Новости где хранится информация о структуре белка

19 ответов - 0 раз оказано помощи. Хранится в ядре, синтез РНК. Считалось, что распределение белков внутри бактериальной клетки определяется исключительно свойствами самих белковых молекул. Ученые из Израиля показали, что «адрес доставки» будущего белка закодирован уже в матричной РНК (мРНК). Где вырабатывается белок в организме? В печени синтезируются многие необходимые организму белки, а вырабатываемые ею пищеварительные ферменты участвуют в их усвоении. Белки хранят информацию. Первичная структура белка. Каждая белковая молекула в живом организме характеризуется определенной последовательностью аминокислот, которая задается последовательностью нуклеотидов в структуре гена, кодирующего данный белок.

Где хранится информация о структуре белка

Структура белка • Биология, Биохимия • Фоксфорд Учебник Информация о первичной структуре белка содержится в его генетической последовательности.
Урок: «Биосинтез белка» Структура человеческого белка интерлейкина-12, связанного с его рецептором / UW Medicine Institute for Protein Design.
Биосинтез белка и генетический код: транскрипция и трансляция белка Информация о первичной структуре белка закодирована в. Первичная структура белка закодирована в молекуле.
Основа белка: где находится информация о первичной структуре Банки данных о белках. UniProt – последовательности и аннотации RefSeq – последовательности и аннотации PDB – пространственные структуры PubMed – публикации – еще много чего.
Найден ключ от замка жизни: биолог Северинов о главном прорыве года Ответы 1. Хранится в ядре, синтез РНК. Автор: joker66.

Где хранится белок в организме?

Информация о первичной структуре белка хранится в. Наследственная информация о первичной структуре белка. Информация о первичной структуре белка хранится в. Наследственная информация о первичной структуре белка. Правильный ответ на вопрос«Где хранится информация о структуре белка? и где осуществляется его синтез » по предмету Биология. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Однако, из трехмерной структуры можно получить информацию о первичной структуре белка путем извлечения последовательности аминокислот из координат атомов.

Для публикации сообщений создайте учётную запись или авторизуйтесь

  • Остались вопросы?
  • Генетический код. Биосинтез белка • СПАДИЛО
  • Биосинтез белка и генетический код
  • Проводим опознание
  • Чему соответствует «основа белка»?

Найден ключ от замка жизни: биолог Северинов о главном прорыве года

Белки являются строительными блоками жизни, и их форма тесно связана с их функциями. Возможность предсказать структуру белка дает ученым лучшее понимание того, что он делает и как он работает. Мы надеемся, что эта расширенная база данных поможет огромному количеству ученых в их важной работе и откроет совершенно новые возможности для научных открытий. База данных белковых структур AlphaFold, которая находится в свободном доступе для научного сообщества, была расширена с почти одного миллиона белковых структур до более чем 200 миллионов структур, охватывающих почти каждый организм на Земле , чей геном был секвенирован. Расширение включает в себя предсказанные формы для самого широкого круга видов, включая растения, бактерии, животных и другие организмы, открывая новые направления исследований в области наук о жизни. Демис Хассабис, основатель и генеральный директор DeepMind, сказал: «Мы были поражены скоростью, с которой AlphaFold уже стал важным инструментом для сотен тысяч ученых в лабораториях и университетах по всему миру.

Игра является частью исследовательского проекта Вашингтонского университета, в ней люди могут по-разному укладывать или сворачивать молекулу, играя с ее формой. Игровой процесс не сложен, цепочка аминокислот в нем напоминает кубик Рубика, поэтому в исследовании принимали участие люди без биохимического образования: от школьников до водителей-дальнобойщиков. Гражданская наука Сказанное выше — хороший пример гражданской науки, когда в научный процесс интегрируются не только ученые, но и обычные люди.

Такие проекты развиваются и в России, к примеру, школьники привлекаются к сбору данных для научных исследований. Подобная интеграция ведет к демократизации и глобализации науки. К примеру, одной из упомянутых выше программ — AlphaFold — может воспользоваться любой пользователь интернета, способный правильно сформулировать запрос. Что это значит для медицины и для жизни Пандемия коронавируса вызвала интерес людей к биологии — все с нетерпением и вниманием следили за разработкой и тестированием вакцин, а также первыми результатами их применения. Вакцина или лекарство прямого действия не зависит от мутаций, которые накапливает вирус. Мутация вируса — это изменение его РНК, вместо одной аминокислоты возникает другая, и это меняет его свойства. Эти изменения касаются и поверхности вирусного белка: меняется его форма, за счет этого важные для нас антитела перестают узнавать вирус и бороться с ним. Если же предсказать данное изменение и заранее знать трехмерную структуру белка, может быть разработано лекарство, взаимодействующее точечно с измененным участком поверхности.

Таким образом, предсказание трехмерной структуры белков значительно ускоряет процесс разработки лекарств. Новое открытие в биологии позволяет по-другому взглянуть на жизненные процессы. Мы переходим от понимания жизни как набора последовательности нуклеиновых кислот генома к набору трехмерных структур молекул. С развитием технологий станет возможно не только предсказать, какую форму примет молекула, но и с чем она будет способна эффективно взаимодействовать. Влияя на такое взаимодействие, ученые получат возможность влиять на само поведение клетки, а это, в свою очередь, позволит воздействовать не только на болезни, но и на такие процессы, как старение, когнитивные функции и т. В конечном счете предсказание трехмерных структур белков позволяет существенно продвинуться в понимании самой жизни и управлении ею.

РНК РНК выполняет множество функций в организме, включая участие в синтезе белков, регуляцию генной экспрессии и передачу генетической информации между клетками. Одним из ключевых элементов в месте хранения информации о первичной структуре белка является транспортная РНК. Транспортная РНК является молекулой, которая переносит аминокислоты, необходимые для синтеза белков, к рибосомам. Она обладает уникальной структурой, которая позволяет ей связываться с определенным аминокислотами и распознаваться рибосомой для правильного синтеза белка. Транспортная РНК также играет важную роль в определении последовательности аминокислот в белке, так как она преобразует информацию, содержащуюся в молекуле мессенджер-РНК, в соответствующую последовательность аминокислот. Использование молекул РНК для хранения информации о первичной структуре белка обеспечивает гибкость и эффективность в процессе синтеза белков, что является важным механизмом для жизнедеятельности клеток и организмов в целом. Белки Первичная структура белка представляет собой конкретную последовательность аминокислот, связанных вместе пептидными связями. Эта последовательность определяется генетической информацией, содержащейся в ДНК. Места хранения информации о первичной структуре белка включают геном ДНК и последующую транскрипцию и трансляцию генов.

Где хранится информация в клетке? Начнем с того, где она в клетке хранится. Остальное в митохондриях и хлоропластах в этих ребятах протекает фотосинтез. ДНК — это огромный полимер, состоящий из мономерных звеньев. Где хранится генетическая информация у вирусов? Геном — генетический состав клетки, вируса. На молекулярном уровне это индивидуальная нуклеиновая кислота ДНК или РНК , которая является носителем, хранящем генетическую информацию. Где и как записана наследственная информация в клетке? То есть стало ясно, что наследственная информация записана в молекулах ДНК в виде последовательности из четырех «букв» — нуклеотидов. Где содержится наследственная информация? Ядро — это важнейшая часть клетки, которая содержит генетическую информацию молекулы ДНК , контролирует все процессы жизнедеятельности и определяет способность клетки к самовоспроизведению и передаче наследственной информации.

Найден ключ от замка жизни: биолог Северинов о главном прорыве года

Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах. Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык. На вопросы могут отвечать также любые пользователи, в том числе и педагоги.

В различных отраслях промышленности — например, химической и пищевой, а в перспективе и энергетической, и остальных, — также используются белки. Разработка новых биотехнологических ферментов, способных послужить на благо общества, кроме знания структуры белков и понимания механизмов их работы, требует ещё умения проектировать новые функции в белках, ранее выполнявших какую-то другую работу [3]. Здесь, правда, требуется умение решать обратную задачу — не определять структуру существующего белка, а создавать белок, структура а значит, и свойства которого будут заданы заранее, — но ведь решение этой задачи требует схожих знаний и навыков! В чём же сложность? По сравнению с периодом времени 30—40 летней давности, когда знание об устройстве биологических молекул было ещё крайне ограниченным, и определение аминокислотной последовательности инсулина или пространственного строения миоглобина было настоящим научным прорывом, сейчас поток биологической информации нарастает год от года стремительными темпами. Завершение геномных проектов, следующих один за другим [4] , фактически избавило исследователей от рутины по «классическому» секвенированию белковых молекул — последовательности всех белков конвертируются из прочтённых геномов множества организмов в аннотированные базы данных, доступные через интернет.

Так, число последовательностей в базе Swiss-Prot версия 55. Получить такое фантастическое число последовательностей стало возможным благодаря современным высокопроизводительным технологиям секвенирования геномов [5] , делающим задачу прочтения всей ну или почти всей ДНК нового вида или даже отдельной особи! Другая ситуация складывается с определением пространственного строения белковых молекул: инструментарий для решения этой задачи — рентгеноструктурный анализ РСА и спектроскопия ядерного магнитного резонанса ЯМР — ещё не достиг той степени зрелости, чтобы можно было получить структуру любого интересующего исследователей белка с ограниченными временными и материальными затратами. Сложность заключается в получении нужных количеств белка, подготовке препарата, пригодного для изучения дифракции рентгеновских лучей или ядерного магнитного резонанса в меченном изотопами образце, и в анализе данных. Каждый этап этой задачи часто требует уникального подхода и поэтому не может быть полностью автоматизирован. Особенно сложно охарактеризовать структуру белков, образующих сложные молекулярные комплексы, и интегральные белки биологических мембран составляющих до трети от общего числа белков в большинстве организмов. Поэтому, даже с учётом того, что расшифровкой структур белков занимаются не только научные коллективы по собственной инициативе, но и международный консорциум PSI Protein Structure Initiative , задачей которого является максимально полная и широкая структурная характеризация всего белкового разнообразия в живом мире, число белков с известной структурой сравнительно невелико. Выход из сложившейся ситуации могут дать методики теоретического предсказания пространственной структуры, решающим преимуществом которых является сравнительно высокая скорость и низкая трудоёмкость получения моделей строения белков.

Оборотной стороной этого преимущества оказывается «качество» моделей — точность предсказания, которая не всегда является достаточной для практически важных задач например, изучения взаимодействия рецептора с лигандами. Разумеется, работая с теоретически предсказанными моделями белков, надо критически относиться к полученным результатам и быть готовым к тому, что полученные результаты необходимо проверять с помощью независимых методов — что, в прочем, касается большинства научных областей, работа в которых ещё не превратилась в чистую технологию. Далее мы рассмотрим базовые теоретические предпосылки, делающие предсказание трёхмерного строения молекул белков возможным и в общем виде основные методики, использующиеся сегодня в этой области. Фолдинг: возможно ли предсказать структуру белка на компьютере? Фолдинг — сворачивание белков и других биомакромолекул из развёрнутой конформации в «нативную» форму — физико-химический процесс, в результате которого белки в своей естественной «среде обитания» растворе, цитоплазме или мембране приобретают характерные только для них пространственную укладку и функции [6]. Фолдинг причисляют к списку крупнейших неразрешённых научных проблем современности — поскольку процесс этот далёк от окончательного понимания [7]. Само собой, парадокс Левинталя — кажущийся. Решение его заключается в том, что молекула, конечно, никогда не принимает подавляющего большинства теоретически возможных конформаций.

Кооперативные эффекты фолдинга — одновременное формирование «зародышей» вторичной структуры, являющихся энергетически стабильными и уже не изменяющимися в процессе дальнейшего сворачивания — приводят к тому, что молекула белка находит «кратчайший путь» на воображаемой гиперплоскости потенциальной энергии к точке, соответствующей нативной конформации белка. Нативная конформация при этом отделена заметным «энергетическим промежутком» potential energy gap от подавляющего числа несвёрнутых форм, а ближайшая её «окрестность» очень «узкая», впрочем определяет естественную конформационную подвижность молекулы. Ограниченность понимания механизмов фолдинга связана ещё и с тем, что его сложно наблюдать экспериментально: это достаточно быстрый динамический процесс, «разглядывать» который нужно на уровне отдельных молекул! И хотя сейчас уже проводят изучение сворачивания а точнее, разворачивания на отдельных молекулах [10] , это не пока не привело к принципиально новому уровню понимания механизма фолдинга — а ведь такое понимание могло бы дать эффективный алгоритм теоретического моделирования этого процесса. Биологические молекулы моделируют чаще всего с применением подхода эмпирических силовых полей [11] , позволяющего, в отличие от «абсолютно корректного» квантово-химического подхода см. Однако такое радикальное ускорение времени расчётов не может даваться даром: хотя многие компьютерные эксперименты в эмпирических силовых полях и дают реалистичные результаты, некоторые важнейшие для фолдинга кооперативные взаимодействия — такие как гидрофобный эффект или влияние молекул растворителя — не сводятся к парным взаимодействиям между отдельными атомами и не могут быть корректно учтены в этом подходе. Существует два основных препятствия тому, чтобы запустить моделирование молекулярной динамики МД какого-нибудь белка в необходимом окружении и «в кремнии» пронаблюдать фолдинг, получив в конце процесса желанную структуру. Во-первых, характерные времена сворачивания всё же находятся на уровне миллисекунд, а максимально достижимое время моделирования на данном этапе развития вычислительной техники редко превышает одну микросекунду.

Но, даже если представить, что мы не ограничены в мощностях компьютеров, всё равно остаются сомнения в возможности современных энергетических функций эффективно справиться с фолдингом — точность этих функций, управляющих эволюцией молекулы внутри компьютера, может оказаться недостаточной для того, чтобы направить сворачивание в нужном направлении. Кроме того, алгоритм, моделирующий подвижность, может навсегда «зациклить» молекулу в локальном энергетическом минимуме, чего никогда не случается в реальном процессе сворачивания. Однако определённые успехи в моделировании фолдинга с помощью молекулярной динамики всё же есть: небольшие белки — вроде 36-аминокислотного фрагмента виллина — удаётся свернуть в МД длительностью около микросекунды, запуская расчёты на суперкомпьютере или в распределённой вычислительной сети [12]. Итак, использование метода молекулярной динамики как средства моделирования процесса фолдинга пока что нецелесообразно и практически не достижимо. Однако существует возможность предсказать результат фолдинга — то есть, трёхмерную структуру белка. Теоретические подходы, служащие этой цели, делятся на две большие группы: ab initio или de novo фолдинг — методики, не использующие в явном виде данных о структуре других белков, — и сопоставительное моделирование или моделирование на основании гомологии. Квантовая химия в расчётах свойств белковых молекул Как известно, уравнение Шрёдингера — «плоть и кровь» квантовых физики и химии — наиболее точный на сегодняшний день способ описать строение и динамику молекул. Однако точное аналитическое решение возможно получить лишь для крайне простых систем — например, атома гелия.

Во всех более сложных случаях прибегают к численному решению приближений этого уравнения — так называемым полуэмпирическим методам квантовой химии. Методы эмпирических силовых полей такие как молекулярная динамика [11] не имеют никакого отношения к квантовой химии и «обращаются» с атомами моделируемых молекул в частности, белков как с классическими упругими частицами, связанными системой парных взаимодействий. Параметры этих взаимодействий очень простых, надо отметить как раз и называются силовым полем и определяют поведение системы при моделировании.

Ключ и замок За счет поверхности белки взаимодействуют друг с другом.

Это похоже на ключ и замок: ключ может открыть замок, только если бороздка ключа соответствует ему. В противном случае ключ или не войдет, или не повернется, или вовсе сломается. Большинство заболеваний, к примеру, рак, связаны с тем, что белки изменяются в результате мутаций, а мутировавший белок с измененной трехмерной структурой способен взаимодействовать не с тем, с чем нужно. Как если бы поврежденный ключ перестал открывать нужный замок, но приобрел способность открывать замок в двери чужой квартиры.

По этому принципу работает большинство болезней — к примеру, связывающий домен S-белка коронавируса, находящегося на поверхности вирусной частицы, взаимодействует с рецепторами клетки легочного эпителия, как ключ с замком. Знание трехмерной структуры белков и умение предсказать ее очень важно именно поэтому. Кроме того, большинство современных лекарств разрабатываются по такому же принципу. Например, в случае с белком коронавируса можно было бы разработать молекулу-заглушку.

Таким образом, заражение было бы невозможно, потому что участок, взаимодействующий с рецептором вирусной частицы, оказывался бы закрыт. Можно сказать, что жизнь — это взаимодействие множества молекулярных ключей с замками. Об этом науке было известно еще с 50-х годов прошлого века, однако определить трехмерную структуру белка было крайне сложно. Как определяется структура белка Определить трехмерную структуру белка можно несколькими способами.

Один из методов — рентгеновская кристаллография. При таком подходе выделяется очень большое количество белка, затем он очищается, и белок образовывает кристалл. Пропуская через этот кристалл рентгеновские лучи, можно увидеть трехмерную структуру белка. Это явление называется дифракция.

Таким образом, изучение первичной структуры белков помогает разобраться в их роли в клеточных процессах и биохимических путях. Дизайн и модификация белков: Изучение первичной структуры белков позволяет разработать новые способы создания и изменения белков для использования в различных областях науки и технологии. Это может включать создание белковых лекарственных препаратов, а также дизайн новых белков с улучшенными свойствами, такими как стабильность или активность. Эволюционные исследования: Сравнение первичной структуры белков разных организмов позволяет изучать эволюционные связи и предсказывать генетические изменения, происходящие в ходе эволюции. Диагностика болезней: Аномалии в первичной структуре белков могут свидетельствовать о наличии определенных заболеваний. Изучение этих аномалий может помочь в ранней диагностике и предотвращении развития болезней. Прогнозирование свойств и структуры белков: Изучение первичной структуры белков позволяет предсказывать их свойства и трехмерную структуру. Это имеет большое значение для понимания механизмов действия белков и дальнейшего исследования их функциональных особенностей. Области применения информации о первичной структуре белка 1.

Биохимия и молекулярная биология — анализ первичной структуры белка позволяет определить его аминокислотный состав и последовательность, что помогает в понимании его роли и функций в организме. Биомедицина — информация о первичной структуре белка может быть использована для изучения и предотвращения различных заболеваний, включая наследственные и инфекционные болезни. Дизайн и разработка лекарств — понимание первичной структуры белка позволяет создавать специфические лекарственные препараты, которые взаимодействуют с конкретными белками в организме. Генетика — анализ информации о первичной структуре белка помогает в изучении генетического полиморфизма и мутаций, связанных с нарушениями функционирования организма.

Адрес доставки белка указан уже в матричной РНК

Правильный ответ здесь, всего на вопрос ответили 1 раз: где хранится информация о структуре белка?и где осуществляется его синтез. Знание того, где хранится информация о структуре белка, помогает нам лучше понять его функцию и важность для живых организмов. Как информация из ядра передаются в цитоплазму?, ответ13491279: 1.в зашифрована в последовательности четырёх азотистых попадать посредством отшнуровываний выпячиваний. Поскольку структура белка определяет его функцию, база данных из 200 миллионов идентифицированных белков способна совершить революцию в биологии и медицине. Прежде ИИ умел распутывать структуру лишь небольшой доли таких белков.

Где вырабатывается белок в организме?

  • Трансляция и транскрипция как этапы биосинтеза белка, генетический код
  • Где и в каком виде хранится информация о структуре белка? - Биология
  • Места хранения информации о первичной структуре белка
  • Где хранится информация о структуре белка?и где осуществляется его синтез
  • Цель хранения информации о первичной структуре белка
  • Где хранится информация о структуре белка?и где осуществляется его синтез

Важнейшее открытие за 50 лет: алгоритм DeepMind научили определять структуру белка

Программа с открытым исходным кодом предсказывает трехмерную структуру белка на основе последовательности его аминокислот — строительных блоков, из которых состоят протеины. Поэтому вся информация о белке хранится в ядре, а точнее только о первичной структуре, а уже первичной структурой опеределяется и дальнейшие свойства этого белка. Понимание механизма фолдинга белка — процесса, благодаря которому каждая белковая молекула приобретает уникальную структуру и свойства — является необходимым условием для создания надёжного и точного алгоритма теоретического предсказания пространственной.

Где и в каком виде хранится информация о структуре белка?

Биосинтез белка. Генетический код Информация о первичной структуре белка закодирована в. Первичная структура белка закодирована в молекуле.
Ответы : Если есть возможность помогите... Убивают Информация о структуре белка поступает в виде РНК.
Биоинформатика: Определение и предсказание структуры белков – важные методы и применение А возможность синтезировать белки с желаемой структурой позволит ускорить разработку ферментов (ускорителей), с помощью которых можно, например, производить биотопливо и полностью разлагать пластмассовые отходы.
Где хранится информация о первичной структуре белка: секреты его формирования Информацию о первичной структуре белка можно получить непосредственно из генетической последовательности ДНК или РНК, которая кодирует данный белок.
Биоинформатика: Определение и предсказание структуры белков – важные методы и применение Если предсказанная структура белка близка к экспериментально определенной структуре, то можно сделать вывод о высоком качестве предсказания.

Где и в каком виде хранится информация о структуре белка?

Информация о первичной структуре белка содержится в его генетической последовательности. Информация о структуре белка закодирована в ДНК. Дезоксирибонуклеиновая кислота имеет очень сложную структуру, которую не до конца удалось раcшифровать ученым в наши дни. Также информацию о первичной структуре белка можно найти в научных статьях и публикациях. Где и в каком виде хранится информация о структуре белка. Информация о первичной структуре белка может быть получена с помощью ПСХ-секвенирования путем секвенирования геномной ДНК. Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в иРНК.

Основные источники информации о первичной структуре белка

  • Информация о структуре белков хранится в
  • Подписка на дайджест
  • Программа нашла все 200 млн белков, известных науке: как это возможно
  • Где хранится информация о первичной структуре белка -

Похожие новости:

Оцените статью
Добавить комментарий