Новости лазерная связь

Системы лазерной связи упаковывают данные в колебания световых волн в лазерах, кодируя сообщение в оптический сигнал, который передаётся на приёмник через инфракрасные лучи.

Российская сеть лазерных станций

Беспроводные терминалы лазерной связи могут обеспечить надежную связь между научными группами, базовыми лагерями и исследовательскими станциями, преодолевая преграды и. Высокоскоростная лазерная связь обеспечивает передачу информации с пропускной способностью от 34 до 155 Мбит/с. NASA впервые запускает в тестовом режиме инновационную лазерную связь. С точки зрения эффективности лазерная связь позволяет добиться роста скорости передачи данных в 10—100 раз, если сравнивать с применяемой сейчас.

Учёные протестировали лазерную связь на расстоянии 226 000 000 км (2 фото + видео)

НАСА планирует важный шаг к достижению этой цели, запустив и протестировав свою первую двустороннюю сквозную лазерную систему связи. Лазерная связь обеспечивает большую гибкость миссии и быстрый способ доступа к данным из космоса. Межспутниковая лазерная связь одна из ключевых концепций в Starlink, что сделает сеть независимой от наземных станций сопряжения и позволит передавать траффик напрямую от. Лазерная связь позволит передавать на Землю от 10 до 100 раз больше данных, чем современные радиочастотные системы. Задача связи на таких дистанциях требует астрономической точности, но, в случае успеха, сулит огромные преимущества, поскольку лазерный свет имеет более короткие длины волн. Задача связи на таких дистанциях требует астрономической точности, но, в случае успеха, сулит огромные преимущества, поскольку лазерный свет имеет более короткие длины волн.

В России создали образец терминала космической лазерной связи

Однако высокоскоростного лазерного интернета для спутников пока не существует. Вместо этого космические агентства и операторы коммерческих спутников чаще всего используют радиосвязь. В связи с этим спутники на орбите могут передавать ограниченный объём данных. Даже гиперспектральный сканер HISUI на Международной космической станции отправляет данные на Землю через накопители на грузовых кораблях. При этом инфракрасный свет, который может использовать лазерная связь, имеет гораздо более высокую частоту, чем радиоволны, что обеспечивает гораздо более высокую скорость передачи данных. Разработка оказалась бюджетной благодаря использованию коммерческих готовых компонентов для наземных нужд.

К ним относятся высокоскоростные оптические модемы, разработанные для оптоволоконных телекоммуникаций, и высокоскоростные хранилища большого объёма для хранения данных. Так, компоненты лазера не были предназначены для работы в суровых условиях космоса.

В МФТИ добавили, что терминал потребляет около 15 ватт энергии, способен передавать данные со скоростью до 100 мегабит в секунду на расстояниях около 1,5 тысячи километров. Устройство изготовлено при помощи 3D-принтера и ЧПУ-станков.

Все его компоненты можно вместить в небольшую коробку.

НАСА планирует использовать лазеры с длиной волны 1550 нанометров — той же, которая используется для наземных оптоволоконных сетей. Действительно, в своем развитии лазерная космическая связь опирается на существующие оптоволоконные технологии. Более короткие волны и более высокие частоты означают, что в каждую секунду можно упаковать больше данных.

Преимущества лазерной связи известны уже много лет, но лишь недавно инженеры смогли создать системы, превосходящие радиосвязь. Например, в 2013 году демонстрацией лунной лазерной связи НАСА доказала, что оптические сигналы могут надежно передавать информацию с лунной орбиты обратно на Землю. Lincoln Lab сыграла важную роль в разработке многих систем лазерной связи в миссиях НАСА, начиная с первых демонстраций, проведенных с помощью засекреченного спутника GeoLITE в 2001 году. Я был рад, что НАСА все же решила использовать лазерную связь в этой миссии».

Наземная установка для лазерной связи. В дополнение к радио S-диапазона, во время миссии Артемида-2 Орион будет нести лазерную систему под названием Optical to Orion , или O2O. Ее главная задача будет заключаться в передаче 4K-видео с Луны зрителям на Землю. В случае успеха O2O откроет дверь для обмена большими объемами информации между будущими миссиями и Землей, позволяя проводить видеочаты с семьей, частные консультации с врачами или даже просто смотреть спортивные соревнования во время отдыха.

Чем больше времени люди будут проводить на Луне, тем важнее будет быстрая связь для их психического благополучия. И в конце концов, видео станет критически важным для экипажей в дальнем космосе. Прежде чем O2O можно будет испытать в космосе, он должен будет пережить путешествие. Лазерные системы, установленные на космическом корабле, используют телескопы для отправки и приема сигналов.

Эти телескопы полагаются на сложно расположенные зеркала и множество других движущихся частей. O2O будет использовать внеосевую систему Кассегрена , телескоп с двумя зеркалами для фокусировки захваченного света, установленный на вращающемся карданном подвесе. Исследователи из Lincoln Lab выбрали именно такой тип, потому что он позволит им отделить телескоп от оптического приемопередатчика, что сделает всю систему более модульной. Инженеры также должны убедиться, что ракета-носитель, выводящий Орион в космос, «не растрясет» драгоценное оборудование.

Они разработали специальные застежки и крепления, которые, как они надеются, уменьшат вибрации и сохранят все в целости и сохранности во время бурного запуска.

Беспилотные миссии, разумеется, передают данные с гораздо большего расстояния. Для этих целей используют электромагнитные волны. Однако эту связь все равно нельзя назвать идеальной. Даже при максимальной скорости передачи данных, которая составляет 5,2 мегабит в секунду космический аппарат Mars Reconnaissance Orbiter MRO передает все данные своего самописца в течение более 7 часов.

Лазерный приемо-передатчик DSOC В будущем наверняка потребуется стабильная и быстрая связь сквозь глубокий космос. Например, она необходима будет для видеотрансляции в реальном времени или быстрой передачи изображений высокой четкости. Например, более эффективная связь будет нужно для во время пилотируемых миссий на Марс. В лазерном луче фотоны движутся в одном направлении на одной и той же длине волны. При этом в колебаниях световых волн упакованы огромные объемы данных, которые передаются с беспрецедентной скоростью.

Надо сказать, что оптическая связь — это далеко не новое изобретение.

Лазерной связью в России будет заниматься «Роскосмос»

Преимущества лазерных систем связи Системы лазерной связи используют невидимый инфракрасный свет для отправки и получения информации на гораздо более высоких скоростях передачи данных. В то время как оригинальной радиочастотной системе потребовалось около девяти недель, чтобы отправить полную карту Марса обратно на Землю, при использовании лазеров потребовалось около девяти дней. Таким образом, благодаря более высокой скорости передачи данных миссия сможет отправлять на Землю больше изображений и видео за одну передачу. После установки на космической станции ILLUMA-T продемонстрирует преимущества более высокой скорости передачи данных для миссий на околоземной орбите. Лазерная связь обеспечивает большую гибкость миссии и быстрый способ доступа к данным из космоса.

Высокие скорости передачи данных могут обеспечить быстрый доступ к контенту в высоком разрешении, стриминговым сервисам и другим онлайн-приложениям. Интеграция с умными устройствами и IoT: Лазерная связь может стать основой для беспроводного соединения между умными устройствами в доме, такими как умные датчики, умные домашние устройства, системы безопасности и умное освещение. Это способствует созданию умных и эффективных домов. Беспроводная коммуникация в космосе: Космические исследования и миссии требуют передованных технологий связи.

Терминалы лазерной связи способны обеспечить эффективную и высокоскоростную беспроводную связь между космическими аппаратами, спутниками, станциями и земными контрольными центрами. Это особенно критично, учитывая ограниченность проводных технологий в космических условиях.

В МФТИ добавили, что терминал потребляет около 15 ватт энергии, способен передавать данные со скоростью до 100 мегабит в секунду на расстояниях около 1,5 тысячи километров. Устройство изготовлено при помощи 3D-принтера и ЧПУ-станков. Все его компоненты можно вместить в небольшую коробку.

Отправлен он космическим аппаратом, который направляется сейчас в главный пояс астероидов между Марсом и Юпитером, чтобы исследовать прелюбопытную двухсоткилометровую глыбу, которую астрономы назвали Психеей. Современная наука с помощью радаров установила, что глыба эта в основном железоникелевая. Это довольно-таки плотная, тяжёлая порода. И есть подозрения, что это не что иное, как обломок ядра когда-то погибшей планеты. И это особенно привлекательно с учётом того, что сам астероидный пояс растянулся кольцом именно там, где по расчётам должна была бы находиться планета. Астероид Психея.

Лазерный эксперимент НАСА DSOC передал технические данные с расстояния 226 миллионов километров

Опыт по созданию терминалов лазерной связи АО «НПК «СПП» и результаты космического эксперимента «Система лазерной связи» (КЭ СЛС) могут быть использованы для дальнейших. У лазерной связи частота колебаний очень высокая, мы можем передавать по одному каналу до 100 Гб. В NASA сообщили, что 8 апреля провели очередное испытание дальней космической связи по оптическому каналу.

NASA запускает лазерную связь сегодня, 5 декабря

Российский спутник «Импульс-1» открывает лазерный канал связи. Лазерная связь сильно зависит от атмосферных показателей, с радиосвязью же вопрос давно изучен и отработан", — заключил эксперт. Лазерная связь, использующая инфракрасный свет для передачи данных, обладает рядом преимуществ перед радиосвязью, включая высокую скорость и возможность передачи на.

Установлен мировой рекорд дальности передачи лазерного сигнала

Схема во всех случаях такая: сначала передатчик с Земли отправляет сигнал на космический аппарат, потом зонд посылает его назад, и его на Земле принимает телескоп. Как работает экспериментальная система NASA по оптической связи в дальнем космосе. К примеру, во время будущих телетрансляций из марсианской колонии тамошний корреспондент услышит вопрос землянина как минимум через три минуты, а то и через все двадцать. Это зависит от текущего взаимного расположения двух планет: расстояние между ними может составлять от 55 до 400 с лишним миллионов километров. Соответственно, сейчас ровер Perseverance и вся прочая марсианская техника получают команды инженеров с задержкой в несколько минут. Лазер, конечно, быстрее самого себя, то есть быстрее света, лететь не может, но учёные давно подметили, что лазерная связь была бы во много раз эффективнее радио за счёт того, что лазерный луч — очень "сконцентрированный", узкий.

Системы лазерной связи упаковывают данные в колебания световых волн в лазерах, кодируя сообщение в оптический сигнал, который передаётся на приёмник через инфракрасные лучи, невидимые человеческому глазу. NASA использует радиоволны для связи с миссиями за пределами Луны, но ближний инфракрасный свет позволяет упаковывать данные в значительно более плотные волны, что позволяет отправлять и принимать больше данных. Эксперимент DSOC направлен на демонстрацию скоростей передачи данных в 10-100 раз больше, чем у современных радиочастотных систем, используемых космическими аппаратами сегодня, согласно NASA. Однако оптическая связь становится более сложной на больших расстояниях, так как требует крайней точности для направления лазерного луча. Чем дальше аппарат Psyche будет удаляться на пути к своей цели, тем слабее будет сигнал фотонов лазера.

Схема во всех случаях такая: сначала передатчик с Земли отправляет сигнал на космический аппарат, потом зонд посылает его назад, и его на Земле принимает телескоп. Как работает экспериментальная система NASA по оптической связи в дальнем космосе. К примеру, во время будущих телетрансляций из марсианской колонии тамошний корреспондент услышит вопрос землянина как минимум через три минуты, а то и через все двадцать. Это зависит от текущего взаимного расположения двух планет: расстояние между ними может составлять от 55 до 400 с лишним миллионов километров. Соответственно, сейчас ровер Perseverance и вся прочая марсианская техника получают команды инженеров с задержкой в несколько минут. Лазер, конечно, быстрее самого себя, то есть быстрее света, лететь не может, но учёные давно подметили, что лазерная связь была бы во много раз эффективнее радио за счёт того, что лазерный луч — очень "сконцентрированный", узкий.

Тем не менее, команда зонда смогла продублировать передачу фрагмента инженерных данных с борта зонда по оптическому каналу в то же время, как эти данные передавались по основному радиоканалу. Тем самым NASA получило возможность заявить, что впервые по оптике были переданы инженерные данные с борта космического корабля из глубокого космоса. Также был поставлен другой эксперимент, когда одна наземная станция по мощному лазеру передала большой пакет данных на зонд, а зонд передал их обратно на другую наземную станцию на телескоп Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния. Пакет данных совершил путешествие туда и обратно, проделав в космосе путь дальностью 450 млн км.

Похожие новости:

Оцените статью
Добавить комментарий