Новости шквал скоростная подводная ракета

ВА-111 «Шквал» — советский комплекс со скоростной подводной ракетой (ракета-торпеда) М-5. Предназначена для поражения надводных и подводных целей.

СМИ: Российская торпеда «Шквал» произвела революцию в подводной войне

Кроме того, эта вариация характеризуется меньшей дальностью — 10 км против 13 у модернизированного Шквала, который производится для ВМФ России. Шквал-Э применяется только с пусковыми комплексами, унифицированными с российскими кораблями. Работы по конструированию модифицированных вариаций под пусковые системы отдельных заказчиков пока «в процессе»; Шквал-М — усовершенствованная вариация гидрореактивной торпедо-ракеты, завершенная в 2010 году, с лучшими показателями дальности и веса боевой части. Последняя увеличена до 350 килограммов, а дальность составляет чуть более 13 км. Проектировочные работы по совершенствованию оружия не прекращаются. В 2013 году сконструирована еще более совершенная — Шквал-М2. Обе вариации с литерой «М» строго засекречены, сведений о них почти нет. Из этого следует — это обычная ракета, плывущая под водой. Разгонный стартовый работает 4 секунды на жидком топливе, выводит ракету из торпедного аппарата, после чего отстыковывается. В работу вступает маршевый — доходит до крейсерской скорости и доставляет груз в место назначения.

Топливо твердое — металлы литий, магний, алюминий , вступающие в реакцию с окислителем-катализатором — водой. Огромная шумность выпущенной торпеды — это один из главных недостатков, сразу демаскирующий подводную лодку. Вижу цель — не вижу препятствий В качестве системы навигации используется программа, которая задается непосредственно перед пуском торпеды. По пути её нельзя отвлечь никакими помехами и устройства — плывет туда куда сказали и все. Отсутствие системы самонаведения является вторым из главных недостатков. Сюрприз под борт В качестве боевой части применяется 210 кг обычной взрывчатки или ядерной в 150 килотонн. Подрыв ядерной БЧ, даже вблизи судна противника в радиусе 1000 м , несет тяжелые последствия. А именно, разрушение внешних палубных устройств, легкого вооружения от ударной волны и вероятность повреждения от электромагнитного импульса. После такой атаки следует отправляться если не на дно, то на ремонт как минимум.

Целесообразность пуска В стоимость пуска торпеды будет включено не только производство самой торпеды, но и подводной лодки и ценность всего экипажа. Дальность действия составляет 14 км — это первый главный недостаток. В современном морском бою пуск с такого расстояния — это самоубийственное торпедирование для экипажа подводной лодки. Конструкция торпеды Шквал Разработчики Шквала стремились воплотить в жизнь замысел подводной ракеты, от которой никаким маневром не сможет увернуться большой вражеский корабль. Коллективу конструкторов удалось реализовать казавшееся невозможным — создать подводно-торпедное оружие на реактивной тяге, успешно преодолевающее сопротивление воды за счет движения в суперкавитации. Уникальные скоростные показатели стали былью в первую очередь благодаря двойному гидрореактивному двигателю , включающему стартовую и маршевую части. Первая дает ракете максимально мощный импульс при пуске, вторая — поддерживает быстроту движения. Маршевый — твердотопливный, использующий морскую воду в качестве окислителя-катализатора, что позволяет ракете двигаться без винтов в задней части. Суперкавитацией называется перемещение твердого предмета в водной среде с образованием вокруг него «кокона», внутри которого только водный пар.

Такой пузырь значительно снижает сопротивление воды. Надувается и поддерживается он специальным кавитатором, содержащим газогенератор для наддува газов. Самонаводящаяся торпеда поражает цель с помощью соответствующей системы управления маршевым двигателем. Без самонаведения Шквал попадает в точку согласно заданным на старте координатам. Ни подлодка, ни крупный корабль не успевает покинуть указанную точку, поскольку оба сильно уступают оружию по скорости. История создания С конца 40-х и до 60-х велась разработка, исследования, испытания торпед и двигателей к ним, от Ладоги до Иссык-Куля различными институтами. Главные инициаторы идеи были кандидаты Л.

Также отмечалось, что разработка нового изделия будет продолжаться, как минимум, в 2014-16 годах. Кроме того указывалось, как новый проект повлиял на финансовую отчетность предприятия. Технические подробности, однако, не приводились. Прочие данные о проекте «Хищник» пока официально не соглашались. Тем не менее, из неофициальных источников и различных оценок известно, что перспективное изделие должно будет заменить существующие скоростные подводные ракеты СПР ВА-111 «Шквал». Последние состоят на вооружении в течение нескольких последних десятилетий, и уже не в полной мере отвечают современным требованиям. Напомним, СПР «Шквал» представляет собой боеприпас, предлагаемый для использования подводными лодками и надводными кораблями, оснащенными торпедными аппаратами калибра 533 мм. В конструкции изделия используются несколько оригинальных технических решений, позволяющих получать весьма высокие характеристики. СПР комплекса «Шквал» оснащается обтекаемым корпусом цилиндрической формы с конической головной частью. Головной обтекатель оснащается специальным прибором-кавитатором. При помощи газогенератора и управляемого диска это устройство при движении образует газовую каверну вокруг корпуса ракеты. Именно образование полости, окружающей корпус изделия и резко сокращающей сопротивление среды, позволяет развивать высокую скорость. Непосредственно за достижение требуемых скоростей отвечает реактивный двигатель на твердом топливе. Для первоначального разгона используется сбрасываемый стартовый двигатель, после чего в работу включается маршевый. Основная силовая установка имеет заряд гидрореагирующего твердого топлива. Ракета имеет автономную систему управления, отслеживающую перемещения изделия и компенсирующую отклонение от заданного курса. В качестве органов управления применяются треугольные рули, выдвигаемые из корпуса после выхода из торпедного аппарата. Возможность самонаведения отсутствует. По некоторым данным, в системах управления предусматривается режим доворота на цель после старта с носителя. Изначально боеприпас комплектовался специальной боевой частью мощностью 150 кт, при помощи которой планировалось компенсировать возможный промах. Впоследствии была создана новая фугасная боевая часть, мощность которой эквивалентна 210 кг тротила. СПР комплекса ВА-111 имеет длину 8,2 м т калибр 533 мм.

В статье «Национального интереса» эмоционально говорится, что «суперкавитирующая торпеда» способна «быстро покорить весь мир». В материале NI уточняется, что первые версии торпеды были неуправляемыми. Снаряд нового поколения использует суперкавитацию для спринтерского движения в район расположения объекта и затем снижает скорость для его точечного поражения. Американский журнал уточняет, что сверхскоростные торпеды производят очень много шума и выдают местоположение выпустившего их корабля, но огромная скорость в 200 узлов и ядерная боеголовка полностью перекрывают этот недостаток в морском бою.

Существует масса средств противодействия торпедам - от "шумелок", которые обманывают головку самонаведения которая реагирует на звук винтов надводных кораблей до обстрела торпеды специальными боеприпасами, взрывающими боевую часть. В связи с этим было решено разработать такую торпеду, среагировать на которую враг не успеет, и которая гарантированно поразит цель при выходе на позицию атаки. Так родилась идея ракето-торпеды, которая двигалась бы под водой со скоростью 300-350 километров в час, почти как легкий самолет. Разработка «Шквала» началась в 1960 году в НИИ-24 ныне — Государственное научно-производственное предприятие «Регион», входящее в корпорацию «Тактическое ракетное вооружение». Первый опытный образец торпеды был построен уже в 1964 году. Тогда же и начались его испытания на озере Иссык-Куль, а через два года — на Черном море в районе Феодосии. Испытания были признаны неудовлетворительными. И конструкторы, шаг за шагом, учитывая накапливаемый отрицательный опыт, создавали все новые и новые модели. Но и они не вписывались в жесткие рамки технического задания. Лишь шестой опытный образец выдержал полный цикл испытаний и был рекомендован к серийному производству. В 1977 году торпеда была принята на вооружение подводного флота ВМФ. Столь чудовищную скорость, в возможность развития которой в водной среде долго не верили американцы, была достигнута за счет кавитационного эффекта. В результате в конце 50-х годов ученые создали строгую теорию кавитационного движения и сформулировали рекомендации по использованию его принципов при создании скоростных подводных аппаратов. Сущность кавитационного эффекта состоит в том, что физическое тело в данном случае — торпеда перемещается в воздушном пузыре. На носу торпеды-ракеты устанавливается специальная деталь - кавитатор. Она представляет собой металлическую пластину эллиптической формы с заточенными краями и расположена перпендикулярно оси торпеды. Во время движения она меняет положение относительно оси торпеды для создания подъемной силы в носовой части. Правда одного носового кавитатора здесь недостаточно, а потому ему помогает встроенный в торпеду газогенератор, увеличивающий пузырь-каверну до необходимых размеров, чтобы вся конструкция от носа до кормы была им охвачена. Тем самым торпеда во время движения преодолевает сопротивление не воды, а воздуха. При этом в роли движителя выступает не винт и не водомет, а реактивная струя твердотопливного реактивного двигателя. То есть, по сути, получается этакий подводный реактивный полет. Причем, двигательная установка у «Шквала» двухступенчатая. Вначале твердотопливный ускоритель разгоняет торпеду до скорости, необходимой для проявления кавитационного эффекта. После чего включается маршевый двигатель — гидрореактивный прямоточный. Не менее серьезной проблемой, чем реализация кавитационного движения, для конструкторов стало создание подводного реактивного двигателя.

Реактивная торпеда “Шквал” – Давайте учиться на своих ошибках

Самая быстрая отечественная подводная ракета ВА-111 «Шквал». Описание: Комплекс вооружения со скоростной подводной ракетой «Шквал-Э» предназначен для поражения надводных целей, устанавливается на надводных кораблях, подводных лодках, стационарных пусковых установках, в т.ч. на подводных. Шквал (скоростная подводная ракета). Скоростная подводная ракета (ракето-торпеда) ВА-111 "Шквал" после модернизации сможет действовать на глубине и станет еще немного быстрее, сообщил ведущий российский разработчик торпедного оружия академик Шамиль Алиев.

Военный эксперт впечатлился новой российской торпедой «Шквал»

Оружие ВМФ России: Шквал, обгоняющий время Модернизация суперкавитационной торпеды Шквал заложена в российскую госпрограмму вооружений на 2018-2025 годы. Об этом недавно сообщил руководитель корпорации Тактическое ракетное вооружение Борис Обносов. Достоинства скоростной подводной ракеты очевидны: движущийся со скоростью в 200 узлов в час (375 км/ч) снаряд поразит любой корабль прежде, чем тот сможет применить средства самообороны. В теории это позволит подводным кораблям двигаться со скоростью свыше скорости звука в воде и делать это бесшумно. Издательство 19FortyFive заявило, что российская скоростная торпеда ВА-111 "Шквал" представляет угрозу кораблям и подлодкам ВМС США. Скорость данной ракеты составляет 370 километров в час, что в превышает скорость других ракет в четыре раза. ВА-111 «Шквал» — советский комплекс со скоростной подводной ракетой (ракета-торпеда) М-5[1]. Предназначена для поражения надводных[2] и подводных целей. Входит в состав комплекса вооружения, размещаемого на надводном корабле.

Российская скоростная торпеда «Шквал» создала угрозу для военного флота США

Полезное Смотреть что такое "Шквал скоростная подводная ракета " в других словарях: Ракета-торпеда — противолодочная одноступенчатая твердотопливная ракета, доставляющая в район цели боевую часть малогабаритную самонаводящуюся торпеду. В расчетной точке торпеда отделяется от носителя и спускается на тормозном парашюте. После отделения… … Википедия Шквал торпеда — Шквал схема «Шквал» советская скоростная подводная ракета.

Его авторы, в частности, пишут, что «Шквал» передвигается в воде, подобно торпеде, при этом создает «воздушный карман», который уменьшает трение и позволяет ракете практически «пролетать» под водой на очень высокой скорости.

Он отмечает, что «Шквал» может развивать скорость в 4-5 раз выше, чем у обычных подводных ракет.

Воплотить эту идею в жизнь смогли только в Германии перед началом следующей мировой войны. Современные торпеды представляют серьезную угрозу для любого надводного корабля и подводной лодки. Они развивают скорость до 60-70 узлов, могут поражать цели на расстоянии более ста километров, наводятся с помощью гидролокатора или используя физические характеристики судна. Также широко распространены торпеды, которые наводятся по специальному оптоволокну с надводного судна или подлодки. В 60-х годах прошлого столетия в СССР началась разработка необычной торпеды «Шквал», которая кардинально отличалась от любых аналогов.

Через год начались испытания на озере Иссык-Куль, доработка изделия заняла более десяти лет. В 1977 году ракето-торпеду приняли на вооружение, сначала она имела ядерную боевую часть мощностью 150 кт, затем торпеда получила боеголовку с обычным взрывчатым веществом. Она и сегодня находится на вооружении российских ВМС. В России был произведен экспортный вариант — «Шквал-Э». Ее стоимость 6 млн долларов. Есть информация о создании новой, более совершенной модификации реактивной торпеды, которая имеет больший радиус действия и более мощную боевую часть.

Следует отметить, что информации о «Шквале» довольно мало, многие сведения до сих пор являются секретными. Еще нужно сказать, что мнения об этой торпеде вернее, об эффективности ее применения весьма разнятся. В прессе обычно говорят о «Шквале», как о супер-оружии, но многие эксперты не поддерживают эту точку зрения, считая «Шквал» бесполезным в реальных боевых условиях. Основным уникальным отличием «Шквала» от других торпед является ее немыслимая скорость: она способна развивать под водой более 200 узлов. Достигнуть таких показателей в водной среде, которая имеет высокую плотность весьма непросто. Изюминкой «Шквала» является его двигатель: если обычная торпеда движется вперед за счет вращения винтов, то «Шквал» в качестве силовой установки использует реактивный двигатель.

Однако для развития такой немыслимой скорости под водой недостаточно и реактивного движителя. Для достижения таких скоростных показателей «Шквал» использует эффект суперкавитации, во время движения вокруг торпеды возникает воздушный пузырь, который значительно уменьшает сопротивление внешней среды. Конструкция и принцип работы Конструкция торпеды М-5 на фото: Торпеда движется в толще воды под действием тяги гидрореактивного прямоточного двигателя. Двигатель с гидрореагирующим топливом, стартовый и маршевый. Стартовый РДТТ за 4 секунды разгоняет торпеду до крейсерской скорости, а затем отстреливается. Далее продолжает работу маршевый двигатель, импульс данного двигателя достигается путем применением заборной воды в качестве рабочего материала и окислителя, а топливом использовали гидрореагирующие металлы алюминий, магний, литий.

Кавитатор торпеды. Из-за огромного сопротивления воды торпеда не могла обеспечить высокую скорость, даже посредством ракетного двигателя. Прорывом в военных технологиях стал эффект кавитации в газовом пузыре, окружающем корпус в торпеде «Шквал». Формирует каверну устройство-кавитатор в носовой части торпеды. Кавитатор представляет собой пластинку с заточенными краями немного наклоненную к оси торпеды во фронтальном сечении он круглый для создания подъемной силы на носу на корме подъемная сила создается рулями. Чтобы получить газовый пузырь нужный размеров, в «Шквале» используется дополнительный наддув.

Сразу за кавитатором в носу торпеды расположен ряд отверстий, через которые специальный газогенератор выдает дополнительные порции газов. Это и позволяет пузырю охватить весь корпус торпеды от носа до кормы. Система управления и наведение — носитель корабль, береговая ПУ при обнаружении подводного или надводного объекта отрабатывает характеристики скорости, дистанции, направление движения, после чего отправляют полученную информацию в автономную систему наведения, ГСН у ракеты отсутствует. Торпеду невозможно отвлечь от цели различными помехами и объектами, она просто выполняет программу, которую задал ей автопилот. Преимущества и недостатки Без сомнения, ракето-торпеда «Шквал» — это уникальное техническое изделие, над созданием которого работали специалисты различных областей знаний. Для ее создания понадобилось создавать новые материалы, конструировать двигатель, работающий на других принципах, изучать явление кавитации в применении к реактивному движению.

Кроме того, с помощью противокорабельных ракет им удалось нанести удар по британскому нефтяному танкеру Andromeda Star. Издание CBS News пишет, что стоимость одного экземпляра равна примерно 30 млн долларов. Подчеркивается, что американские дроны, базирующиеся в регионе, призваны защищать международную торговлю в акватории Красного моря. Так, MQ-9 Reaper был уничтожен хуситами в ноябре.

Тогда представитель движения Яхья Сариа сообщил, что силами ПВО удалось сбить беспилотник Штатов, «осуществлявший враждебные разведывательные действия» над территориальными водами страны для «поддержки израильского режима». В феврале заместитель пресс-секретаря Пентагона Сабрина Сингх подтвердила , что хуситы сбили второй дрон. По ее словам, ликвидация аппарата происходила с помощью ракеты класса «земля-воздух». Между тем, по данным открытых источников, всего йеменским повстанцам начиная с 2019 года удалось сбить четыре MQ-9 Reaper.

Напомним, американский аппарат является модульным разведывательно-ударным дроном, разработанным компанией General Atomics Aeronautical Systems. Первый экспериментальный полет состоялся в 2001 году. От предшественника он отличается большей скоростью. Максимальная высота движения — 15 тыс.

Наибольшая продолжительность непрерывного полета — 24 часа. Об этом он заявил в беседе с французской молодежью. Макрон напомнил, что французская военная доктрина допускает применение ядерного оружия в тех случаях, когда существуют угрозы жизненно важным интересам страны. При этом он подчеркнул, что оценка этих интересов происходит с точки зрения обороны всей Европы, поэтому нужно обсудить противоракетную оборону, оружие большой дальности и ядерное оружие для стран, которые «им обладают или имеют на своей территории американские ядерные вооружения».

Одна из них действительно заключается в эффективности российских дронов против бронированной техники, сказал газете ВЗГЛЯД военный эксперт Александр Бартош. Если говорить о танках Abrams, то больше всего проблем им создают «Ланцеты». За время спецоперации они продемонстрировали высокую эффективность в борьбе с бронированными целями. Так как аппарат работает в паре с дроном-разведчиком, беспилотник способен сначала выявить цель, а затем нанести удар аккурат в уязвимое место танка», — сказал Александр Бартош, член-корреспондент Академии военных наук.

Впрочем, по мнению собеседника, российские дроны хотя и являются основной причиной отвода Abrams, есть еще несколько немаловажных аспектов. Эксперт допускает, что решение было принято также из-за складывающегося не в пользу ВСУ положения на поле боя. Пентагон попросту опасается, что кадры с горящей американской техникой, которую они представляют как неуязвимую, нанесут существенный ущерб коммерческим интересам США», — уточнил Бартош. Кроме того, ВСУ могут на время спрятать танки в расчете на то, что ими можно будет воспользоваться при отражении полномасштабного наступления ВС России, добавил спикер.

По словам Бартоша, противник опасается продвижения российских военных в районе Одессы и Харькова. Как показали предыдущие месяцы, мы успешно уничтожаем эту технику», — подчеркнул военный эксперт. Существует и третья причина отвода танков. Собеседник не исключает, что в Пентагоне решили продумать более надежную систему защиты от дронов.

При этом ранее противник не прибегал к сооружению тех навесов, которые российские танкисты делают для наших танков. Бартош напоминает, что до определенного момента на Западе высмеивали наши конструкции, получившие прозвище «мангал». Если раньше они считали защитные конструкции малоэффективным средством и не хотели демонстрировать свою слабость перед возможными атаками беспилотников, то теперь они начнут копировать российский опыт», — считает аналитик. По информации Associated Press , одной из причин такого решения стала возросшая возможность российских дронов быстро обнаруживать и уничтожать эту технику.

AP отмечает, что на брифинге 25 апреля высокопоставленный представитель Пентагона заявил — распространение беспилотников в зоне боевых действий на Украине означает, что «нет открытой местности, по которой вы могли бы просто проехать, не опасаясь быть обнаруженными».

Реактивная торпеда “Шквал” – Давайте учиться на своих ошибках

Он отмечает, что «Шквал» может развивать скорость в 4-5 раз выше, чем у обычных подводных ракет. В список лучшего подводного оружия с точки зрения We Are The Mighty была внесена еще одна российская ракета — Т-5, также в него попали зарубежные торпеды: французские F-21 и американские серии MK.

На самом деле, «Шквал» — скорее ракета, чем торпеда иногда его так и называют — «ракета-торпеда» , и она не плывет, а летит в газовом пузыре каверне , который сама и создает. Как работает суперкавитация В носовой части ракеты-торпеды «Шквал» расположена специальная деталь — кавитатор. Это эллиптической формы плоская толстая пластина с заточенными краями. Кавитатор немного наклонен к оси торпеды во фронтальном сечении он круглый для создания подъемной силы на носу на корме подъемная сила создается рулями. При этом гидродинамическое сопротивление движению значительно уменьшается.

Поэтому в «Шквале» используется дополнительный «наддув»: сразу за кавитатором в носовой части расположены отверстия — дюзы, через которые каверна «наддувается» от отдельного газогенератора. Это позволяет увеличить каверну и охватить весь корпус ракеты-торпеды — от носа до кормы. Обратная сторона медали Революционные принципы, положенные в основу конструкции «Шквала», имеют и свою обратную сторону. Одна из них — невозможность обратной связи, а стало быть, и отсутствие системы самонаведения: излучение гидролокаторов не может «пробить» стенки газового пузыря. Вместо этого торпеду программируют до запуска: в систему управления вводят координаты цели. При этом, разумеется, учитывают упреждение, то есть рассчитывают вероятное местонахождение цели в момент поражения торпедой.

Торпеда движется строго по прямой к заранее рассчитанной точке встречи с целью.

В отличие от повреждений, вызванных попаданием ПКР, где еще актуальны такие проблемы, как «тушение пожаров» и «борьба за живучесть», встреча с торпедой ставит перед несчастными моряками простой вопрос: где спасательные плотики и надувные жилеты? Списанный автралийский фрегат уничтожен торпедой Mark. Повреждения в подводной части не сулят морякам ничего хорошего и, обычно, приводят к быстрой гибели корабля. Наконец, торпеда — основное оружие подводных лодок, а это превращает её в особенно опасное средство морского боя.

Русский ответ В годы Холодной войны на море сложилась весьма абсурдная и неоднозначная ситуация. Американский флот, благодаря палубной авиации и совершенным ЗРК, сумел создать исключительную по своей прочности морскую систему ПВО, делавшую американские эскадры практически неуязвимыми для средств воздушного нападения. Русские поступили в лучших традициях Сунь Цзы. Древний китайский трактат «Искусство Войны» гласит: иди туда, где меньше всего ждут, атакуй там, где хуже подготовились. Действительно, зачем «лезть на вилы» палубных истребителей и современных зенитных комплексов, если можно ударить из-под воды?

В этом случае АУГ теряет свой главный козырь — подлодкам совершенно безразлично, сколько на палубах «Нимицев» перехватчиков и самолетов дальнего радиолокационного обнаружения. А применение торпедного оружия позволит избежать встречи с грозными системами ЗРК. Многоцелевой атомоход проекта 671РТМ К Янки оценили русский юмор и принялись остервенело искать средства для предотвращения подводных атак. Кое-что им удалось — уже к началу 1970-х годов стало ясно, что торпедная атака АУГ имеющимися средствами сопряжена со смертельным риском. Янки организовали сплошную зону ПЛО в радиусе 20 миль от авианосного ордера, где основная роль отводилась подкильным гидролокаторам кораблей охранения и противолодочным ракетоторпедам ASROC.

Анализируя сложившуюся ситуацию, советские моряки справедливо рассудили, что шанс быть обнаруженным противолодочной авиацией сравнительно невелик — любая АУГ, конвой или отряд боевых кораблей вряд ли способны постоянно держать в воздухе более 8-10 машин. Слишком мало, чтобы контролировать десятки тысяч квадратных километров прилегающего водного пространства. С обнаружением и целеуказанием проблем не возникало — грохот винтов крупных корабельных соединений был отчетливо слышен за сотню километров. Тяжелая торпеда 65-76 "Кит". Длина- 11,3 м.

Диаметр - 650 мм. Масса - 4,5 тонны. Скорость - 50 уз. Дальность хода - 50 км на 50 узлах или 100 км на 35 узлах. Масса боевой части - 557 кг.

Наведение осуществляется по кильватерному следу Определившись с выбором оружия, моряки обратились за помощью к представителям промышленности и были немало удивлены полученным ответом. Оказалось, что советский ВПК действовал на упреждение и вел разработку «дальнобойных» торпед еще с 1958 года.

Кое-что им удалось — уже к началу 1970-х годов стало ясно, что торпедная атака АУГ имеющимися средствами сопряжена со смертельным риском. Янки организовали сплошную зону ПЛО в радиусе 20 миль от авианосного ордера, где основная роль отводилась подкильным гидролокаторам кораблей охранения и противолодочным ракетоторпедам ASROC.

Анализируя сложившуюся ситуацию, советские моряки справедливо рассудили, что шанс быть обнаруженным противолодочной авиацией сравнительно невелик — любая АУГ, конвой или отряд боевых кораблей вряд ли способны постоянно держать в воздухе более 8-10 машин. Слишком мало, чтобы контролировать десятки тысяч квадратных километров прилегающего водного пространства. С обнаружением и целеуказанием проблем не возникало — грохот винтов крупных корабельных соединений был отчетливо слышен за сотню километров. Тяжелая торпеда 65-76 "Кит".

Длина- 11,3 м. Диаметр - 650 мм. Масса - 4,5 тонны. Скорость - 50 уз.

Дальность хода - 50 км на 50 узлах или 100 км на 35 узлах. Масса боевой части - 557 кг. Наведение осуществляется по кильватерному следу Определившись с выбором оружия, моряки обратились за помощью к представителям промышленности и были немало удивлены полученным ответом. Оказалось, что советский ВПК действовал на упреждение и вел разработку «дальнобойных» торпед еще с 1958 года.

Разумеется, особые возможности потребовали особых технических решений — габариты супер-торпеды вышли за рамки привычных торпедных аппаратов калибра 533 мм. В то же время, достигнутая скорость хода, дальность стрельбы и масса боевой части привела моряков в неописуемый восторг. Эти завихрения не что иное, как кильватерный след — возмущения воды, остающиеся за кормой идущего корабля. Один из главных демаскирующих факторов, «стоячая волна» различимая даже спустя много часов после прохода крупной морской техники.

Через несколько минут бездушный робот привезет в подарок американским морякам 557 килограммов тротила. Экипажи американских кораблей приходят в смятение: на экранах гидролокаторов вспыхнула и засияла страшная засветка — скоростная малоразмерная цель. До последнего момента остается неясным: кому же достанется «главный приз»? Использовать универсальную артиллерию бесполезно — идущая на глубине 15 метров, «толстая торпеда» трудно обнаружима на поверхности.

В воду летят малогабаритные противолодочные торпеды Mk. Выстрел торпедой Mk. Полный назад! Оглушительный грохот взрыва, и за кормой авианосца исчезает эскортный крейсер «Белкнап».

Разработчики предложили усовершенствовать ракеты "Шквал"

Торпеда ракета шквал скорость. Самая быстрая отечественная подводная ракета ВА-111 «Шквал». Скоростная подводная ракета (ракето-торпеда) ВА-111 "Шквал" после модернизации сможет действовать на глубине и станет еще немного быстрее, сообщил ведущий российский разработчик торпедного оружия академик Шамиль Алиев. Принцип применения «Шквала» Применение данной подводной ракеты заключается в следующем: носитель (корабль, береговая ПУ) при обнаружении подводного или надводного объекта отрабатывает характеристики скорости, дистанции, направление движения. Если обычная торпеда может разогнаться под водой до 60-70 узлов, то «Шквал» в буквальном смысле слова летит в толще морской воды со скоростью 200 узлов (370 километров в час), что является абсолютным рекордом для любого подводного объекта. Самая быстрая отечественная подводная ракета ВА-111 «Шквал».

Шквал - Скоростная Торпеда Времен СССР

Эскиз проекта подготовили к 1963 году, тогда же проект утверждают к разработке. Проектные данные новой торпеды: - дальность применения до 20 километров; - скорость на марше почти 200 узлов 100 метров в секунду ; - унификация под стандартные ТА; Принцип применения «Шквала» Применение данной подводной ракеты заключается в следующем: носитель корабль, береговая ПУ при обнаружении подводного или надводного объекта отрабатывает характеристики скорости, дистанции, направление движения, после чего отправляют полученную информацию в автопилот ракето-торпеды. Что примечательно - ГСН у подводной ракеты нет, она просто выполняет программу, которую задает ей автопилот. Вследствие этого ракету невозможно отвлечь от цели различными помехами и объектами. Испытания скоростной ракетной торпеды Испытания первых образцов новой ракето-торпеды начинаются в 1964 году. Испытания проходят в водах Иссык-Куля. В 1966 году начинаются испытания «Шквала» на Черном море, возле Феодосии с дизельной подлодки С-65. Подводные ракеты постоянно дорабатываются.

Из-за чего применять их предполагалось на ограниченной дистанции. Однако новейшие российские разработки устранили эту проблему и позволяют торпеде снижать скорость для корректировки траектории, после чего режим максимальной скорости может быть снова запущен. Единственным минусом, который пока остаётся в данной торпеде, — высокий уровень шума. Впрочем, как отмечают авторы статьи, угроза обнаружения судна, которое запустит "Шквал", будет полностью устранена, как только торпеда за короткое время достигнет цели и гарантированно поразит её. Как сообщал Лайф, похожими со "Шквалом" характеристиками обладает перспективная российская разработка — беспилотный глубоководный аппарат, оснащённый ядерной энергетической установкой "Посейдон". Американские аналитики выяснили, что ядерного заряда "Посейдона" будет достаточно для уничтожения крупных городов и небольших стран.

Завеса тайны "Шквала" стала приоткрываться только к середине 1990-х годов. Но как советские инженеры справились с законами физики и совершили прорыв в скорости, когда большинство подводных снарядов редко двигались быстрее 50 узлов? Образование воздушного кармана вокруг торпедыГидрореактивный двигатель и суперкавитация 91 Как правило для движения в торпедах применяются гребные винты или насосно-компрессорные установки. В "Шквале" же от этой идеи отказались и поставили туда ракетный двигатель. Уже этого было достаточно, чтобы существенно повысить скорость торпеды, но при движении в воде возникают серьёзные проблемы, вызванные лобовым сопротивлением жидкости. Что же делать для его снижения? Решение казалось удивительно тривиальным и очевидным: раз торпеда не может двигаться в воде, её [воду] следует чем-то заменить или убрать. Но куда деть воду с пути объекта, находящегося посреди океана? Конструкторам "Шквала" удалось справиться и с этим вызовом за счёт вывода из носовой части горячих газов ракетного двигателя, которые бы, во-первых сами по себе создавали бы газовый карман, а во-вторых, превращали воду перед торпедой в пар за счёт высокой температуры. При движении торпеды вода у головной части будет нагреваться и испаряться. Данное явление имело название суперкавитация.

Мы решили вспомнить, каким образом военные используют кавитацию себе на пользу. Во второй половине XIX века начали появляться пароходы с гребными винтами, способные развивать скорость в несколько десятков узлов. Эти машины могли быстро перевозить пассажиров и вообще выгодно отличались от медлительных парусных судов. Однако вскоре моряки столкнулись с неприятным эффектом: поверхность гребных винтов через некоторое время эксплуатации становилась шершавой и разрушалась. Гребные винты тогда изготавливались из стали и сами по себе быстро корродировали в воде, поэтому их разрушение поначалу списывали на неблагоприятное воздействие морской воды. Кавитация — физическое явление, при котором в жидкости позади быстро движущегося объекта возникают мельчайшие пузырьки, заполненные паром. Например, при вращении гребного винта такие пузырьки появляются позади лопастей и на их задней кромке. Появившись, эти пузырьки практически моментально схлопываются и образуют ударную волну. От каждого пузырька в отдельности она совсем незначительна, однако при длительной эксплуатации эти ударные микроволны, помноженные на количество пузырьков, приводят к разрушению конструкции винтов. Шершавые, растерявшие часть лопасти винты существенно теряют в своей эффективности. Современные гребные винты изготавливаются из специального сплава — куниаля. Это сплав на основе меди с добавлением никеля и алюминия. Сплав по прочности соответствует стали, но не подвержен коррозии; гребные винты из куниаля могут находиться в воде десятилетиями без какого-либо вреда. Тем не менее, даже эти современные гребные винты подвержены разрушению из-за кавитации. Но специалисты научились продлевать срок их службы, создав гидроакустическую систему. Она определяет начало кавитации, чтобы экипаж мог снизить частоту вращения винтов для предотвращения образования пузырьков. В 1970-х годах для кавитации было найдено полезное применение. В отличие от обычных торпед, использовавшихся тогда и стоящих на вооружении сегодня, «Шквал» может развивать колоссальную скорость — до 270 узлов около 500 километров в час. Для сравнения, обычные торпеды могут развивать скорость от 30 до 70 узлов в зависимости от типа. При разработке ракеты-торпеды «Шквал» исследователи благодаря кавитации сумели избавиться от сопротивления воды, мешающего кораблям, торпедам и подводным лодкам развивать большие скорости. Любой даже обтекаемый объект под водой имеет большое лобовое сопротивление. Кроме того, при движении под водой поверхности объекта смачиваются и на них появляется тонкий ламинарный слой с большим градиентом скорости — от нуля у самой поверхности объекта до скорости потока на внешней границе. Такой ламинарный слой создает дополнительное сопротивление. Попытка преодолеть его, например мощностью двигателей, приведет к увеличению нагрузок на гребные винты и быстрому износу корпуса подводного объекта из-за деформации. Советские инженеры во время экспериментов выяснили, что кавитация позволяет существенно снизить лобовое сопротивление подводного объекта. Ракета-торпеда «Шквал» получила ракетный двигатель, топливо в котором начинает окисляться при контакте с морской водой. Этот двигатель может разгонять ракету-торпеду до большой скорости, на которой в носовой части «Шквала» начинает образовываться кавитационный пузырь, полностью обволакивающий боеприпас.

Подводная ракета типа "Шквал"

В «Шквале» применялся ракетный двигатель. советская подводная ракета (ракета-торпеда) "Шквал", которая развивала скорость 340-370 км/ час в зависимости от плотности водной среды. Легендарная советская торпеда ВА-111 "Шквал" произвела революцию в подводной гонке вооружений, развив беспрецедентную скорость в 200 узлов (370 км/ч) благодаря ракетному двигателю и использованию явления кавитации (или суперкавитации).

Похожие новости:

Оцените статью
Добавить комментарий