Почему магнит притягивает металл? Магниты привлекают любые металлы, которые сделаны из железа или металлов с железом в них. это явление, при котором магнит притягивает к себе предметы, содержащие железо. тем хуже притягиваются. Магнит может притягивать чаще всего такой металл как железо.
как Поле действует на объект? например магнит притягивает железо почему это происходит
Магниты притягивают только определенные металлы, главным образом железо, никель и кобальт, называющиеся ферромагнетиками. Наука - 24 декабря 2020 - Новости Новосибирска - Магнит может притягивать: железо, чугун, сталь, никель. Магнит притягивает только железо; · Магнит может притягивать предметы на расстоянии, благодаря магнитному полю. Почему магнит притягивает железо. Магнит может притягивать: железо, чугун, сталь, никель.
Почему магнитится только железо, а алюминий-нет?
А правда, почему кусок железа или ферромагнетика притягивается к магниту? Итак, если свойство притягивания к магниту есть у всех веществ, то почему именно металлические предметы сильно магнитятся, и этот процесс можно увидеть? Лучше всего к магнитам притягиваются. Почему к постоянному магниту не притягиваются одни материалы, зато отлично «липнут» другие? Стальная полоса станет мощным магнитом и притянет любой железный предмет от гвоздя до холодильника. Микроатомы обладают магнитным эффектом и состоят в полном равновесии, но магниты своим притяжением влияют на некоторые виды металлов, таких как: железо, никель, кобальт.
Почему магнит притягивает железо? Магнит.
Подносим магнит к яблоку: ищем железо внутри | Рассмотрим, почему кусок железа притягивается к магниту. |
Почему Магнит притягивает железо | Основная причина, почему железо притягивается к магниту, заключается в его атомной структуре. |
Часто задаваемые вопросы по неодимовым магнитам (FAQ) | почему магнит притягивает хлопья? их и вправду обогащают металлической пылью, что ли? хлопья в воде после блендера выделили МЕТАЛЛИЧЕСКУЮ КРОШКУ: почему банан и киви не реагируют на магнит, если в них связанного железа в разы выше, чем. |
Расплавленное железо против магнита: увлекательный эксперимент | 2) Почему магнит притягивает только предметы из железа, никеля и кобальта? |
Как магниты притягиваются друг к другу и отталкиваются | Какое железо притягивает магнит. |
Почему магнит притягивает железо?
Очень распространенным повседневным магнитом, который мы все видели, является дверной магнит холодильника, который обычно изготавливается из порошкового феррита ржавчина железа. Иногда их изготавливают из алюминия. Еще один распространенный использование магнитов вокруг нас электродвигатели. Материалы, которые могут намагничиваться, называются ферромагнитными материалами. Эти металлы являются магнитными и включают никель, железо, кобальт, медь и сплав железа. Вы можете включить большинство других металлов в эту категорию. Некоторые сплавы редкоземельных элементов и оксида железа могут быть природными постоянными магнитами. Все металлы магнитны по своей природе. Мы знаем, что ферромагнитные материалы притягиваются к другим магнитам. Возле мягких магнитов или диамагнитных материалов может быть внешнее магнитное поле.
Ферромагнетики — это мягкие магниты, такие как отожженное железо. Их легко намагнитить, но они не могут оставаться намагниченными в течение длительного времени. Твердые магниты — это материалы, которые могут намагничиваться и оставаться намагниченными в течение длительного времени. Постоянные магниты — это жесткие магниты. Когда эти металлы подвергаются особому процессу под воздействием сильного магнитного поля, они выравнивают свою внутреннюю структуру в одном направлении. Электрические токи образуют постоянный магнит, который трудно размагнитить. Когда металлы пересекают температуру Кюри, они становятся постоянными магнитами. Если есть необходимость размагнитить насыщенный магнит, мы должны приложить определенные магнитные поля. Сила этого магнитного поля зависит от коэрцитивной силы материала.
Твердые постоянные магниты, как и кобальт, обладают высокой коэрцитивной силой. Для мягкого магнита коэрцитивная сила мала. Силу магнита можно измерить по его магнитному моменту. Другой метод заключается в измерении полного магнитного потока, создаваемого им. Электромагниты созданы руками человека. Электромагнит представляет собой катушку из проволоки, которая ведет себя как магнит, когда через нее пропускают электрический ток.
В статике конструкция стабильна, а вот если у магнита есть сила — тогда яблоко придет в движение. При подведении магнита к яблоку мы конструкция пришла в движение. Но вместо того, чтобы приблизиться, магнит начал отталкивать яблоко. Причина, как ни странно в составе фрукта — наряду с железом в незначительном количестве в яблоке содержится много влаги, являющейся диамагнитным веществом.
По закону сохранения этот избыток энергии неизбежно выделяется в форме тепла такое тепловыделение есть и при намагничивании, где упорядочиваются магнитные моменты доменов, тоже снижая энергию взаимодействия. И тепло реально выделяется возле точки Кюри, но тепловыделение растянуто в широком температурном интервале. От выхода энергии, которую надо отводить, металл всё трудней охлаждать при подходе к точке Кюри, где переход идёт интенсивней всего. По сути, то же происходит при кристаллизации: несмотря на отвод тепла температура не меняется, словно теплоёмкость в точке кристаллизации бесконечно велика. Не зря сам Кюри, открыв переход парамагнетик-ферромагнетик, сравнивал парамагнитное состояние с газообразным, а ферромагнитное — с более упорядоченным жидким и кристаллическим. Переход металла в ферромагнитное состояние и образование в нём множества случайно ориентированных доменов аналогичен кристаллизации металла и образованию в нём случайно ориентированных зёрен-кристаллитов, где атомы расположены упорядоченно. Выходит, нет особой разницы между переходами 1-го и 2-го рода: разница лишь в ширине температурного интервала, где осуществляется переход и выделяется скрытая теплота. А фазовые переходы второго рода растянуты в более широком температурном интервале. Домены начинают возникать при температурах чуть выше точки Кюри, но таких областей мало, они невелики и недолговечны. Это напоминает формирование в охлаждаемом жидком металле зародышей кристаллов: малых участков с ближним атомным порядком, которые при подходе к точке плавления становятся всё крупней и многочисленней. Так и при подходе к точке Кюри, численность и размер доменов растёт, ведя к выделению тепла, воспринятому как рост теплоёмкости да и возле точки плавления открыт слабый рост теплоёмкости от микроучастков, где флуктуации уже вызвали фазовый переход. При температуре Кюри домены интенсивно формируются уже во всём объёме металла, бесконечно повышая теплоёмкость. Наконец, при охлаждении ниже точки Кюри остаются лишь редкие малые участки металла, где тепловое движение атомов местами особенно интенсивное ввиду флуктуаций мешает формированию доменов. Но при понижении температуры они становятся всё меньше по объёму и по числу: их упорядочение требует всё меньшего отвода тепла, понижая теплоёмкость. Так и фазовый переход металла в сверхпроводящее состояние а гелия — в сверхтекучее всегда сопровождается выделением тепла [ 17 ]. Всё это снова доказывает, что природа следует честным классическим правилам, а не туманным квантовым, и лишние сущности, типа переходов второго рода, выдуманных Ландау,— излишни. Классически устроен и атом, где электроны, как показал открывший их Дж. Томсон, спонтанно организуются в упорядоченные кристаллические структуры под влиянием электрического и магнитного поля, формируя электронные слои с правильным размещением электронов [ 11 ]. Не зря Томсон иллюстрировал эффект спонтанной самоорганизации электронов в атоме магнитными поплавками, формирующими в поле центрального магнита правильные структуры. Так же и в электрическом и магнитном поле ядра магнитики-электроны формируют слои из правильно уложенных электронов отсюда стандартные ёмкости электронных слоёв. Способность электронов формировать плоскую кристаллическую решётку подтверждена и опытами, где электроны парили над жидким гелием [ 13 ]. Физик-спектроскопист Р. Вуд тоже изучал подобные эффекты самоорганизации электронов в атоме на примере магнитных шариков, плавающих в ртути и образующих в поле центрального магнита правильные фигуры. При выводе шариков из равновесия они колебались в магнитном поле каждый со своей стандартной частотой. Этим магнитная модель атома Ритца объясняет стандартные спектры атомов [ 10 ]. Такую самоорганизацию можно наблюдать и в наборе неодимовых магнитных шариков, порой спонтанно слипающихся в кристально чёткие объёмные структуры. Самосборка стандартных упорядоченных систем в поле центрального магнита видна и в магнитной жидкости, и в порошке из железных опилок, которые собираются в периодичные выступы, холмики, образующие сотовую структуру и вытянутые вдоль силовых линий магнита рис. Наблюдают такие системы и в сверхпроводниках, на срезах которых магнитный порошок образует сотовую структуру абрикосовские вихри. Да и цилиндрические магнитные домены формируют сотовую структуру [ 13 ]. Все эти явления спонтанной организации магнитных частиц в правильные структуры объяснимы классически и легко моделируются на ЭВМ как результат взаимодействия магнитных частиц друг с другом и с внешним полем. Но и их хотят свести к квантовым. Яркий пример — "квантовые вихри" в виде упорядоченных скоплений из атомов щелочных металлов например, рубидия , подвешенных в магнитном поле при сверхнизких температурах и образующих периодичные сгущения рис. На деле квантовая теория тут ни при чём: видна простая самоорганизация магнитных частиц атомов со стандартным магнитным моментом во внешнем магнитном поле, давно открытая Майером и легко воспроизводимая в магнитной жидкости и в порошке из магнитных опилок. А "квантовые маги" объясняют эти периодичные сгущения атомов бозе-эйнштейновской конденсацией с интерференцией атомных волн Де Бройля. Интерференцию будто бы подтверждает то, что от набегания одного облака атомов на другое в месте их пересечения видны полосы, типа интерференционных. Реально же виден обычный муаров узор, возникающий при наложении двух сеток. Так и два облака атомов рубидия, формирующих в магнитном поле периодичные сетки тёмных узлов, образуют при наложении муаров узор, без следов интерференции. Выходит, квантовые краснобаи выдают желаемое за действительное, видя в обычных явлениях природы сверхъестественные. Взаимодействие магнитных частиц формирует не только правильные плоские структуры, но и чёткие пространственные комплексы, как показывает пример магнита, вытягивающий из магнитной жидкости пирамидальные игольчатые структуры, или симметрично обрастающий с двух сторон бородами магнитных опилок, а также пример объёмных фигур из магнитных шариков. Сходно формируется бипирамидальный каркас атома, образованный из магнитных частиц электронов и позитронов, рис. Рассуждая формально, по теореме Ирншоу обычно считают, что конструкции из зарядов и магнитов нестабильны. Но при этом, как отмечал Томсон [ 11 ], не учитывают отклонений от закона Кулона на малых масштабах и осевое вращение электронов, придающее устойчивость магнитным системам [ 18 ]. Именно так атом и его пирамидальный атомный каркас приобретает стабильность без помощи квантовых законов. Ну а сами атомы, как недавно открыто, в процессе самосборки спонтанно организуются в пирамидальные наночастицы. Приобретение такими микрокристаллами пирамидальной и часто многоступенчатой формы в виде пагод как у кристаллов висмута или золота , может быть связано не только с периодичным размещением атомов в кристалле, но отчасти и с формой самих атомов, обладающих многоуровневой пирамидальной структурой. Подобные кристаллы, сотовые и бипирамидальные структуры формируют и оптические солитоны — уединённые волны, взаимодействующие как магнитные частицы и вихри. Так что и без квантовых гипотез спонтанная организация электронов объясняет структуру электронных слоёв и спектров атомов по магнитной модели Ритца. Бипирамидальный каркас атома выделяет и элементы-ферромагнетики рис. Именно среди них и их соединений открыты яркие ферромагнетики и антиферромагнетики. Даже графит C и твёрдый кислород O в некоторых состояниях оказались ферро- и антиферромагнитными, вопреки квантовой теории, но в согласии с прогнозом классической модели атома [ 10 ]. А соединение азота N с железом Fe оказалось самым сильным ферромагнетиком, превысив предел магнетизма из квантовой теории. В то же время переходные элементы нечётных периодов таблицы Менделеева например, платиновые металлы , у которых ожидался ферромагнетизм [ 12 ], лишены его. Почему же ферромагнетизм присущ лишь немногим элементам? Всё дело в строении атомов: яркими магнитными свойствами обладают атомы с асимметричным строением, в которых магнитные моменты электронов не скомпенсированы. В пирамидальной модели атома такой асимметрией обладают как раз атомы чётных периодов таблицы, а в атомах нечётных периодов заполняются слои, зеркально симметричные предыдущим, и магнитные моменты электронов этих слоёв нейтрализуют друг друга, ориентируясь встречно. Такая встречная ориентация электронов, расположенных друг против друга, обусловлена не мистическими обменными силами, а ориентацией магнитных осей электронов вдоль магнитных силовых линий соседних электронов, отчего их магнитные моменты компенсируются. Это видно на примере двух стрелок компаса: если компасы расположить рядом, то их стрелки установятся навстречу друг другу, создав в сумме лишь слабое магнитное поле как в антиферромагнетике, рис. Но одна стрелка или две стрелки, разнесённые далеко, ориентируются вдоль внешнего поля и создают заметное магнитное поле. Так и в атомах ферромагнетиков разнесённые электроны во внешнем поле или в поле соседних атомов ориентируются сонаправленно, усиливая внешнее поле тем заметней, чем их больше. Оттого у элементов начала чётных периодов, где электроны начинают заполнять новый слой, магнитные свойства ещё слабы. Но, после заполнения электронами примерно половины периметра слоя, их общее магнитное поле уже достаточно для появления доменов, спонтанной намагниченности. Последующее заполнение периметра и рост числа электронов усиливает магнитные свойства: ферромагнетизм веществ нарастает. Но дальнейшее заполнение периметра делает слой всё более симметричным, и магнитные моменты уже отчасти компенсируются. Особенно это заметно при замыкании периметра и дальнейшем заполнении слоя электронами по сужающейся спирали, когда рядом с одними электронами становятся другие, нейтрализующие их магнитные моменты. Оттого яркими магнитными свойствами обладают лишь элементы полупериметра чётных слоёв-периодов с их выраженной асимметрией рис. То же верно для ядер и элементарных частиц: у нейтральных идеально симметричных частиц магнитные моменты нулевые, а заряженные или асимметричные частицы обладают магнитным моментом. Так, нейтрон и протон, имея чуть асимметричную форму, обретают магнитный момент от несбалансированных моментов образующих их электронов и позитронов.
Следующим этапом слитки дробят и превращают в мелкую пыль — это позволяет получить одиночные магнитные домены, из которых и будет состоять наш магнит. При необходимости проводят механическую обработку и дополнительное покрытие для лучшей устойчивости, если это требуется. Как изобрели неодимовый магнит Однако главной проблемой было то, что компоненты самарий-кобальтового магнита стоили огромных денег. Про кобальт вообще отдельная песня — его самые большие залежи находятся в Демократической Республике Конго. В 70-х годах из-за военного конфликта цены на металл взлетели, что привело к огромному кризису. Джон Кроат — один из творцов неодимового магнита, работавший в лаборатории General Motors Так над созданием более дешёвой альтернативой самарий-кобальта стали работать параллельно две лаборатории: General Motors и Sumitomo Metal Industries. Для первых, вопрос был особенно важен — в это время как раз разразился нефтяной кризис из-за демарша арабских стран, из-за чего пользоваться автомобилем стало дороговато. Нужно было снижать издержки по всем фронтам. А в автомобилях используется куча постоянных магнитов: начиная от ABS и заканчивая герконовыми датчиками закрытия дверей и пристёгнутого ремня. Итак, нужно было найти редкоземельный металл, который был бы более распространён, чем самарий, и дешевле кобальта. Проблема с лантаном и церием заключалась в том, что 4-f орбиталь у них остаётся незаполненной более подробное объяснение — здесь. Исследования того времени уже показали, что именно наличие электронов на f-орбитали даёт высокую коэрцитивную силу материала. Оставалось только два варианта: неодим или празеодим. Но нужно было придумать, с каким материалом создать сплав, чтобы получилось устойчивое интерметаллическое соединение , но при этом магнитные показатели вещества были сопоставимы с самарий-кобальтом. У неодима и празеодима таких вариантов было немного. Джон Кроат провёл ряд экспериментов и выявил, что если брать расплавы неодима и железа, смешивать, а затем быстро охлаждать и кристаллизовать как мы знаем, это один из методов производства того же самарий-кобальта , то получается вещество с отличной коэрцитивной силой. Однако при последующем нагреве свойства быстро терялись например, проявлялась сильная термозависимость , и нужно было найти более устойчивое интерметаллическое соединение. Вот как описывает проблему сам Кроат в интервью: Интерметаллическое соединение или интерметаллическая фаза — это фаза с фиксированным соотношением компонентов. Например, тербий-железо два имеет один тербий и два железа. И эти элементы находятся в строго определённых местах кристаллической решётки. Без этого постоянный магнит из редкоземельного металла просто не получится. Это то, что сохраняет магнитный момент в структуре материала. Спустя несколько лет экспериментов, в 1981 году решение было найдено: добавление бора делало соединение стабильным! При этом стоимость бора, железа и неодима не шли ни в какое сравнение с ценами на кобальт и самарий. Итоговая формула интерметаллического соединения — Nd2Fe14B. Примечание: более подробно прочитать про структуру неодимового магнита можно в этой научно-технической статье ссылку уже приводили выше Настало время явить уникальное открытие миру. В ноябре 1983 году Джон Кроат вместе с коллегами из лаборатории General Motors прибыли на конференцию по магнетизму и магнитным материалам, проходившую в Питтсбурге. Каково же было их удивление, когда в соседнем зале неизвестный Масато Сагава из японской корпорации Sumitomo рассказал про своё открытие магнита из неодима, бора и железа раньше, чем Кроат. Исторический момент на фотографии: Масато Сагава закончил выступление на конференции Первая мысль: «Японцы украли нашу идею». Однако быстро выяснилось, что никакого воровства на самом деле не было. Реально две лаборатории работали параллельно, получили результаты в одно и то же время и представили их на одной и той же конференции, с разницей в несколько часов! Удивительно, но в жизни бывают и такие совпадения. Конечно, были и отличия в технологиях. Масато Сагава предлагал производить неодимовые магниты сухим методом спекания про него мы тоже уже говорили выше. Это давало чуть лучшие магнитные свойства, однако производство таким методом было чуть дороже, чем отливание мокрым методом, предложенное Джоном Кроатом. Сути это не меняло, но компании Sumitomo и General Motors с разницей в несколько недель подали патенты на разные методы изготовления. Это привело к юридическому спору, из-за которого обе компании не могли открыто использовать технологии во всём мире. К общему счастью, компании смогли договориться и снять любые претензии.
3 разных типа магнитов и их применение
почему магниты магнитят, смысл магнитов, суть магнитизма, магнитный эффект И так, с самой сутью магнита и его природой действия разобрались. Причина, по которой железо и другие предметы притягиваются к магнитам, сводится к его электронам и к тому, как они выровнены. Сила притяжения не такая, как в случае с углеродистой сталью, чтобы почувствовать притяжение потребуется неодимовый магнит. Почему железо притягивается к магниту. Почему магнит не притягивает органические вещества?
Почему магнит притягивает железо
Причина, по которой железо и другие предметы притягиваются к магнитам, сводится к его электронам и к тому, как они выровнены. А правда, почему кусок железа или ферромагнетика притягивается к магниту? Узнайте, почему магнит притягивает железо. Краткое объяснение, почему магнит притягивает железо. Блог магазина Магнитов на Коломенской.
Почему магнит притягивает железо - краткое объяснение
Его изготавливают из железа и некоторых сплавов, а также кобальта и никеля. Различные металлы имеют разную магнитную восприимчивость, поэтому по-разному реагируют при поднесении их к магниту, бывают: Атомы любого вещества состоят из ядра и движущихся вокруг него электронов, которые являются примером простейшего магнита. Магнитные поля электронов могут усиливать друг друга или компенсировать: Орбитальные магнитные моменты связаны с движением электрона вокруг оси Спиновые магнитные моменты связаны с движением электрона вокруг своей оси Ферромагнетики Феромгнетики — вещества, которые могут намагничиваться при поднесении их к магниту. Почему так происходит? Вокруг каждого ядра атома такого вещества вращается непарное количество электронов. Магнитные поля этих электронов не скомпенсированы. Это такие вещества как, железо, никель, гадолиний, кобальт, диспрозий, гольмий, тербий.
Ферромагнетики притягиваются к магниту и сами легко намагничиваются. Парамагнетики У паромагнетиков все магнитные моменты каждого атома скомпенсированы. Если такое вещество поднести к магниту, то все магнитные поля будут выстроены в одном направлении. У него появится собственное магнитное поле с отрицательным и положительным полюсом. Такое вещество притянется к магниту и может и само намагнититься и притягивать металлические предметы Диамагнетики У диамагнетиков скомпенсированы только спиновые моменты. Если поднести такое вещество к магниту, то к орбитальному магнитному моменту добавится движение электронов под воздействием внешнего магнитного поля.
Это создаст дополнительный ток, магнитное поле которого будет направлено против внешнего магнитного поля, поэтому диамагнетики будут отталкиваться от магнита. Поэтому, если говорить научным языком, о том, какие металлы не магнитятся к магниту , то это диамагнетики, в их список входят литий и бериллий. Подведем итог: металлы, которые не магнитятся Итак, хорошо магнитятся ферромагнетики, это кобальт, железо, никель, а также шесть лантаноидов. Различные сплавы железа также хорошо притягиваются. Если говорить в общем, то сплавы черных металлов хорошо притягиваются, а сплавы цветных металлов — не притягиваются. Когда магнит притягивает к себе металлические предметы, это кажется волшебством, но в действительности «волшебные» свойства магнитов связаны всего лишь с особой организацией их электронной структуры.
Поскольку электрон, вращающийся вокруг атома, создает магнитное поле, все атомы являются маленькими магнитами; однако в большинстве веществ неупорядоченные магнитные эффекты атомов уравновешивают друг друга. Магнитная цепочка Касание конца магнита к металлическим скрепкам приводит к возникновению у каждой скрепки северного и южного полюса. Эти полюса ориентируются в том же направлении, что и у магнита. Каждая скрепка стала магнитом. Бесчисленные маленькие магнитики Некоторые металлы имеют кристаллическую структуру, образованную атомами, сгруппированными в магнитные домены. Магнитные полюса доменов обычно имеют различное направление красные стрелки и не оказывают суммарного магнитного воздействия.
Образование постоянного магнита Обычно магнитные домены железа ориентированы бессистемно розовые стрелки , и естественный магнетизм металла не проявляется. Если к железу приблизить магнит розовый брусок , магнитные домены железа начинают выстраиваться вдоль магнитного поля зеленые линии. Большинство магнитных доменов железа быстро выстраивается вдоль силовых линий магнитного поля. В результате железо само становится постоянным магнитом. Популярные материалы из данной категории: Как работает генератор переменного тока? Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле.
Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки Что такое полупроводник? Полупроводник — это кристаллический материал, который проводит электричество не столь хорошо, как металлы, но и не столь плохо, как большинство изоляторов. В общем случае электроны полупроводников крепко привязаны к своим ядрам.
Предположим, что ученые ошибаются. А ещё предположим, у вас травма на животе, и вы спите на спине. Внизу вы расположили удобный «магнитик» по совету врача, чтобы быстрее выздороветь. Поскольку магнитные терапевты говорят нам, что магниты притягивают кровь, вся жидкость будет тянуться к вашей спине, к магнитам и подальше от места травмы. Она будет собираться в задней части вашего тела, ближе всего к магнитам. Вместо того, чтобы улучшить кровоток к травме, магниты уменьшат его. Подобным образом магниты «переместили» бы всю кровь из одной части мозга в другую. Это не очень хорошая идея, так как известно, что мозговые клетки могут жить без кислорода примерно 5 минут. Затем возникает необратимое повреждение головного мозга. И все же некоторые люди каждую ночь спят на этих «кровососущих» магнитах. Обратите внимание, если магниты действительно притягивают кровь, это не улучшит кровообращение. Кровь просто будет тянуться к магнитам, и, если они будут достаточно сильными, она останется в одном месте. В итоге кровь не сможет вернуться к сердцу и легким, чтобы получить больше кислорода, потому что будет удерживаться магнитами, лежащими под спиной. Каждая клетка в вашем теле умрет. Вы не проснетесь. Предположим теперь, что магниты могут каким-то образом, вопреки научным доказательствам, действительно влиять на железо и усиливать поток крови в кровеносных сосудах. Вместо того, чтобы тянуть железо и, следовательно, кровь, прямо к магнитам, давайте притворимся, что магнитное поле толкает железо в сторону, скажем направо. Оно не притягивает железо как обычные магниты , но отклоняет его в определенном направлении. Этот дополнительный «нажим» ускоряет поток крови и увеличивает микроциркуляцию. К сожалению, даже эта идея не имеет смысла, по следующей причине. Артерии доставляют кровь от сердца к клеткам, а вены действуют как раз наоборот — из клеток обратно в сердце. Поскольку кровоток является сбалансированным и равным в обоих направлениях, как может статическое магнитное поле одновременно усиливать кровоток в двух противоположных направлениях? Как магниты могут увеличить кровоток в одном направлении в артерии и в противоположном направлении в соседней и параллельной вене? Любой положительный эффект в одном направлении будет отрицательным в другом.
Обсудить Редактировать статью Магниты кажутся чем-то волшебным - они могут поднимать железные предметы, не касаясь их! Но на самом деле это обычное физическое явление. В этой статье мы разберемся, что такое магнит, как он работает и почему притягивает именно железо. Что такое магнит и магнитное поле Магнит - это объект, который создает вокруг себя магнитное поле. Это поле заставляет двигаться заряженные частицы, такие как электроны. Благодаря магнитному полю магнит может воздействовать на другие объекты, не касаясь их. Магнитное поле возникает там, где движутся электрические заряды. Например, если по проводу идет электрический ток, то вокруг провода появляется магнитное поле. Оно изображается при помощи силовых линий - невидимых нитей, которые идут от северного полюса магнита к южному. Магнитные поля есть не только вокруг магнитов, но и в природе: Магнитное поле Земли защищает все живое от космической радиации У некоторых животных есть внутренний компас - они ориентируются по магнитному полю планеты Магнитные бури на Солнце влияют на работу электроприборов на Земле У любого магнита есть два полюса: северный N и южный S. Почему магнит магнитит: строение магнитных материалов Чтобы понять, почему одни материалы становятся магнитами, а другие нет, нужно разобраться в строении вещества. Все состоит из атомов. Внутри атомов движутся отрицательно заряженные частицы - электроны.
Вы затратили энергию и получили ее обратно. Вы убрали от магнита железку и больше не используете в опыте. Какие физические свойства магнита при этом изменились? Ни какие. Если вы деформировали пружину - то ее физ свойства изменились - она накопила энергию в виде упругой деформации. Магнит же ни каких свойств не изменит если вы удалите от него железку. Добавлено спустя 3 минуты 59 секунд: blindman писал а : При падении шарика с высоты совершается работа? Она берется от того кто милион раз будет поднимать шарик перед броском. Разве энергия не есть мера работы которую нужно произвести, чтобы изменить какое-нибудь поле? Добавлено спустя 39 секунд: avr123. А тут она будет браться от того, кто миллион раз будет отлеплять железку и отпускать новую Добавлено спустя 2 минуты 5 секунд: avr123. Подозреваю, что мы когда убрали железку - в этот момент изменилось магнитное поле, которое, как пружина, опять "взвелось". То есть начальное условие - шарик на земле. По аналогии - если изначально пластина на магните, то энергия возьмется от того, кто ее от магнита отрывает avr123. Ей можно дать возможность двигаться - то есть прекратит препятствовать движению, но не дать энергию.