитивно привлекательной, вскоре было показано, что описание сильного взаимодействия с помощью струн содержит изъяны. В начале 1970-х гг. В то же время параллельно шло развитие квантово-полевой теории — квантовой хромодинамики, — в которой использовалась точечная модель частиц. Успехи этой теории в описании сильного взаимодействия привели к отказу от теории струн.
Так было до 1984 г. В своей статье, сыгравшей поворотную роль и подытожившей более чем десятилетние интенсивные исследования, которые по большей части были проигнорированы или отвергнуты большинством физиков, Грин и Шварц установили, что незначительное противоречие с квантовой теорией, которым страдала теория струн, может быть разрешено. Более того, они показали, что полученная в результате теория обладает достаточной широтой, чтобы охватить все четыре вида взаимодействий и все виды материи. Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания.
Весть об успехе Грина и Шварца, в конце концов, дошла даже до аспирантов первого года обучения, и на смену прежнему унынию пришло возбуждающее ощущение причастности к поворотному моменту в истории физики. Многие из нас засиживались глубоко за полночь, штудируя увесистые фолианты по теоретической физике и абстрактной математике, знание которых необходимо для понимания теории струн. Двумерная проекция трехмерного многообразия Калаби-Яу. Эта проекция дает представление о том, как сложно устроены дополнительные измерения Однако на этом пути занимавшиеся теорией струн физики снова и снова натыкались на серьезные препятствия.
В теоретической физике часто приходится иметь дело с уравнениями, которые либо слишком сложны для понимания, либо с трудом поддаются решению. Обычно в такой ситуации физики не пасуют и пытаются получить приближенное решение этих уравнений. Положение дел в теории струн намного сложнее. Даже сам вывод уравнений оказался столь сложным, что до сих пор удалось получить лишь их приближенный вид.
Таким образом, физики, работающие в теории струн, оказались в ситуации, когда им приходится искать приближенные решения приближенных уравнений. После нескольких лет поражающего воображение прогресса, достигнутого в течение первой революции теории суперструн, физики столкнулись с тем, что используемые приближенные уравнения оказались неспособными дать правильный ответ на ряд важных вопросов, тормозя тем самым дальнейшее развитие исследований. Не имея конкретных идей по выходу за рамки этих приближенных методов, многие физики, работавшие в области теории струн, испытали растущее чувство разочарования и вернулись к своим прежним исследованиям. Для тех, кто остался, конец 1980-х и начало 1990-х гг.
Начнём с начала. Нулевое измерение — это точка. У неё нет размеров. Двигаться некуда, никаких координат для обозначения местонахождения в таком измерении не нужно.
Поставим рядом с первой точкой вторую и проведём через них линию. Вот вам и первое измерение. У одномерного объекта есть размер — длина, но нет ни ширины, ни глубины. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдёшь.
Чтобы определить местонахождение на этом отрезке, понадобится всего одна координата. Поставим рядом с отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной, то есть, площадью, однако без глубины, то есть, объёма. Расположение любой точки на этом поле определяется двумя координатами.
Третье измерение возникает, когда мы добавляем к этой система третью ось координат. Нам, жителям трёхмерной вселенной, очень легко это представить. Попробуем вообразить, как видят мир жители двухмерного пространства. Например, вот эти два человечка: Теория суперструн, популярным языком, представляет вселенную как совокупность вибрирующих нитей энергии — струн.
Они являются основой природы. Гипотеза описывает и другие элементы — браны. Все вещества в нашем мире состоят из колебаний струн и бран. Естественным следствием теории является описание гравитации.
Именно поэтому ученые считают, что в ней содержится ключ к объединению силы тяжести с другими взаимодействиями. Концепция развивается Теория единого поля, теория суперструн, — сугубо математическая. Как и все физические концепции, она основана на уравнениях, которые могут быть определенным образом интерпретированы. Сегодня никто не знает точно, каким будет окончательный вариант этой теории.
Ученые имеют довольно смутное представление об ее общих элементах, но никто еще не придумал окончательного уравнения, охватившего бы все теории суперструн, а экспериментально до сих пор не удалось ее подтвердить хотя и опровергнуть тоже. Физики создали упрощенные версии уравнения, но пока что оно не вполне описывает нашу вселенную. Теория суперструн для начинающих В основе гипотезы положены пять ключевых идей. Теория суперструн предсказывает, что все объекты нашего мира состоят из вибрирующих нитей и мембран энергии.
Она пытается совместить общую теорию относительности гравитации с квантовой физикой. Теория суперструн позволит объединить все фундаментальные силы вселенной. Эта гипотеза предсказывает новую связь, суперсимметрию, между двумя принципиально различными типами частиц, бозонами и фермионами. Концепция описывает ряд дополнительных, обычно ненаблюдаемых измерений Вселенной.
Струны и браны Эти суперструны теория делит на два вида — замкнутые и открытые. Открытая струна имеет концы, которые не соприкасаются друг с другом, в то время как замкнутая струна является петлей без открытых концов. В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий. Взаимодействия основаны на способности струны соединять и разделять свои концы.
Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны. Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести. Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы.
Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам.
Оставались открытыми вопросы о том, какая именно теория более адекватна и что делать с остальными четырьмя теориями [18] С. В ходе второй суперструнной революции было показано, что такое представление неверно: все пять суперструнных теорий тесно связаны друг с другом, являясь различными предельными случаями единой 11-мерной фундаментальной теории М-теория [18] [42]. Все пять суперструнных теорий связаны друг с другом преобразованиями, называемыми дуальностями [43]. Если две теории связаны между собой преобразованием дуальности дуальным преобразованием , это означает, что каждое явление и качество из одной теории в каком-нибудь предельном случае имеет свой аналог в другой теории, а также имеется некий своеобразный «словарь» перевода из одной теории в другую [44]. То есть дуальности связывают и величины, которые считались различными или даже взаимоисключающими. Большие и малые масштабы, сильные и слабые константы связи — эти величины всегда считались совершенно чёткими пределами поведения физических систем как в классической теории поля , так и в квантовой. Струны, тем не менее, могут устранять различия между большим и малым, сильным и слабым.
Т-дуальность Основная статья: Т-дуальность Т-дуальность связана с симметрией в теории струн, применимой к струнным теориям типа IIA и IIB и двум гетеротическим струнным теориям. Преобразования Т-дуальности действуют в пространствах, в которых по крайней мере одна область имеет топологию окружности. Таким образом, меняя импульсные моды и винтовые моды струны, можно переключаться между крупным и мелким масштабом [46]. Другими словами связь теории типа IIA с теорией типа IIB означает, что их можно компактифицировать на окружность, а затем, поменяв винтовые и импульсные моды, а значит, и масштабы, можно увидеть, что теории поменялись местами. То же самое верно и для двух гетеротических теорий [47]. Благодаря этому оказывается возможным использовать теорию возмущений , которая справедлива для теорий с константой связи g много меньшей 1, по отношению к дуальным теориям с константой связи g много большей 1 [47]. Суперструнные теории связаны S-дуальностью следующим образом: суперструнная теория типа I S-дуальна гетеротической SO 32 теории, а теория типа IIB S-дуальна самой себе. U-дуальность Существует также симметрия, связывающая преобразования S-дуальности и T-дуальности. Она называется U-дуальностью и наиболее часто встречается в контексте так называемых U-дуальных групп симметрии в М-теории , определённых на конкретных топологических пространствах.
U-дуальность представляет собой объединение в этих пространствах S-дуальности и T-дуальности, которые, как можно показать на D-бране , не коммутируют друг с другом [49]. Дополнительные измерения Интригующим предсказанием теории струн является многомерность Вселенной. Ни теория Максвелла , ни теории Эйнштейна не дают такого предсказания, поскольку предполагают число измерений заданным в теории относительности их четыре. Первым, кто добавил пятое измерение к эйнштейновским четырём, оказался немецкий математик Теодор Калуца 1919 год [50]. Обоснование ненаблюдаемости пятого измерения его компактности было предложено шведским физиком Оскаром Клейном в 1926 году [51]. Требование согласованности теории струн с релятивистской инвариантностью лоренц-инвариантностью налагает жёсткие требования на размерность пространства-времени, в котором она формулируется. Теория бозонных струн может быть построена только в 26-мерном пространстве-времени, а суперструнные теории — в 10-мерном [16]. Поскольку мы, согласно специальной теории относительности , существуем в четырёхмерном пространстве-времени [52] [53] , необходимо объяснить, почему остальные дополнительные измерения оказываются ненаблюдаемыми. В распоряжении теории струн имеется два таких механизма.
Компактификация Проекция 6-мерного пространства Калаби — Яу , полученная с помощью Mathematica Первый из них заключается в компактификации дополнительных 6 или 7 измерений, то есть замыкание их на себя на таких малых расстояниях, что они не могут быть обнаружены в экспериментах.
Состоять из ничего Что значит «не имеет структуры»? На этот вопрос Стандартная модель ответа не имеет и предпочитает сильно не задумываться. На самом деле есть всего два варианта: либо вещество можно бесконечно делить на мелкие составляющие что маловероятно , либо мы рано или поздно должны дойти до каких-то минимальных объектов, которые образуют все остальные. В качестве решения проблемы структуры частиц в середине прошлого века была предложена теория струн. В ней все частицы состоят из мельчайших «петель» — струн размером всего лишь 10-33 см. В настоящий момент указаний на существование струн получено не было, но это легко объяснить: современные технические возможности просто не позволяют исследовать столь малые объекты. Что, собственно, физики уже давно и с успехом наблюдают. Как по нотам Петли, составляющие частицы, не просто парят в пространстве. В теории струн они колеблются, причем множеством различных способов.
В игре на гитаре в зависимости от толщины и длины струны последнюю мы регулируем, зажимая пальцами музыкант воспроизводит разные ноты. Разные колебания микрострун, в свою очередь, соответствуют разным частицам. Таким образом теория струн даёт единый способ описания всех видов материи.
Так что, если вы соберете все эти частицы обратно вместе, яблоко будет не чем иным, как связкой вибраций в струнах. Если теория струн верна она все еще не доказана , все вещи во вселенной - не что иное, как танцующая вибрирующая космическая симфония струн. Дополнительное измерение На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы.
Теория струн требует от нас принять существование дополнительного измерения во вселенной. Суперсимметрия Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл. Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения. Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн.
Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн. Объединение сил Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика. Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц. Не совсем понятно, как гравитация влияет на мельчайшие частицы. Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн. Открытые и закрытые струны 5 фундаментальных взаимодействий струны типа I Струны в теории струн имеют две формы: открытые и закрытые струны. Две открытые струны могут соединяться с обоих концов, образуя закрытую струну.
Или несколько открытых струн могут присоединиться к одному концу, чтобы сформировать новую открытую струну. Такие струны, известные как струны типа I, могут проходить через 5 основных типов взаимодействий. Эти взаимодействия зависят от способности струны соединять и разделять концы концов.
Войти на сайт
1) «Теория струн» в первоначальном виде сама по себе уже устарела и сейчас это название закрепилось не за первоначальной теорией, а за целым семейством – собственно теория струн, теория суперструн и М-теория. В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Теория струн предполагает объединения идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами.
Струны Вселенной
- Теория струн: расширенное понимание микромира
- Популярно о теории струн – Новости науки
- Теория струн, или Теория всего
- Теория струн. Что это?
- Что такое теория струн простыми словами: объясняем на пальцах
- Теория суперструн
Теория струн для чайников
Поэтому во многих вариантах фигурировало десять измерений, а потом пришлось ввести еще одно, чтобы объединить все пять теорий струн в единую М-теорию, где заглавная М означает «мистическая, материнская, мембранная, матричная». Сделал это обобщение американский физик-теоретик Эдвард Виттен. Он, к слову, до сих пор жив и здоров, как и начавший собирать этот научный пазл Габриеле Венециано. Это невероятное разнообразие идей о математике и физике, — восторженно пишет о своем детище Эдвард Виттен.
Гравитация, о которой догадался еще Ньютон , никак не укладывалась в стандартную модель физики. Разбирая мир до микрочастиц, ученым приходилось делать вид, будто нет никакой силы притяжения между звездами, галактиками, планетами и Солнцем. Теория струн стала вмиг популярна, потому что она выступила объединяющим мостиком между квантовой механикой и общей теорией относительности, которые имели противоречия и никак не могли ужиться друг с другом.
Объяснить все и сразу — это была давняя мечта Эйнштейна и многих других ученых, осознававших, что существующие теории не решают всех загадок макро- и микромира. Некоторые даже думали, что все законы физики возможно объяснить одним уравнением — осталось лишь догадаться, что это за формула. Почти приблизились к этому Джоэль Шерк и Джон Шварц.
Позже они с обидой говорили, что теория струн изначально потерпела неудачу потому, что физики недооценили ее масштаб. Игры нашего разума Какая польза от этих знаний, спросите вы? Ну, во-первых, она раздвигает границы воображения.
Люди задумались над тем, что мир может быть устроен совсем не так, как кажется: возможно, Вселенная суперсимметрична и имеет 11 измерений.
Струны Вселенной Искусно сочетая в себе идеи квантовой механики и общей теории относительности ОТО , струнная теория, как полагают физики, должна построить будущую теорию гравитации. Однако сегодня ученые все больше критикуют теорию струн и все реже уделяют ей внимание из-за огромного количества вопросов, которые она порождает. Однако согласно результатам нового исследования, опубликованного в журнале Letters in Mathematical Physics, теория струн все же, имеет право на существование. Математики из университета штата Юта и Сент-Луисского университета опубликовали результаты математических расчетов о двух ветвях теории струн. В ходе работы исследователи изучили специальное семейство компактных K3-поверхностей — связанных комплексных двумерных поверхностей. Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий. Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях.
Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы.
Если обобщить все ее положения, то получится следующее: микрообъекты существуют только тогда, когда мы смотрим на них. Кроме того, физика квантов говорит также о том, что, если разорвать микрочастицу на две части, то эти две части будут продолжать вертеться по своей оси в одном и том же направлении. А также любые воздействия на первую частицу несомненно передадутся и второй, причем мгновенно и совершенно независимо от удаленности этих частиц. Так в чем же сложность по совмещению понятий двух этих теорий? По теории квантовой физики микромир совершенно неровный, имеет вездесущие шероховатости. Это если говорить обыденным языком. А математики и физики вовлекли свои теории в формулы.
И вот, когда формулы квантовой физики и ОТО попытались соединить, то в ответе получилась бесконечность. Бесконечность в физике равносильна утверждению, что уравнение построено неправильно. Полученное равенство перепроверяли на много раз, но ответ по-прежнему был бесконечностью. Теория струн внесла коренные изменения в будничный мир науки.
В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. На данный момент теория струн вроде бы объясняет все. Все, кроме черных дыр — здесь пока ученые больше предполагают, чем знают.