Сегодня мы производим исчезнувшие изотопы, которые снова занимают свои прежние места: плутоний-239, топливо для ядерной бомбы, в качестве основного примера имеет период полураспада "всего" 24 500 лет и распадается при альфа-излучении на уран-235. Уран, плутоний, америций и нептуний в этой застывшей лаве продолжают распадаться, порождая в некоторых вариантах распада нейтроны. Уран, плутоний, америций и нептуний в этой застывшей лаве продолжают распадаться, порождая в некоторых вариантах распада нейтроны.
Ядерное топливо
При этом оно будет иметь ряд преимуществ для Казахстана, отмечает научный руководитель Института глобальных исследований Финансового университета при правительстве РФ Александр Ильинский. Во-первых, отмечает эксперт, "Росатом" принесет в совместное предприятие новые мировые технологии и передовой опыт, что приведет к повышению качества продукции и повышению эффективности кооперационных процессов. Это, по его словам, потенциально может привести к увеличению объемов производства, а также повысить конкурентоспособность российско-казахстанского предприятия на мировом рынке. В-третьих, говорит он, налоговые отчисления горно-металлургической компании правительству Казахстана также увеличатся в результате увеличения производства и доходов. Это, по словам эксперта, предоставит правительству дополнительное финансирование для инвестиций в ключевые области, такие как образование, здравоохранение и развитие инфраструктуры, что может оказать более широкое влияние на экономические перспективы страны. Подробнее о Буденовском месторождении Месторождение Буденовское - одно из крупнейших в мире, открытое в 1970-е годы.
Однако после распада СССР финансирование прекратилось и геологоразведочные работы были остановлены. Тогда местными властями было принято решение привлекать к работе на казахстанских месторождениях крупнейшие международные уранодобывающие компании с целью привлечения инвестиций и применения новейших технологий. При этом добывать уран в Казахстане они могли бы только в составе совместных с "Казатомпромом" предприятий. Продолжилась разведка Буденовского только в середине 2000-х годов. Месторождение разделили на семь участков, которые были "отданы" в работу трем совместным предприятиям.
В ноябре 2022-го началось закисление первого блока и в марте 2023-го были добыты первые 50 тонн урана. Теперь же требуются значительные инвестиции в обустройства родников и скважин. Согласно текущим планам "Казатомпрома", в 2024-м году добыча на участках СП "Будёновское" достигнет 2,5 тыс. Эти трехлетние объемы ранее еще до приобретения доли в совместном предприятии были законтрактованы "Росатомом".
Прочие реакции, самопроизвольно происходящие в ядерном топливе спонтанное деление, распад продуктов деления и т. Их происходит очень мало. Соответственно, вполне можно держать в руках и сам свежий уран но лучше в перчатках, уран токсичен , так и тепловыделяющие элементы и сборки.
И да, я сам лично видел и трогал свежие ТВС для РБМК, ничего, руки пока на месте и количество их пока не превышает среднее для человека. Но вот наступает момент, когда нашу свежую, чистенькую и слаборадиоактивную ТВС загружают в реактор. Загружать, кстати, будет вот эта прелестная машина, называемая РЗМ. Именно она позволяет проводить подобные операции, не останавливая и даже не разгружая реактор. Наша ТВС постепенно погружается внутрь реактора, внутри которого очень, очень большая плотность потока нейтронов. Нейтроны сразу начнут взаимодействовать с топливом, содержащимся в ТВС. Нейтронных реакций, кстати, в мире существует огромное количество.
Этими снарядами украинская армия собирается укомплектовать британские танки Challenger 2. RU приводит информацию о том, что известно о снарядах с обедненным ураном и чем они опасны. Что такое обедненный уран Обедненный уран — это побочный продукт обогащения природного урана для производства ядерного топлива, говорится в материале на сайте Евросоюза. Уточняется, что он не такой радиоактивный, как природный уран, поскольку содержит меньше делящегося материала U-235. Это очень плотный металл, он используется там, где необходима большая масса при небольшом объеме, в том числе в боевых снарядах. Как работают снаряды Высокая плотность металла позволяет боеприпасам с сердечниками из обедненного урана пробивать броню до 522 миллиметров с расстояния до двух километров. Несмотря на то, что обедненный уран — это ядерный компонент, ядерной реакции при применении таких боеприпасов не происходит, передает « ». Такими снарядами украинская армия собирается укомплектовать полученные от Британии танки Challenger 2. Также есть вероятность, что снаряды могут быть использованы под Бахмутом Артемовском , сообщает Life.
По данным ряда источников, после ракетного удара в Хмельницкой области резко вырос радиационный фон. Возникла версия, что на складе хранились, в том числе, танковые снаряды с обедненным ураном, а в результате их детонации в атмосферу попали радиоактивные частицы. Чем опасен обедненный уранПо словам ученого, радиационный фон обедненного урана не сильно отличается от радиационного фона печного шлака, который используют в котельных на твердом топливе - это первичная радиоактивность, и она не способна слишком сильно навредить человеку. Гораздо страшнее продукты распада урана. Но беда в том, что в нем содержатся продукты распада. Среди них есть очень капризные компоненты: и протактиний, и торий, и даже газ радон", - говорит эксперт. Если снаружи радиация поражает кожу, которая к внешнему воздействию привычна - это и солнечная радиация и другие факторы, то радон при вдыхании значительно повышает риск развития рака легких. Есть другая сторона, о которой говорят меньше, но "дьявол кроется в деталях", продолжает Работягов:Радиус и время уранового заражения"Пока уран находится в газовой среде, он будет двигаться по направлению ветра. Чем выше столб дыма, тем дальше его ветром может унести, но все равно рано или поздно он осядет. Однако на этом дело не закончится: он попадает на почву, и начинается медленное растворение в атмосферных осадках - грунтовые, поверхностные воды будут рассеивать его во все стороны.
Как устроены и чем опасны снаряды с обедненным ураном
Новость про то, что Великобритания намерена передать Украине боеприпасы с обедненным ураном, всколыхнула умы общественности и политиков. Распад Урана альбом Куньга слушать онлайн бесплатно на Яндекс Музыке в хорошем качестве. Обеднённый уран на 60% менее токсичен и радиоактивен. Распад урана-238: ядро урана поглощает нейтрон. Новости энгельса-покровска, губернии. Гораздо страшнее продукты распада урана."Дело в том, что сам уран-238 имеет период полураспада около 4,5 млрд лет.
Как выглядит самый страшный сценарий
- Механизм деления ядра урана
- Никто не дал ответ - почему так распадается Уран ? - YouTube
- Эффект просушки: что происходит с радиоактивной лавой под реактором в Чернобыле
- Продукты распада урана. Поражающее действие продуктов деления урана
- Россия прибрала к рукам казахстанский уран… Или нет?
Распадается за 40 минут: открыт новый изотоп урана
Если же часть из нейтронов из нового поколения поглощать или давать им утекать из активной зоны таким образом, что количество их будет постоянным, то и мощность будет поддерживаться на одном и том же уровне. Организовать такое непросто, и для ЛТСМ в «Укрытии» расчеты показывают , что для запуска ускоряющейся цепной реакции необходимо было бы уменьшить поглощение нейтронов «нейтральными» материалами и их утечку за пределы застывшего расплава как минимум в 2,5 раза. Самостоятельно такие изменения в самой керамике происходить не могут, но в ней есть поры и трещины, так что кое-что меняться может. Основную роль в изменениях тут играет вода, которой в руинах четвертого энергоблока еще со времен аварии скопилось немало. После сооружения «Укрытия» оказалось, что дождевая и талая вода продолжает поступать внутрь, но к началу 1990 года установился некоторый баланс водного режима.
Изменения нейтронной активности в помещениях под саркофагом, как пишут ученые в той же самой статье, были сезонными: сухие периоды сопровождались ростом плотности потока нейтронов, влажные наоборот. Эта ситуация изменилась, когда поверх «Укрытия» возвели в середине 2010-х Новый безопасный конфайнмент — поступление воды в остатки энергоблока резко сократилось. Из вышеупомянутой публикации по нейтронной физике ЛТСМ также следует, что существует точка «оптимального увлажнения», при которой нарастание количества нейтронов в каждом поколении достигает максимума. Соответственно, при высыхании залитых водой ЛТСМ нейтронный поток будет сначала увеличиваться и только после прохождения «оптимального увлажнения» начнет сокращаться — это, возможно, мы и видим сейчас.
Это происходит потому, что вода является одновременно сильным замедлителем и сильным поглотителем нейтронов. Замедление нейтронов — это снижение их энергии от миллионов электронвольт при рождении в ядерной реакции до сотых долей электронвольта — средней тепловой энергии атомов при комнатной температуре. Оно важно, потому что ядро урана-235 или плутония-239 примерно в 1000 раз охотнее поглотит замедленный нейтрон, чем быстрый, только появившийся в реакции. Поэтому добавляя воду к урану, мы увеличиваем вероятность деления и как бы виртуально многократно увеличиваем концентрацию урана.
Этому учат до сих пор на первых уроках школьной химии. Лавуазье бы сильно удивился, услышав доклад нобелевского лауреата Нильса Бора на открытии Пятой Вашингтонской конференции по теоретической физике 26 января 1939 года. Тот заявил, что при бомбардировке нейтронами атом состоит из ядра и оболочки из отрицательно заряженных электронов; ядро, в свою очередь, состоит из положительно заряженных протонов, количество которых и определяет тип вещества, и нейтронов, необходимых для придания ядру стабильности ядер урана они могут превращаться в два ядра бария, чья масса примерно вдвое меньше. Как рассказывал физик Эдвард Теллер, за день до конференции ему позвонил коллега Георгий Гамов, который знал о содержании выступления, и сказал ему: «Бор сошел с ума. Датский физик-теоретик Нильс Бор Однако в ходе выступления Бор изложил простой способ, с помощью которого каждый может получить экспериментальное доказательство его тезиса. Пока он говорил, один из слушателей шепнул другому: «Мне нужно срочно поместить новый образец в ускоритель». Когда Бор закончил, физики побежали к телефонам, чтобы дать коллегам в лабораториях инструкции.
Некоторые ученые решили сразу покинуть конференцию, чтобы самостоятельно проверить, правда ли уран способен делиться. В течение пары недель множество научных групп независимо друг от друга воспроизвели то, о чем говорил Бор. Часто говорят, что ученые тогда открыли превращение одних металлов в другие, чего пытались добиться тысячи лет. Правда, древние алхимики посмеялись бы над такой трансмутацией, поскольку она превращала редкий и дорогой уран в более дешевый и распространенный барий. Разве это была первая трансмутация? На самом деле, физики начали фиксировать нарушение постулата Лавуазье задолго до открытия деления ядра урана. В конце XIX века ученые обнаружили, что некоторые химические элементы в том числе уран и торий по своей внутренней природе испускают лучи, и это свойство назвали радиоактивностью.
К 1900-м годам стало ясно, что радиоактивные элементы в действительности испускают три типа лучей: альфа, бета и гамма. Как доказал Эрнест Резерфорд, бета-лучи — это электроны, а альфа-лучи — это ядра атомов гелия. Примерно так выглядел стол для исследования деления ядер Опыты показывали, что радиоактивные элементы почему-то со временем распадаются, будто бы протухают.
К сожалению, наука не знает почему распад вообще происходит. Лежит какая-то кучка атомов соответствующего вещества и вдруг одно из массы ядер распадается. Чем это ядро отличается от соседних ядер? Очевидно, что без причины не может быть следствия, в данном случае распад ядра.
Ученые даже не могут сказать — внутренняя это или внешняя причина. Некоторые пытаются ответить на данный вопрос, но как-то нечетко и не до конца. Например, пост наука пишет: Почему происходит распад ядра? Ядро атома состоит из нуклонов — нейтронов и положительно заряженных протонов. Существуют силы, которые связывают между собой нуклоны в ядре. Но его устойчивость зависит от того, сколько нуклонов оно содержит. Если ядро слишком тяжелое, то есть перегружено протонами или нейтронами, то оно будет менее устойчивым.
Вам стало понятно — почему ядро распалось? Мне — нет. Если оно перегружено, то почему в одном случае оно распадается через доли секунды, в другом через часы, а в третьем через годы. Почему ядерные, которые удерживали нуклоны вместе, вдруг так ослабли, что ядро распалось? Точнее силы не ослабли, а превратились в противоположные и растолкнули фрагменты ядра. В уране, с которым экспериментировал Резерфорд, все ядра с одинаковым числом нуклонов, но одно ядро распадается сейчас, это фиксирует счетчик, другое распадется завтра, а какое-то может распадется через тысячу или миллион лет. А потом распадаются не только слишком тяжелые ядра, но и легкие ядра.
Как видите половина ядер водорода распалось за 12,3 года, а когда остальные распадутся известно одному Богу. Получается, что устойчивость ядра не зависит прямо от его перегруженности. От чего же тогда зависит устойчивость атомного ядра? Естественно, что ответить на этот вопрос можно только в том случае, если нам известно устройство ядра. Для этого надо знать не только состав ядра, элементы, из которых оно состоит, но и физическую сущность сил, которые удерживают эти элементы в совокупности, как целый объект ядро. Наука же знает только название силы — ядерная, но какая физическая сущность этой силы — это науке неизвестно. Не зная физической сущности этой силы невозможно даже сказать: ослабевают эти силы, превращаются в противоположные или исчезают вовсе.
Организовать такое непросто, и для ЛТСМ в «Укрытии» расчеты показывают , что для запуска ускоряющейся цепной реакции необходимо было бы уменьшить поглощение нейтронов «нейтральными» материалами и их утечку за пределы застывшего расплава как минимум в 2,5 раза. Самостоятельно такие изменения в самой керамике происходить не могут, но в ней есть поры и трещины, так что кое-что меняться может. Основную роль в изменениях тут играет вода, которой в руинах четвертого энергоблока еще со времен аварии скопилось немало. После сооружения «Укрытия» оказалось, что дождевая и талая вода продолжает поступать внутрь, но к началу 1990 года установился некоторый баланс водного режима. Изменения нейтронной активности в помещениях под саркофагом, как пишут ученые в той же самой статье, были сезонными: сухие периоды сопровождались ростом плотности потока нейтронов, влажные наоборот. Эта ситуация изменилась, когда поверх «Укрытия» возвели в середине 2010-х Новый безопасный конфайнмент — поступление воды в остатки энергоблока резко сократилось.
Из вышеупомянутой публикации по нейтронной физике ЛТСМ также следует, что существует точка «оптимального увлажнения», при которой нарастание количества нейтронов в каждом поколении достигает максимума. Соответственно, при высыхании залитых водой ЛТСМ нейтронный поток будет сначала увеличиваться и только после прохождения «оптимального увлажнения» начнет сокращаться — это, возможно, мы и видим сейчас. Это происходит потому, что вода является одновременно сильным замедлителем и сильным поглотителем нейтронов. Замедление нейтронов — это снижение их энергии от миллионов электронвольт при рождении в ядерной реакции до сотых долей электронвольта — средней тепловой энергии атомов при комнатной температуре. Оно важно, потому что ядро урана-235 или плутония-239 примерно в 1000 раз охотнее поглотит замедленный нейтрон, чем быстрый, только появившийся в реакции. Поэтому добавляя воду к урану, мы увеличиваем вероятность деления и как бы виртуально многократно увеличиваем концентрацию урана.
Однако когда воды становится достаточно много, все нейтроны успевают в ней замедлиться, и дальнейшее ее добавление приводит только к росту поглощения ценных нейтронов.
Rn распад - фото сборник
Из продуктов радиоактивного распада урана-238 наибольший интерес, с точки зрения их вклада в природный радиоактивный фон (ПРФ), имеют радий-226, свинец-210 и полоний-210. Определите максимальную массу нептуния, которая может быть получена из данного образца урана. Уран-235 распадается, вследствие чего выделяется большое количество тепловой энергии. Под спонтанным делением подразумевают радиоактивный распад, при котором атомное ядро распадается на два приблизительно равных осколка. Конкретная деформация произошла из-за бомбежек обедненным ураном, которые были недалеко от Буяноваца и на границе с Косовым", – рассказал Миодрак Милкович, директор ветеринарной поликлиники города Буяновац. самопроизвольному делению, составляет основу природного урана (99,27%), α-излучатель, Т=4,468⋅109 лет, непосредственно распадается на 234Th, образует ряд генетически связных радионуклидов, и через 18 продуктов превращается в 206Pb.
Ядерный реактор
Воздействие урана на организм человека выявляется в его токсичности соединений. Распад Урана альбом Куньга слушать онлайн бесплатно на Яндекс Музыке в хорошем качестве. Все перечисленные выше запасы урана укладываются в экономически обоснованную стоимость добычи около $130 за килограмм. Воздействие урана на организм человека выявляется в его токсичности соединений.
Можно ли увидеть, как распадается атом урана?
Полное число антинейтрино может быть частично связано с мощностью действующего геореактора и частично — с естественным распадом различных нестабильных ядер в недрах Земли. Из данных KamLAND следует, что полная плотность потока геонейтрино составляет примерно 16 млн частиц в секунду на кв. Это соответствует источнику тепла, порождаемого ядерными реакциями, мощностью от 24 до 60 ТВт. Первое из двух чисел оказалось близким к величине «избыточного» тепла, излучаемого Землей, о котором шла речь выше. И многие специалисты склоняются к мнению, что это объяснение наиболее правдоподобно. Энергетические спектры нейтрино, образующихся при делении разных ядер, отличаются. Русов с коллегами выполнили компьютерное моделирование и определили спектральные составляющие геонейтрино от различных внутренних источников — урана-238, тория-232, плутония-239. Суммарную мощность геореактора они оценили в 30 ТВт. Результаты этой работы также свидетельствуют в пользу импульсного режима размножения. Этой темой активно занимаются и геологи, и химики, и физики, и математики. Так, в Институте геологии и минералогии СО РАН разработана модель термохимического плюма — канала, заполненного магматическим расплавом, который простирается из земных недр до поверхности Н.
Добрецов, А. Кирдяшкин, А. Кирдяшкин, 2001, 2004. Данные по удельным расходам излияния магм мантийных плюмов за последние 150 млн лет, а также их корреляция с инверсиями магнитного поля Земли Larson, Olson, 1991 подтверждают наш тезис, что плюмы зарождаются на ядро-мантийной границе. Плюм формируется при обязательном наличии теплового потока из жидкого ядра. Изучение тепло- и массообмена на подошве термохимического плюма и взаимодействия канала плюма со свободными конвективными течениями в мантии приводит к заключению, что источник тепла действительно расположен в ядре, как и предполагают авторы гипотезы глубинного геореактора. Что касается изотопного состава гелия, то повышенное содержание гелия-3, обнаруженное в плюмах, указывает на то, что в ядре Земли идут какие-то процессы, связанные с ядерными превращениями. Но, к сожалению, мы очень мало знаем о том, что происходило в начальный момент формирования планеты, и существовал ли, как считают авторы, «океан магмы». Поэтому вопрос о скоплениях актиноидов в ядре еще предстоит разрешить. Причиной же климатических изменений, о которых упоминают авторы статьи, на мой взгляд, не могут быть колебания температуры в ядре Земли.
Ведь глубинные температурные флуктуации передаются на поверхность мантийными конвективными течениями примерно через 100 млн лет, а плюмы могут донести эти изменения за 1—5 млн лет. За это время флуктуации с периодом всего 100 тыс. В любом случае модель природного ядерного реактора на границе внутреннего и внешнего ядра интересна геологам уже тем, что не противоречит имеющимся знаниям в области геодинамики и фактам плюмового магматизма. Безусловно, предложенная гипотеза подлежит дальнейшей разработке, и достоверность ее должны подтвердить новые геологические, геофизические и геохимические данные о планете Земля. Кирдяшкин, д. Для решения этой и других задач предполагается создать глобальную сеть детекторов. Подобный опыт у международного научного сообщества уже есть: в 2005 г. Таким образом, в ближайшее десятилетие планируется зарегистрировать геонейтрино в нескольких точках земного шара. Объединение данных разных детекторов позволит наконец установить точное месторасположение источников этих частиц внутри нашей планеты и даст еще один довод «за» или «против» гипотезы «ядерной топки» Земли. Вместо послесловия Известно, что на атомной электростанции может произойти взрыв, если не регулировать ход цепной реакции в реакторе.
Есть веские основания полагать, что в далеком прошлом по разным причинам — внутренним или внешним, например при столкновении с астероидом, — медленные ядерные реакции в недрах Земли могли трансформироваться во взрывные. Если бы взорвался весь уран Земли, событие было бы эквивалентно взрыву тротила в количестве, сравнимом с массой планеты! И Земля перестала бы существовать. Однако даже теоретически трудно представить механизм, по которому бы земной уран мог сконцентрироваться и одновременно прореагировать. Но взрыва даже нескольких процентов актиноидов вполне достаточно, чтобы отделить от Земли фрагмент размером с Луну. Ведь большие тела Солнечной системы образовались из одного протопланетного облака, поэтому и содержание радиоактивных элементов в них может быть схожим. Все планеты, вероятно, прошли стадию гравитационного разделения вещества по плотности, в результате которого тяжелые актиноиды могли сконцентрироваться в их недрах. Катастрофические ядерные события хорошо объясняют ряд так называемых нерегулярностей в Солнечной системе, казалось бы, ничем между собой не связанных. Среди них аномально большая масса спутника Земли — Луны, малая масса Марса, обратное суточное вращение Венеры, множество хаотично движущихся астероидов и комет... Не исключено, что исследования нашего «домашнего» земного реактора заставят нас по-новому взглянуть и на вопросы эволюции планет.
Литература Анисичкин В. Анисичкин В. Митрофанов В. Овчинников В. Anisichkin V. Araki T.
В промышленности его используют для защиты от других радиоактивных элементов и их вредных излучений. Как обедненный уран стал оружием Благодаря высокой плотности металл добавляют в сплав для танковых снарядов и бронебойных пушек: они способны пробить броню толщиной до метра. Кроме того, изотоп добавляют и в саму танковую броню, чтобы укрепить её — например в американских Abrams. Танковые снаряды с урановым сердечником стоят на вооружении некоторых стран. В числе прочих, их применяет и Великобритания для своих Challenger, 28 танков которой в мае были доставлены на Украину. И как на применение оружия с ядерным компонентом ответит Россия Последствия применения обедненного урана Металл повышает число онкологических и редких заболеваний как среди жителей пострадавших поселений, так и среди военнослужащих. Известен так называемый «балканский синдром», когда люди, находившиеся в зоне поражения изотопом, чаще других заболевали лейкемией. Офицер югославской армии показывает место, где военные обнаружили стреляные пули с обедненным ураном в деревне Релина, примерно в 7 км от южного сербского города Прешево, 7 января 2001 года Фото: REUTERS Еще в 1999 году российские и югославские ученые подготовили доклады о возможных тяжелых последствиях применения снарядов, содержащих уран, а в директивах НАТО прямым текстом рекомендовалось «держаться подальше от танков, транспортных средств и зданий, поврежденных обычными или крылатыми ракетами с обедненным ураном». Считалось, что специалисты, занимающиеся исследованием разрушенных и поврежденных бронемашин, должны обязательно надевать «защитные маски и перчатки, чтобы урановая пыль не попала в организм». Применение на Украине снарядов с обедненным ураном угрожает загрязнением, которое может распространиться на большие территории из-за ветров и течений, способных вынести радиацию даже в Черное море, пояснил РИА Новости завкафедрой экспериментальной физики Крымского федерального университета им.
Если в недрах Земли действительно идут цепные реакции, значит, там должны присутствовать скопления радиоактивных элементов актиноидов. Как и где именно они образовались? На этот счет существует множество разных точек зрения: от мантии до геометрического центра Земли. Анисичкин с соавторами предложили обоснованную гипотезу, согласно которой местом критической концентрации урана и тория могла быть поверхность твердого внутреннего ядра Земли. Эта концепция во многом базируется на работах по растворимости диоксида урана UO2 , проведенных в конце 1990-х гг. В экспериментах на аппарате высокого давления типа «разрезная сфера» А. Туркиным было показано, что растворимость UO2 в расплавах на основе железа с ростом давления уменьшается. Исследуемый диапазон давлений составлял 5—10 ГПа для сравнения: в центре Земли давление около 360 ГПа. Поскольку в природе уран встречается преимущественно в виде оксидов, то логично сделать вывод: чем глубже, тем хуже будет растворяться уран! Этот важный экспериментальный факт наводит на мысль, что миграция актиноидов в теле Земли могла быть следующей. После образования планеты в океане магмы, состоящей, в основном, из расплавов железа и силикатов, присутствовали и соединения урана. Со временем магма остывала, и происходило гравитационное разделение вещества по плотности. Силикаты, кристаллизуясь, всплывали в магме, плотность которой за счет железа была выше. Соединения же тяжелых актиноидов, выделяясь из расплава по мере роста давления и кристаллизуясь, оседали на внутреннее твердое железоникелевое ядро планеты. Из сейсмологических исследований известно, что переходная зона между внешним жидким и внутренним твердым ядром Земли толщиной 2—3 км имеет мозаичную структуру. При этом основными структурными элементами являются относительно тонкие взвешенные слои протяженностью до нескольких десятков километров. Возможно, именно они и являются областями концентрации тяжелых радиоактивных элементов. Не можешь найти — моделируй! Когда речь идет о процессах на глубинах в тысячи километров, следует иметь в виду, что, с одной стороны, они недоступны непосредственному экспериментальному исследованию, с другой — их не всегда возможно изучать и в лабораторных установках, где трудно создать аналогичные физические условия. Но в современной науке существует еще один универсальный инструмент познания — компьютерное моделирование. В 2005 г. Задача была не из легких, поскольку методы теории реакторов традиционно применяются для расчета процессов длительностью максимум в годы, а здесь потребовалось просчитывать интервалы в миллиарды лет! Согласно их идее при кристаллизации магматического океана происходило «гравитационное разделение вещества по плотности», в результате которого силикаты, кристаллизуясь, всплывали, а соединения тяжелых актиноидов оседали на внутреннее ядро планеты. В дальнейшем сконцентрировавшаяся таким образом масса актиноидов, и в первую очередь соединения урана, играла роль ядерного реактора, генерирующего энергию, обусловленную цепными реакциями деления. К сожалению, в самой основе этой занимательной гипотезы лежит недоразумение. Кристаллизация каких-либо соединений актиноидов в виде самостоятельных минеральных фаз, которые могли бы погружаться в недра планеты, в магматическом океане невозможна. Прежде всего, это обусловлено исключительно низкими концентрациями урана и других актиноидов в протопланетном веществе. При кристаллизации расплава, который возникает на основе такого вещества, весь уран распределяется в кристаллической решетке породообразующих минералов или на их границах в виде примеси, как и многие другие редкие и рассеянные элементы. Конечно, образование скоплений редких элементов в природе возможно вспомним, например, самородное золото , только это происходит в коре и не в результате кристаллизации магматических расплавов, а за счет разгрузки гидротермальных растворов, транспортирующих эти элементы и сбрасывающих их при изменении физических условий. В ходе геологических процессов зарождающиеся в недрах планеты магматические расплавы вследствие более низкой плотности по сравнению с твердым веществом перемещаются к поверхности. В тех случаях, когда они прорываются на поверхность, возникает вулкан. Когда такой расплав застревает на глубине и кристаллизуется в магматической камере, образуется твердое магматическое тело, называемое интрузивом. Дифференциация вещества по плотности при формировании магматических тел принципиально ничем не отличается от такой дифференциации при затвердевании расплава в магматическом океане. Однако кристаллизующиеся силикаты магния и железа в этих расплавах вопреки предположению авторов обсуждаемой гипотезы не всплывают, а тонут, потому что их плотность всегда выше плотности жидкой фазы. Утверждая, что плотность магмы увеличится за счет железа, авторы упускают из виду, что в магматическом океане металл сразу образует самостоятельную жидкую фазу, не смешивающуюся с силикатной, которая опустится на дно задолго до начала кристаллизации силикатов. Возвращаясь к интрузивам, заметим, что никаких скоплений минералов, сложенных актиноидами, на дне соответствующих магматических камер нет, несмотря на то, что концентрация урана как в самих интрузивных телах, так и в исходных расплавах зачастую на два порядка превосходит его концентрацию в протопланетном веществе и магматическом океане. Все происходит ровно наоборот: основная часть урана концентрируется в остаточной жидкости, которая, как правило, собирается в верхней части магматической камеры, после того как основной объем расплава уже затвердел. Поэтому, даже если бы в этих последних порциях расплава и возникли какие-то тяжелые урансодержащие минералы, опускаться им было бы некуда. Конечно, для объективной оценки обсуждаемой гипотезы необходимы исследования специалистов в различных областях науки. Что касается геологической составляющей, то я считаю, что предложенная концепция пока не подтверждается фактическим материалом. Пушкарев, д. Расчеты показали, что теоретически существуют разные сценарии работы реактора. По некоторым из них его активность могла давно прекратиться, по другим — продолжаться до настоящего времени. Максимальная продолжительность возможна в режиме воспроизводства делящихся нуклидов. В результате содержание легко делящегося урана-235 поддерживается на достаточно высоком уровне, и получается реактор-размножитель на быстрых нейтронах. Ряд глобальных явлений на Земле носит циклический характер с периодом в сотни тысяч и миллионы лет. О причинах этих колебаний нет единого мнения.
Но если ядро похоже на жидкую каплю и может дробиться и сливаться, то с чем был связан шок от новости о делении урана? Новый источник энергии Все опыты указывали на один и тот же факт — ядро атома чрезвычайно прочное, и силы, которые удерживают его компоненты вместе, невероятно велики их так и назвали — сильным взаимодействием. Считалось, что отколоть от ядра что-то большее, чем альфа-частицу, невозможно, и потому химические элементы могут преобразовываться лишь в соседние по таблице Менделеева. Именно поэтому, когда немецкие ученые Отто Хан, Фриц Штрассман, Лиза Мейтнер и Отто Фриш в 1938 году облучали уран потоком нейтронов, они были уверены, что получают в результате радий. Он смещен относительно урана на четыре позиции в таблице Менделеева и может быть получен путем двух альфа-распадов. Однако ученые в действительности столкнулись с той же трудностью, что и открыватели радия, супруги Кюри. Радий и барий химически очень похожи и отличаются лишь скоростью осаждения из раствора. Хан и Штрассман раз за разом проверяли по этому методу полученный при облучении урана «радий», и он регулярно вел себя как барий. В конце концов, они даже проверили метод на настоящем радии из магазина, — и он вел себя нормально. Тогда физики поняли, что произошел «взрыв» атомного ядра, но не поверили в это. Вдобавок, возникала еще одна проблема. Но откуда может взяться эта энергия? Иными словами, деление ядра урана высвобождало колоссальную энергию «из ниоткуда». Именно с этим был связан шок физиков от доклада Бора в январе 1939 года, выступавшего с согласия Хана и Штрассмана. Стало ясно, что при определенных манипуляциях из куска металла можно извлечь в тысячи раз больше энергии, чем из аналогичного количества нефти или газа. И с одной стороны, эту энергию можно извлекать постепенно и использовать, например, для производства электричества. Если же заставить ее выделяться скачком, то произойдет взрыв, мощность которого придется измерять тысячами тонн тротила.