Правильный ответ здесь, всего на вопрос ответили 1 раз: где хранится информация о структуре белка?и где осуществляется его синтез. Таким образом, основа белка является ключевым элементом в изучении строения и функции белков, а информацию о первичной структуре можно найти в генетической информации, хранящейся в ДНК. не могли бы вы сказать где в этом тексте категория состояния? Разные вопросы. Здесь написанно в крации?
Адрес доставки белка указан уже в матричной РНК
Белки состоят из цепочек аминокислот, которые, будучи сложены в трехмерные формы, определяют функцию этих белков в клетках. На протяжении десятилетий исследователи использовали экспериментальные методы, такие как рентгеновская кристаллография и криоэлектронная микроскопия. Но такие методы могут быть трудоемкими и дорогостоящими, а некоторые белки не поддаются подобному анализу. DeepMind в 2020 году показала , как ее программное обеспечение может точно предсказывать структуру многих белков, используя только их последовательность, которая определяется ДНК. Исследователи работали над своей системой в течение десятилетий, и AlphaFold 2 отлично показала себя в рамках критической оценки прогнозирования структуры белка CASP, решив 50-летнюю проблему фолдинга или «сворачивания» белков. Компания пообещала опубликовать документы с более подробной информацией и сделать программное обеспечение доступным для исследователей.
Такой же принцип широко используется и для предсказания функции «нового» гена: на основе гомологии общности происхождения ему приписывается известная функция родственного гена. На сегодня имеется большое число баз данных, в которых дана функциональная аннотация генов или кодируемых ими белков. Есть базы данных, в которых белки группируются по степени функциональной близости, например, база данных Pfam, содержащая свыше 14 тыс. Интенсивно развиваются и методы поиска сходных последовательностей в огромных массивах биологических баз данных, которые позволяют эффективно использовать для предсказания функции и структуры генов информацию по структуре и функции уже аннотированных генов и белков. Пространственная структура белка, которая формируется в физиологических условиях в результате самостоятельной укладки полипептидных цепей, определяет и его функциональные свойства: наличие участков связывания малых химических соединений, ДНК, РНК и других белков. Информация о таких структурах хранится в банке данных Protein Data Bank, который уже сейчас содержит почти 90 тыс. В этой связи для биологов очень важной является задача сравнения и классификации белковых структур. Методы структурной биоинформатики позволили разработать эффективные алгоритмы для парного и множественного сравнения белковых структур, а также создать свою белковую «систематику», т. Такая классификация во многом способствует изучению эволюции белков и более глубокому пониманию их функций. Например, установлено, что в процессе эволюции изменения в пространственной структуре белков накапливаются гораздо медленнее, чем изменения в самих аминокислотных последовательностях. Кроме того, была сформулирована гипотеза о конечности числа возможных пространственных укладок полипептидной цепи белков — оно было оценено приблизительно в одну тысячу. Это предположение подтверждается исследованиями последних лет: число «опознанных» белковых структур растет ежегодно на 5—7 тыс. Наиболее надежный способ получения моделей пространственных структур белков — рентгеновская кристаллография, однако он длительный, трудоемкий и дорогостоящий. Поэтому важным направлением структурной биоинформатики является разработка методов предсказания структуры белка по его аминокислотной последовательности. Для этого здесь, как и в компьютерной геномике, используются методы машинного обучения, а также технологии реконструкции пространственных структур «по гомологии», т. В настоящее время наиболее точные предсказания структуры белка можно получить, если находится родственный ему белок с уже известной пространственной структурой. И чем выше будет степень родства двух белков, тем выше окажется точность модели. Еще одна интересная область структурной биоинформатики — молекулярное моделирование структур биологических макромолекул. Современные алгоритмы, использующие технологии параллельных вычислений на высокопроизводительных компьютерных кластерах, позволяют рассчитывать системы, состоящие из десятков тысяч атомов! Это дает возможность в мельчайших деталях — на уровне отдельных атомов, исследовать эффекты влияния мутаций на структуру белка и характер взаимодействия его активных центров с метаболитами. В генной «паутине» Нужно отметить, что к концу XX в. В этом ключе взаимодействия между компонентами живых клеток принято описывать в виде графов, узлами которых являются биологическое компоненты гены, молекулы , а ребрами — взаимодействия между ними. Такие графы, именуемые генными сетями, описывают координированно функционирующие группы генов, которые контролируют развитие всех фенотипических признаков организма Колчанов и др. Такое представление межгенных взаимодействий — удобная математическая модель: на основе анализа структуры графа можно получать информацию о различных особенностях функционирования живых систем. В структуре графа можно выделить ряд важных элементов, в частности, положительные и отрицательные обратные связи, циклы, каскады передачи сигналов и т. В случае, когда параметры взаимодействий между компонентами генной сети известны например, оценены экспериментально , компьютерные программы позволяют построить кинетические модели, которые можно использовать для моделирования динамического поведения генных сетей, т.
Связи, которые образуются в активном центре — слабые: чаще всего ионные, водородные и Ван-дер-Вальсовы. Но иногда могут быть и ковалентными, но не будем забегать вперёд — об этом мы поговорим, когда будем разбирать ферменты. Ну а теперь, как все это работает. В активном центре располагается уникальная последовательность аминокислот, допустим там будет две положительнозаряженных и две отрицательнозаряженных аминокислоты. А у молекулы, с которой происходит взаимодействие, будет: две отрицательных группы и две положительных. Форма молекулы совпадает с формой активного центра. Кстати, у молекулы, которая взаимодействует с активным центром тоже есть свое название — лиганд. Надоели уже эти названия? Мне тоже… Строение активного центра и его взаимодействие с лигандом Ах, да — вся третичная структура определяется первичной…. Я знаю, что вы запомнили, но хочу немного понадоедать. Эти связи образуются между радикалами. Четвертичная структура белка Последняя, но самая большая! Не пугайтесь, только по размеру. Она есть не у всех белков, некоторые прекрасно работают в виде третичной структуры и не парятся. Но представьте, что мы возьмем несколько третичных структур и как соединим их вместе. Пусть их будет 4 штуки, берем 4 шарика и соединяем их. Получаем четвертичную, но не из-за того, что мы взяли 4 шарика…. Эти шарики комплементарны друг другу в участках связывания — не активный центр, но чем-то похоже. Таких участков связывания много, поэтому ошибиться и не узнать своего товарища очень трудно. Каждая глобула, которую мы взяли — это отдельная полипептидная цепь. Прочитай это еще раз. До этого все касалось только одной полипептидной цепи, а теперь их несколько. Такая цепь называется мономером или субъединицей , а при соединении мономеров образуется олигомер. Так что вся большая молекула — это олигомер. Четвертичная структура белка Какие связи все это стабилизируют? Чаще всего это водородные, ионные и Ван-дер-Вальсовы, так как каждый мономер прячет свои гидрофобные остатки вглубь молекулы, то они образуются редко. Получается, что четвертичную структуру стабилизируют силы слабого взаимодействия, ковалентных связей здесь почти никогда не бывает — очень редко могут быть дисульфидные. Поэтому можем спокойно забить на них. В чем отличие четвертичной структуры от третичной? Ну кроме того, что тут объединено несколько полипептидных цепей. А вот какое — у олигомерных белков есть не только активный центр, но и другой — аллостерический центр. К этому замку не подойдут лиганды от активного центра, у него есть свои собственные ключики. Это очень важно, нужно запомнить! Господи, я превращаюсь в препода…. Аллостерические центры в четвертичной структуре Проведем аналогию с нашим домиком, только теперь их будет несколько. У каждого будет по главному и черному входу! Главный вход — активный центр, а черный ход — это аллостерический центр. Аллострические центры дают кое-что важное — регуляцию. Маленькая молекула, которая соединится с аллостерическим центром может остановить работу целого огромного белка. Получается, что размер не важен — не удержался. Но каким образом одна молекула останавливает работу целого белка? Очень просто — хотел бы я так сказать. Присоединение молекулы к мономеру изменяет его конформацию. А это ведет к тому, что мономер изменяет конформацию других мономеров — происходят конформационные изменения всей структуры белка. В результате этих изменений закрывается активный центр — лиганд не может к нему подойти. У всех этих изменений есть, как и всегда, свое название — кооперативный эффект. Кооперативный эффект И опять я про дом, если открыть черный ход, то нельзя открыть главный вход, ну и наоборот. Не всегда регуляция работает в таком ключе: черный ход может, наоборот, открывать парадную дверь. Но сейчас это не суть, главное понять смысол. Кстати, на самом деле чаще одна субъединица несет на себе аллостерический центр, а другая активный. Я решил запихнуть все в одну — думаю, что так будет нагляднее. Кроме этого, присоединение к активному центру также изменяет конформацию остальных мономеров, что приводит к облегченному присоединению лигандов. Хоть на картинке этого и не видно, но поверьте на слово! Кооперативный эффект В четвертичной структуре взаимодействуют несколько полипептидных цепей! Стабилизируется молекула силами слабого взаимодействия. Давайте заканчивать уже со строением. Простые и сложные белки До этого мы говорили, что белок — это полипептидная цепь, которая что-то там делает. Иногда даже несколько цепей соединяются и образуют олигомер. Но мы кое-что упускали все это время. Ведь не все белки состоят только из полипептидных цепей. У гемоглобина есть гем, а это не белковая часть, ого! Белки, которые располагаются на поверхности мембран соединяются с углеводами, которые спасают их от разрушения. Получается, что у некоторых белков есть дополнительные компоненты. Есть простые белки — они состоят только из аминокислотных остатков, а есть белки сложные. Они включают в себя белковую часть апопротеин , и небелковую простетическая группа. Простетические группы связана с белком с помощью ковалентных связей — просто так её не оторвёшь. Она очень важна, потому что белки без неё уже не могут работать. Простетических групп много — это могут быть металлы, углеводы, гем, липиды и еще куча всего.
Материалы по теме:.
Где хранится информация о структуре белка? и где осуществляется его синтез
Лучший ответ: Васян Коваль. Хранится в ядре, синтез РНК. Определить трехмерную структуру белка можно несколькими способами. Один из методов — рентгеновская кристаллография. При таком подходе выделяется очень большое количество белка, затем он очищается, и белок образовывает кристалл. А возможность синтезировать белки с желаемой структурой позволит ускорить разработку ферментов (ускорителей), с помощью которых можно, например, производить биотопливо и полностью разлагать пластмассовые отходы. Как называется отрезок молекулы ДНКсодержаий информацию о первичной структуре одного белка? Однако, из трехмерной структуры можно получить информацию о первичной структуре белка путем извлечения последовательности аминокислот из координат атомов. Информация о структуре белков «записана» в ДНК в виде последовательности нуклеотидов. В процессе транскрипции она переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Программа нашла все 200 млн белков, известных науке: как это возможно
Лучший ответ: Васян Коваль. Хранится в ядре, синтез РНК. Однако, из трехмерной структуры можно получить информацию о первичной структуре белка путем извлечения последовательности аминокислот из координат атомов. DeepMind выпускает расширенную базу данных воссозданных ИИ структур всех известных белков, об этом объявила материнская компания Google Alphabet. Таким образом, основа белка является ключевым элементом в изучении строения и функции белков, а информацию о первичной структуре можно найти в генетической информации, хранящейся в ДНК. Наследственная информация о строении белков хранится в молекулах ДНК, кото-рые входят в состав хромосом ядра.
Важнейшее открытие за 50 лет: алгоритм DeepMind научили определять структуру белка
Биосинтез белка. Генетический код и его свойства — Биология с Марией Семочкиной на | Определить трехмерную структуру белка можно несколькими способами. Один из методов — рентгеновская кристаллография. При таком подходе выделяется очень большое количество белка, затем он очищается, и белок образовывает кристалл. |
Найден ключ от замка жизни: биолог Северинов о главном прорыве года | Предмет: Биология, автор: analporoshok. где хранится информация о структуре белка?и где осуществляется его синтез. |
Где находится информация о первичной структуре белка: принципы и методы исследования | Информация о первичной структуре белка закодирована в. Первичная структура белка закодирована в молекуле. |
Как выглядит молекула
- Где хранится информация о структуре белка (89 фото)
- Типы информации о первичной структуре белка
- Генетический код. Биосинтез белка | теория по биологии 🌱 основы генетики
- Другие вопросы:
- Молекулы ДНК
- Биосинтез белка. Генетический код и его свойства
Информация о структуре белков хранится в
Тегиструктура белка это, где хранится информация о структуре белка, кто открыл первичную структуру белка, для определения белка применяют в химии, какая структура молекулы белка определяется. Где вырабатывается белок в организме? В печени синтезируются многие необходимые организму белки, а вырабатываемые ею пищеварительные ферменты участвуют в их усвоении. Правильный ответ на вопрос«Где хранится информация о структуре белка? и где осуществляется его синтез » по предмету Биология. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. 1.в ДНК. зашифрована в последовательности четырёх азотистых оснований. попадать посредством отшнуровываний выпячиваний и выростов ядерной оболочки. рипция. Именно в молекуле ДНК хранится информация о первичной структуре молекулы белка.
Содержание
- Образцы для анализа первичной структуры белка
- Популярно: Биология
- Биосинтез белка. Генетический код
- типы вторичных структур белка
Где хранится белок в организме?
В каких структурах клетки заключена наследственная информация? Goar4ik 23 июл. Федир2013 24 сент. И где осуществляется его синтез. Zxcvbnm111192if 6 апр. Nastya547 3 июл.
NastyaAmelkina98 20 июн. Kateagapova121 14 апр.
Хромосомы представляют собой упакованные витки ДНК и находятся в ядре клетки. Каждая особь имеет определенное число хромосом, которое характерно для данного вида. Изучение генома позволяет узнать о наличии генетических мутаций, которые могут быть связаны с различными заболеваниями. Также геномика является активно развивающейся областью науки, которая позволяет понять принципы функционирования организмов и их эволюции. В настоящее время существуют различные методы секвенирования ДНК, которые позволяют получать информацию о геноме.
С помощью секвенирования можно узнать последовательность нуклеотидов генома, а также обнаружить генетические изменения, которые могут влиять на здоровье организма. РНК РНК выполняет множество функций в организме, включая участие в синтезе белков, регуляцию генной экспрессии и передачу генетической информации между клетками. Одним из ключевых элементов в месте хранения информации о первичной структуре белка является транспортная РНК. Транспортная РНК является молекулой, которая переносит аминокислоты, необходимые для синтеза белков, к рибосомам.
Да-да, через активный центр, такие вы умные конечно… В чем прикол активного центра? Он должен соответствовать молекуле, с которой будет взаимодействовать. Это называется комплементарностью. Не путать с комплиментами. Активный центр — это замок, а другая молекула — ключ, которые должны подходить друг другу. Такие вот соулмейты. Хотя к некоторым активным центрам могут подходить много ключиков. Связи, которые образуются в активном центре — слабые: чаще всего ионные, водородные и Ван-дер-Вальсовы. Но иногда могут быть и ковалентными, но не будем забегать вперёд — об этом мы поговорим, когда будем разбирать ферменты. Ну а теперь, как все это работает. В активном центре располагается уникальная последовательность аминокислот, допустим там будет две положительнозаряженных и две отрицательнозаряженных аминокислоты. А у молекулы, с которой происходит взаимодействие, будет: две отрицательных группы и две положительных. Форма молекулы совпадает с формой активного центра. Кстати, у молекулы, которая взаимодействует с активным центром тоже есть свое название — лиганд. Надоели уже эти названия? Мне тоже… Строение активного центра и его взаимодействие с лигандом Ах, да — вся третичная структура определяется первичной…. Я знаю, что вы запомнили, но хочу немного понадоедать. Эти связи образуются между радикалами. Четвертичная структура белка Последняя, но самая большая! Не пугайтесь, только по размеру. Она есть не у всех белков, некоторые прекрасно работают в виде третичной структуры и не парятся. Но представьте, что мы возьмем несколько третичных структур и как соединим их вместе. Пусть их будет 4 штуки, берем 4 шарика и соединяем их. Получаем четвертичную, но не из-за того, что мы взяли 4 шарика…. Эти шарики комплементарны друг другу в участках связывания — не активный центр, но чем-то похоже. Таких участков связывания много, поэтому ошибиться и не узнать своего товарища очень трудно. Каждая глобула, которую мы взяли — это отдельная полипептидная цепь. Прочитай это еще раз. До этого все касалось только одной полипептидной цепи, а теперь их несколько. Такая цепь называется мономером или субъединицей , а при соединении мономеров образуется олигомер. Так что вся большая молекула — это олигомер. Четвертичная структура белка Какие связи все это стабилизируют? Чаще всего это водородные, ионные и Ван-дер-Вальсовы, так как каждый мономер прячет свои гидрофобные остатки вглубь молекулы, то они образуются редко. Получается, что четвертичную структуру стабилизируют силы слабого взаимодействия, ковалентных связей здесь почти никогда не бывает — очень редко могут быть дисульфидные. Поэтому можем спокойно забить на них. В чем отличие четвертичной структуры от третичной? Ну кроме того, что тут объединено несколько полипептидных цепей. А вот какое — у олигомерных белков есть не только активный центр, но и другой — аллостерический центр. К этому замку не подойдут лиганды от активного центра, у него есть свои собственные ключики. Это очень важно, нужно запомнить! Господи, я превращаюсь в препода…. Аллостерические центры в четвертичной структуре Проведем аналогию с нашим домиком, только теперь их будет несколько. У каждого будет по главному и черному входу! Главный вход — активный центр, а черный ход — это аллостерический центр. Аллострические центры дают кое-что важное — регуляцию. Маленькая молекула, которая соединится с аллостерическим центром может остановить работу целого огромного белка. Получается, что размер не важен — не удержался. Но каким образом одна молекула останавливает работу целого белка? Очень просто — хотел бы я так сказать. Присоединение молекулы к мономеру изменяет его конформацию. А это ведет к тому, что мономер изменяет конформацию других мономеров — происходят конформационные изменения всей структуры белка. В результате этих изменений закрывается активный центр — лиганд не может к нему подойти. У всех этих изменений есть, как и всегда, свое название — кооперативный эффект. Кооперативный эффект И опять я про дом, если открыть черный ход, то нельзя открыть главный вход, ну и наоборот. Не всегда регуляция работает в таком ключе: черный ход может, наоборот, открывать парадную дверь. Но сейчас это не суть, главное понять смысол. Кстати, на самом деле чаще одна субъединица несет на себе аллостерический центр, а другая активный. Я решил запихнуть все в одну — думаю, что так будет нагляднее. Кроме этого, присоединение к активному центру также изменяет конформацию остальных мономеров, что приводит к облегченному присоединению лигандов. Хоть на картинке этого и не видно, но поверьте на слово! Кооперативный эффект В четвертичной структуре взаимодействуют несколько полипептидных цепей! Стабилизируется молекула силами слабого взаимодействия. Давайте заканчивать уже со строением. Простые и сложные белки До этого мы говорили, что белок — это полипептидная цепь, которая что-то там делает. Иногда даже несколько цепей соединяются и образуют олигомер. Но мы кое-что упускали все это время. Ведь не все белки состоят только из полипептидных цепей. У гемоглобина есть гем, а это не белковая часть, ого!
Учитель: Сегодня на занятии мы узнаем, в чем же заключается наша индивидуальность и где она начинается. Индивидуальную неповторимость каждой особи определяют различия в генах и структуре белков. Белки являются основой уникальности каждого индивида. Давайте вспомним, что было изучено раннее, ответив на вопросы: Что является мономерами белков? Аминокислоты Какие особые связи образуются между аминокислотами в первичной структуре белка? Пептидные Где хранится информация о структуре белка? ДНК Какие органические вещества могут ускорять процесс синтеза белка? Ферменты Учитель: Свойства белков определяются прежде всего их первичной структурой, т. Наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекулах двуцепочечной ДНК. Следовательно, информация о строении и жизнедеятельности, как каждой клетке, так и всего многоклеточного организма в целом заключена в нуклеотидной последовательности ДНК. Эта информация получила название «генетической информации», Учитель:А как называется участок ДНК, в котором содержится информация о первичной структуре одного белка? Учащиеся: ген Слайд 4 Учитель: В каждой клетке синтезируются несколько тысяч различных белковых молекул. Белки недолговечны, время их существования ограничено, после чего они разрушаются. Как называется этот процесс? Денатурация Существует ли в организме обратный процесс денатурации? Учитель: Тема нашего сегодняшнего урока это «Биосинтез белка». Сегодня мы с вами узнаем, из каких основных этапов состоит процесс биосинтеза белка, какую роль в нем играют нуклеиновые кислоты, а также какие органоиды и вещества клетки принимают в этом процессе самое непосредственное участие. Слайд 7 Биосинтез белков осуществляется во всех клетках эукариот и прокариот.