Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины.
Комплексный анализ работы сервисов ИИ в медицине провели в Москве
Подробнее о результатах исследования мы расскажем подробнее в отдельной статье в ближайшие недели! В условиях быстро меняющейся ситуации в сфере цифровизации сектор здравоохранения переживает глубокую трансформацию, характеризующуюся растущей интеграцией технологий цифрового здравоохранения, телемедицины, единых реестров и ИИ. Этот сдвиг не только предлагает множество преимуществ, но и меняет динамику отношений между пациентами и поставщиками медицинских услуг в рамках системы здравоохранения. Отчет представляет из себя большой обзор всех стран - участников региона по основным показателям. В профилях указаны важнейшие компоненты цифрового здравоохранения на национальном уровне, включая цифровое управление здравоохранением, электронные медицинские карты, порталы пациентов, телемедицину, мобильное здравоохранение, а также большие данные и аналитику. Всего в рамках награды было подано более 100 заявок. Также победителями номинаций стали: Русагро, Авито, Росатом и Роскосмос.
Премия Data Fusion Awards присуждается за достижения в области развития тренда Data Fusion, реализацию успешных кросс-отраслевых проектов по анализу больших данных с использованием алгоритмов машинного обучения и искусственного интеллекта, развитие образовательных инициатив для подготовки специалистов.
Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции. Точные результаты Рынок ИИ в медицине достаточно активно рос в последние годы, однако с 2022—го из—за санкций возникли трудности с дальнейшим использованием технологий западных производителей. Впрочем, эта проблема достаточно быстро решилась: на рынок вышли отечественные разработки и, по оценке Анны Соломахиной, основателя Школы медицинского бизнеса, многие из них не уступают иностранным аналогам. Читайте также: Нейросети скоростного плетения: Россия даст свободу искусственному интеллекту В частности, только в этом году был предложен целый ряд инновационных продуктов, которые будут использованы в сфере диагностики.
Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им. Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта. С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные.
Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века.
Это опасное неврологическое заболевание обычно начинает развиваться в молодом возрасте и со временем может привести к тяжелой инвалидности. Технологии ИИ позволят медикам повысить скорость и точность его диагностики на МРТ головного мозга», — объяснила Ракова. Алгоритмы отмечают области возможных патологий цветовыми подсказками и ранжируют медицинские снимки по степени вероятности патологии. Окончательный диагноз в любом случае ставит врач, но технологии значительно ускоряют постановку диагноза и повышают его точность. На сегодняшний момент нейросети обработали уже больше 9 млн лучевых исследований пациентов. Москва первой в стране ввела специальный тариф в рамках ОМС на анализ результатов профилактических маммографических исследований с помощью ИИ. Таким образом, был завершен первый этап внедрения в систему здравоохранения и рутинную медицинскую практику технологий компьютерного зрения.
Этот инструмент помогает на основе жалоб пациента подобрать наиболее вероятные диагнозы, а врач уже решает, соглашаться ли с ними. Третий — чат-бот, собирающий жалобы пациентов на самочувствие перед посещением врача. Он опрашивает пациента и передает данные врачу. Таким образом, врач тратит меньше времени на сбор жалоб и анамнеза. Сервис был запущен в 2021 г. И четвертый — анализ электрокардиограмм. Все взрослые поликлиники в Москве оснастили цифровыми электрокардиографами с ИИ. Как сообщала Ракова, с помощью умного помощника терапевты и врачи общей практики уже поставили более 10 млн предварительных диагнозов, из них с начала этого года — более миллиона.
Сегодня умные алгоритмы доступны рентгенологам более чем 150 медицинских организаций, в том числе детских. К концу 2023 г.
Работы много, но все поставленные нами цели — абсолютно конкретны и достижимы», — подытожил Собянин.
По материалам: сайт Сергея Собянина. Картина дня.
Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией
Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей.
AI-платформа для анализа медицинских изображений
А это зависит от того, как настроен этот инструмент, на какой результат он нацелен. И не забываем, что инструмент — просто набор алгоритмов, зависящий от объема и качества данных «на входе», настройки, обучения и целеполагания. В некоторой степени он лишен моральных критериев. Они задаются человеком.
Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации. Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему?
В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов. Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ. Еще одна сложность — большое количество данных, необходимых для обучения.
В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать. И здесь возникает вызов — как научиться делать это быстро.
Итак, для корректной работы ИИ нужны «чистые» машиночитаемые данные, подготовленные и размеченные высококвалифицированными специалистами выборки данных для обучения нейросетей, оцифрованные порядки оказания медицинской помощи, клинические рекомендации и стандарты оказания медицинской помощи. При смене методологии медицинские информационные системы тоже начинают наполняться новыми данными только с появлением утвержденных изменений в методологии диагностики, лечения, наблюдения пациента и т. Симбиоз или противостояние?
Если мы смотрим на искусственный интеллект глазами разработчика, то видим набор алгоритмов и математических методов, которые могут обучаться на данных, анализировать изображения, искать неочевидные связи и сходства в огромных массивах данных, обнаруживать различия там, где естественный интеллект может просто их не заметить. Но для врача работа искусственного интеллекта — это черный ящик.
Почему буксует информатизация отрасли? Что нужно сделать, чтобы перестать отставать от развитых стран?
Эти вопросы «МВ» адресовал члену наблюдательного совета ассоциации «Национальная база медицинских знаний» и участнику рабочей группы по подготовке проекта приказа об электронном медицинском документообороте Александру Гусеву.
Сбор и анализ большого объема данных о пациентах может привести к нарушению их конфиденциальности и частной жизни. Компании и организации, работающие с данными пациентов, должны обеспечивать высокий уровень защиты этих данных, чтобы предотвратить несанкционированный доступ и их злоупотребление. Во-вторых, существует риск зависимости от искусственного интеллекта и автоматизации процессов в медицине. Биологические и медицинские аспекты требуют внимательного и профессионального вмешательства врачей. Полное полагание на ИИ может привести к ослаблению роли врача и человеческого фактора в принятии решений, что сложно для понимания пациентами и вызывает опасения о безошибочности и безопасности процедур и лечения. Третьим важным аспектом является этическое использование ИИ в медицине. Возникают вопросы о прозрачности и объяснимости алгоритмов, использованных ИИ, чтобы врач мог понять и объяснить пациенту, какой именно алгоритм или модель привела к определенному диагнозу или рекомендации. Кроме того, ИИ должен использоваться только в тех случаях, где его применение будет полезным и эффективным для пациента, а не для коммерческих или иных целей.
Искусственный интеллект в медицине стал важной и развивающейся областью. Однако, проблемы и вызовы, связанные с этикой и безопасностью данных, должны быть учтены и регулироваться соответствующими нормами и правилами, чтобы обеспечить эффективное и этичное использование ИИ в сфере здравоохранения. Искусственный интеллект в медицинских исследованиях: ускорение разработки новых лекарств и терапий Искусственный интеллект ИИ играет важную роль в современных медицинских исследованиях, позволяя ускорить разработку новых лекарств и терапий. Благодаря использованию ИИ, процесс разработки новых лекарств и терапий становится более эффективным и быстрым. Алгоритмы машинного обучения и нейронные сети позволяют анализировать огромные объемы данных, включая генетическую информацию, результаты клинических испытаний и данные о воздействии лекарственных препаратов на организм. Использование ИИ позволяет выявить связи и тренды, которые могли бы остаться незамеченными при традиционных методах исследования. Таким образом, ученые и фармацевты могут получить новые и глубокие понимания основных механизмов заболеваний и разработать более эффективные методы их лечения. Техники ИИ также позволяют ускорить процесс поиска молекулярных структур, которые могут подавлять определенный вид заболевания. Алгоритмы машинного обучения способны анализировать огромное количество химических соединений и предсказывать их эффект на организм.
Это позволяет исследователям экономить время и ресурсы, и ускоряет процесс разработки новых лекарственных препаратов и терапий. Искусственный интеллект в медицинских исследованиях — это мощный инструмент, который позволяет находить новые подходы к лечению заболеваний и способы предупреждения их развития. С помощью ИИ ученые имеют возможность углубиться в сложные механизмы заболеваний и найти инновационные решения для обеспечения лучшей медицинской помощи и улучшения качества жизни пациентов. Перспективы развития искусственного интеллекта в медицине: роль автоматизации и улучшение пациентского ухода. Искусственный интеллект в медицине — это одна из наиболее перспективных областей развития современной медицины. На сегодняшний день автоматизация и использование искусственного интеллекта уже сыграли значительную роль в повышении качества оказания медицинской помощи и улучшении пациентского ухода. Развитие искусственного интеллекта в медицине открывает новые возможности для диагностики различных заболеваний. Автоматизированные системы на основе искусственного интеллекта позволяют проводить точную и быструю диагностику, основанную на анализе большого объема медицинских данных.
Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует. Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами. Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания. То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии. Врачи ей пользовались под моим контролем. Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов. У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков.
Эксперимент по внедрению технологий искусственного интеллекта
ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Создатели платформы видят свои перспективы во внедрении технологии в широкую клиническую практику, чтобы пациенты, пришедшие на осмотр в городскую поликлинику, имели доступ к передовым технологиям. РФ , который выделяет специальные гранты на модернизацию программного обеспечения с применением алгоритмов ИИ. Так, резидент «Сколково» и грантополучатель Фонда содействия инновациям — «Платформа третье мнение» «ПТМ» — уже в 19 регионах страны внедряет сервисы искусственного интеллекта, поддерживающие рабочий процесс врача при интерпретации диагностических исследований. Также в ряде регионов запускаются системы для анализа видеопотока в стационарах, отделениях реанимации и интенсивной терапии. При диспансеризации врачи обрабатывают большой поток исследований, не имеющих отклонений от нормы, что создает высокую рутинную нагрузку и повышает риск пропуска редкой патологии. А решение «ИИ-Мониторинг» от «ПТМ» позволяет в режиме реального времени анализировать видеопоток в стационарах и эффективно наблюдать даже за пациентами в тяжелом состоянии. С помощью алгоритмов компьютерного зрения система отслеживает нежелательные события и уведомляет о них. Благодаря чему скорость реакции на них медперсонала повышается в 50 раз, а число наступивших негативных событий сокращается до нуля. По федеральному проекту «Искусственный интеллект» Фондом содействия инновациям уже профинансировано свыше 850 проектов ИИ-разработчиков.
До 13 мая открыт прием заявок на конкурсы для инноваторов в сфере искусственного интеллекта. Гранты до 8 млн рублей могут получить как физические, так и юридические лица.
Говорит заместитель руководителя Федеральной службы по надзору в сфере здравоохранения Дмитрий Павлюков: «Нам нужно понимать, насколько вообще несет в себе риски этот продукт и как его дальше регулировать. Мы вывели на рынок 11 программных продуктов с искусственным интеллектом. Почти все они были зарегистрированы в Росздравнадзоре в 2021 году.
На сегодня не было ни одного неблагоприятного события, связанного с их применением. Но вместе с тем, так как мы относим эти программные продукты к высокому классу риска, до февраля 2022 года все производители должны предоставить подробные отчеты об их применении в медицинской практике, чтобы мы могли аккумулировать данные и понять, как развивается эта технология». Здравоохранение — лидер по применению искусственного интеллекта Эксперт по искусственному интеллекту «Центрального научно-исследовательского института организации и информатизации здравоохранения» Минздрава России Александр Гусев отмечает: «Сейчас сфера искусственного интеллекта является мировым рекордсменом в мире по размеру инвестиций, вливаемых в программные продукты с использованием технологий ИИ, и по количеству сделок. Здравоохранение — это та отрасль, где инвесторы имеют максимальные надежды на то, что эти продукты будут востребованы и популярны». По словам А.
Это абсолютный рекорд по сравнению с другими отраслями. А по размеру привлеченных средств у здравоохранения второе место — 2,766 млрд. Впереди только транспорт и логистика. Но, несмотря на эти рекорды, с прошлого года все острее становится дискуссия о доверии и ответственном отношении всех участников сферы ИИ. Слишком много спекуляций.
Большая часть ни к чему плохому не привела, однако 18 процентов причинили вред разной степени тяжести, в том числе были зафиксированы 4 смертельных случая. Будет доказанная безопасность, будет и доверие. Стандарты — залог доверия По мнению Дмитрия Павлюкова, которое он высказал на форуме, в условиях формирования доверия ключевую роль играет стандартизация в области применения ИИ. Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна.
Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее.
И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике.
Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины.
Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты.
Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии.
Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии. Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия.
Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта. Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте. Но обычно нейросети на это неспособны. Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам.
В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум. Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение. Окончательное решение всегда остаётся за человеком.
Роман Душкин: «Медицина — это область доверия»
Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи.
Машины лечат людей: как нейросети используют в российской медицине
В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. Крупная международная биотехнологическая компания Insilico Medicine объявила о том, что лекарство, которое открыл искусственный интеллект, впервые в мире успешно прошло первую фазу клинических испытаний. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин.
Комплексный анализ работы сервисов ИИ в медицине провели в Москве
Благодаря виртуальной медсестре пациент сможет предотвратить ухудшение своего состояния. Системы мультимодальной диагностики В развитии ИИ можно выделить несколько трендов, один из которых связан с интеграцией типов модальностей данных, на которых выполняется обучение. Например, для аудиовизуального распознавания речи визуальное описание движения губ объединяется с аудиовходом для предсказания произнесенных слов. Информация, поступающая из источников различных модальностей, может иметь различную предсказательную силу и топологию шума, а в некоторых источниках данные могут отсутствовать.
Неоднородность мультимодальных данных затрудняет построение моделей. Важно изучить, как представлять входные данные и обобщать их таким образом, чтобы они отражали несколько модальностей. Например, текст представляется символами, а аудио и визуальные модальности — сигналами.
В контексте медицинского применения вся диагностическая информация о пациенте может быть интегрирована в такие мультимодальные данные и обрабатываться системой ИИ, обученной рассматривать как внешнее изображение человека и фрагментов его тела, так и результаты анализов, МРТ- и КТ-изображения, аудиозаписи ответов на вопросы и т. Все это приближает нас к построению универсального диагноста, использующего холистический подход к диагностике заболеваний, и сокращению количества посещений разных врачей-специалистов для назначения эффективного лечения. Приложения для здоровья на базе искусственного интеллекта Самое большое потенциальное преимущество искусственного интеллекта — возможность помочь людям оставаться бодрыми, чтобы им не приходилось посещать врача или по крайней мере делать это не слишком часто.
Искусственный интеллект и интернет медицинских вещей IoMT уже постепенно меняют парадигму с «реактивного» здравоохранения на «проактивное». Сочетание искусственного интеллекта и IoMT со временем сделает подключенные устройства для мониторинга состояния здоровья более интеллектуальными. ИИ и огромные объемы данных, генерируемые IoMT, также могут использоваться для постановки диагноза.
Различные приложения для здорового образа жизни на основе искусственного интеллекта, такие как MyFitnessPal и HealthTap, предоставляют людям полный контроль над своим здоровьем и благополучием, обратную связь с медучреждением и рекомендации для поддержания здоровья. Например, HealthTap узнает о симптомах пациента и их изменении с течением времени и координирует процесс лечения: отправляет напоминания, предоставляет текстовые ответы, сопоставленные с данными об истории болезни, руководствами, созданными врачами, а также обеспечивает возможность проведения онлайн-консультаций по видеоконференцсвязи. ИИ в медицине — это прорыв?
Можно ли назвать применение ИИ прорывом в диагностике и лечении?
Журналисты приводят данные, согласно которым совокупный экономический эффект от использования искусственного интеллекта в медорганизациях достиг 13 млрд рублей еще в 2021 году. При этом власти призывают не использовать ИИ в медицине для обогащения отдельных организаций, но направлять усилия на улучшение качества помощи и поддержку врачей.
Зачем врачам нейросети Правительство оценит готовность внедрения искусственного интеллекта во всех регионах России Пандемия COVID-19 серьезно ускорила технологический прогресс в медицине по всему миру. В результате сфера здравоохранения стала лидером по внедрению инноваций, в основном на базе искусственного интеллекта. Заместитель главы федерального минздрава Павел Пугачев отметил, что на данный момент зарегистрированы Росздравнадзором и уже применяются в больницах более 20 медицинских изделий на основе нейросетей.
Кроме того, по оценкам ВОЗ, к 2030 году во всем мире ожидается дефицит порядка 10 миллионов медработников. Спрос на высококвалифицированных специалистов растет уже сейчас.
Документы pdf16. Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных.
Врачи рассказали о новых стандартах в столичном здравоохранении Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований. В ближайшие годы планируется превратить искусственный интеллект в базовую медицинскую технологию. В результате не только у терапевтов, но и у других московских врачей появятся цифровые помощники, которые смогут подсказывать оптимальную тактику лечения пациентов.
Помимо этого, исчезнет рутинная бумажная работа — медицинская информация будет регистрироваться и обрабатываться исключительно в цифровой среде, врачи смогут больше времени уделять задачам, где действительно необходимы их компетенции. Кроме того, планируется внедрить проактивный подход, в рамках которого искусственный интеллект будет анализировать медкарты пациентов и выявлять риски возникновения заболеваний. Задача врача в этом случае — инициативная работа с пациентом: позвонить, пригласить на прием, порекомендовать различные формы профилактики заболеваний.
Полная роботизация: как искусственный интеллект помогает врачам
Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. Сбор данных и искусственный интеллект в медицине. Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике. Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья. Применение искусственного интеллекта в медицине.
Нейросети в качестве врача: как искусственный интеллект влияет на развитие медицины
Сегодня он применяется в основном для анализа медицинских изображений и электронных медицинских карт. Кроме того, цифровой разум готов помочь в разработке новых лекарственных препаратов. Искусственный разум проанализирует снимок и сделает описание патологии, сэкономив врачу время и силы. Он напомнил, что всем субъектам РФ необходимо в этом году внедрить не менее одного решения с ИИ, а в следующем - не менее трех. Пока большинство регионов выбрали технологии, работающие с медицинскими изображениями: маммографией, компьютерной томографией органов грудной клетки и головного мозга, рентген-снимками органов грудной клетки.
Также 32 региона заключили контракт на закупку решений для работы с электронными медкартами, говорится в презентации замминистра. Замминистра также обратил внимание, что перевес в этой сфере имеют российские продукты - из 24 медицинских изделий с ИИ, зарегистрированных Росздравнадзором, 17 - от российских разработчиков. Как работает анализ медицинских изображений? А врач, когда работает с этим исследованием, уже использует результаты работы искусственного интеллекта, - рассказал "РГ" коммерческий директор компании Цельс Артем Капнинский.
И мы эту работу делаем не для того, чтобы заменить его, а чтобы ему помочь. Когда врач работает вместе с искусственным интеллектом, это минимизирует возможность ошибки.
Информация будет регистрироваться и обрабатываться только в цифровом формате, врачи смогут больше времени уделять задачам, где нужны их компетенции. Кроме того, планируется внедрить умный проактивный подход, в рамках которого ИИ будет анализировать медицинские карты и выявлять риски возникновения заболеваний. По словам мэра, телемедецина, когда большую часть проблем со здоровьем можно будет решить онлайн, без визита к врачу, станет обычной практикой.
Качество работы подтверждает статистика. Например, заммэра Москвы по вопросам социального развития Анастасия Ракова сообщила , что за два года сервисы ИИ обработали более 6 млн лучевых снимков.
По ее словам, технологии помогли быстрее описать снимки и заметили мельчайшие отклонения. ИИ хорошо показал себя в медицине, поэтому ученые уже пишут алгоритм, по которому можно будет обнаружить ранние проявления болезни Альцгеймера по результатам МРТ. Еще одним направлением, где применяется искусственный интеллект, стала область семантического анализа. ИИ анализирует и систематизирует данные, содержащиеся в электронной медицинской карте пациента. Ее заполняют сразу несколько врачей: кардиолог, невролог, терапевт и другие. Алгоритм собирает анамнезы воедино, и так специалист может обнаружить определенные паттерны. Метод, при котором медкарта заполнена разными специалистами, а данные собраны воедино, позволяет оптимизировать постановку точного диагноза.
Настоящей технологией будущего можно считать роботов-хирургов — это решение на стыке роботизации и ИИ. Успешный проект в этом направлении представил резидент «Сколково» — компания «Экзоскелет». Специалисты разрабатывают роботы-экзоскелеты, которые помогают людям после тяжелых травм заново учиться ходить. Однако говорить об использовании роботов-хирургов пока рано. Причина кроется в большом количестве алгоритмических частей, с помощью которых можно создать конечный продукт. При этом они могут быть не связаны напрямую с медицинскими показателями. К примеру, автопилот распознает препятствия на дороге, но не имеет доступа к управлению машиной.
Польза для каждого Применение ИИ выгодно как для врача, так и для пациента — то есть, для всей системы здравоохранения в целом. Качество диагностики выходит на совершенно другой уровень.
В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Ключевые слова: искусственный интеллект, машинное обучение, нейронная сеть.
Рецензент: Гладских Наталья Александровна - Кандидат технических наук, ассистент кафедры медицинской информатики и статистики. ВГМУ им. Бурденко В современном мире информационные технологии затрагивают почти каждую сферу деятельности человека. И медицина тому не исключение.
Искусственный интеллект ИИ - основа новых информационных технологий. ИИ в лечении и диагностике Одной из главных задач ИИ в медицине является оптимизация диагностики и лечения. В настоящее время созданы и внедрены программы, способные обрабатывать данные жалоб пациентов, осмотра, лабораторных анализов и инструментальных обследований. Так для назначения оптимального лечения используется IBM Watson for oncology, помогающий врачам-онкологам в кратчайшие сроки подобрать терапию, основываясь на большой базе данных, загруженных для обучения ИИ: более 25 тысяч историй болезней, 300 медицинских журналов и 200 учебников.
Программа, обрабатывая данные с помощью многочисленных источников, предлагает несколько вариантов терапии, из которых врач может выбрать наиболее подходящий, а также дополнить клиническую картину новыми данными, в зависимости от которых ИИ формирует новый алгоритм лечения. Human Diagnosis project - это программа, соединяющая в себе знания врачей со всего мира и алгоритмы машинного обучения. На сегодняшний день тысячи профессионалов медицины более чем из 80 стран и 500 медицинских институтов вовлечены в создание проекта. Human Diagnosis project направлен на создание наиболее полной базы, способной составить алгоритм помощи любому пациенту.
Проект преследует цель не только оптимизировать принятие клинических решений, но и улучшить получение медицинского образования. Одной из таких программ является IBM Medical Sieve, которая в среднем более точно выявляет дефекты и новообразования, что позволяет сократить время диагностики и уменьшить возможность упущения важных данных.
Искусственный интеллект в медицине: применение и перспективы
Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов. Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов.
Правила комментирования
- Искусственный интеллект в медицине и здравоохранении
- Вас вылечит… искусственный интеллект. Как ИИ-решения применяются в медицине | Аргументы и Факты
- Цельс | ИИ в медицине – Telegram
- Искусственный интеллект в медицине
- Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований
- ИИ в медицине: тренды и примеры применения -