Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения.
«Повторение ошибок»
- Инновации и наука
- Учёным удалось получить полезную энергию в термоядерной реакции / Хабр
- Что такое термоядерный синтез и зачем он нужен?
- До коммерческого получения термоядерной энергии еще далеко
- Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
- ядерная физика, все новости – «ВЗГЛЯД.РУ»
Вестник РАН, 2021, T. 91, № 5, стр. 470-478
Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. Китайский термоядерный реактор поставил рекорд в ядерной энергетике. «Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности. Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём.
Ракетчики начали строить термоядерный двигатель
В своей работе он имитирует реакцию ядерного синтеза, питающую настоящее Солнце. Первый пуск EAST состоялся в 2006 году. Установку построили на основе модифицированного реактора HT-7. Радиус ее внешнего корпуса составляет 1,7 метра. В мае 2021 года ученым удалось установить первый рекорд. Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты. Ученые считают, что с помощью токамака удастся получить источник неограниченной чистой энергии, так как водород и дейтерий в изобилии присутствуют на Земле. Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время. Эксперимент китайских ученых продлится до июня. По словам инженера-физика, если речь идет о единичном научном приборе, то его сооружение, эксплуатация и обращение с радиоактивными отходами может осуществляться контролируемо.
Это сильная альтернатива. У атомных станций два серьезных недостатка. Первое: они производят отходы, у которых период полураспада сотни и тысячи лет, их нужно где-то хранить, и их много, они накапливаются. Второй недостаток — они могут взрываться. Взрывы были сначала в Чернобыле, и затем на Фукусиме. В токамаках принципиально невозможен взрыв.
Очень просто. Когда работает токамак, в его камеру постоянно поступает газообразное топливо, например, смесь трития и дейтерия. Имеются специальные быстродействующие клапаны, через которые поступает топливо. Если на термоядерной электростанции образуется внештатная, аварийная ситуация, то мгновенно закрываются клапаны, топливо прекращает поступать, той энергии, которая накоплена, для взрыва недостаточно, она может только сломать установку, прожечь камеру. Токамаки, конечно, нельзя считать полностью безопасными. Опасность заключается в том, что, когда сливаются ядра легких элементов, в частности, дейтерия и трития, образуется ядро гелия и быстрый нейтрон.
Нейтроны поглощаются внешней оболочкой. Какая бы оболочка ни была, она становится радиоактивной. Эту радиоактивную оболочку через 20-30 лет надо менять. Но период полураспада там лет 15-20. Роботы убирают эту оболочку, заменяют на другую, радиоактивную где-то кладут — не хоронят, а кладут, и через 20 лет ее можно использовать снова. Период полураспада прошел, она становится нерадиоактивной.
Снова можно использовать в установке. Это другие элементы. В мире, как уже было сказано, много работающих токамаков, и на каждом стоит своя система управления плазмой, свои алгоритмы управления, каждая команда разрабатывает свои системы. Так происходит потому, что систему управления плазмой нельзя перенести один к одному с одного токамака на другой, из-за того, что токамаки все разные, имеют разные электромагнитные системы. Мы предложили свою классификацию, основанную на анализе литературы. Изначально аббревиатура «токамак» пришла из Курчатовского института тогда он назывался Институт атомной энергии им.
Курчатова , где токамаки и были изобретены, и где в 1954 г. За рубежом тогда уже были установки типа стеллараторы, отличающиеся от токамаков отсутствием в них тороидального тока. На данный момент многие стеллараторы переделаны в токамаки, тем не менее, в некоторых странах они сохраняются, и с их помощью также продолжаются попытки приблизить плазму к термоядерной. Вообще токамаков за всю историю существования, с 1954 г. Но он морально и физически устарел, ему 40 с лишним лет. В Курчатовском институте сооружается современный токамак с вытянутым по вертикали поперечным сечением Т-15, но окончательные сроки вывода данной установки на проектные режимы не определены.
Но параметры плазмы на этой установке относительно высокие, они составляют конкуренцию зарубежным установкам аналогичного типа... Нашей команде сейчас требуется в минимальном объеме всего 10 млн руб. Нам вообще ничего не нужно, кроме аппаратуры реального времени, и еще некоторый объем средств на зарплату и командировки, чтобы молодые люди не уходили в коммерческие компании. И мы тогда можем идти по намеченному пути. В заключение можно отметить тот факт, что первая атомная электростанция была введена в эксплуатацию в городе Обнинск в 1954 году, а пуск первого токамака произведен также в 1954 году в ИАЭ им. Но это была экспериментальная установка и все последующие, включая ITER, — также экспериментальные установки типа токамак.
Беседу вела Ирина Татевосян 2018 год Тем временем в Китае 30.
Я вам скажу: чудесно же жили. Вот право. Я даже обрадуюсь. Как минимум мне не придется объяснять своим детям, почему у всех есть гаджеты, а у них нет. Я запрещаю своим детям иметь гаджеты. Это отдельная тема. Сейчас не об этом. Но как минимум вот это будет гора с плеч.
Каждый раз, когда дети возвращаются из школы: «Вот, у всех есть телефоны, айпады, а у нас нет, почему у нас нет? То есть эта опция — она остается. И это еще самая гуманная, самая такая, знаете, травоядная опция. Я не вижу никакого исхода, кроме приблизительно такого. Нравится мне это или нет. На этом программа была завершена. Реакция общества Московский политик Николай Королев отправил обращения в Следственный комитет и полицию после высказывания Маргариты Симоньян. Николай Королев попросил проанализировать рассуждения главного редактора RT. Высказался сегодня о перспективах термоядерного взрыва над Сибирью и мэр Новосибирска Анатолий Локоть , ответив на соответствующий вопрос NGS.
Ничего хорошего в наземных термоядерных взрывах нет. Последствия могут сказываться даже не на сотни лет, а на тысячелетия. Потому что образуются неустойчивые элементы, период полураспада которых исчисляется сотнями лет, а некоторые — и тысячей лет. К проблеме наземных термоядерных испытаний и любых взрывов, связанных с выделением термоядерной энергии, ядерной энергии, надо относиться очень ответственно, — подчеркнул Анатолий Локоть. RU, что термоядерный взрыв — это подрыв сразу двух бомб.
Останется лишь построить нужный реактор токамак. Реакция термоядерного синтеза слияния двух легких ядер в одно более тяжелое , в ходе которой высвобождается колоссальное количество энергии Почему сложно построить реактор для синтеза Атомы всех окружающих нас веществ состоят из ядра и электронной оболочки. Ядра заряжены положительно, поэтому, согласно закону Кулона, они отталкиваются. Чтобы соединиться, им нужно преодолеть кулоновский барьер и сблизиться на расстояние действия ядерных сил — 10-15 метра один метр, деленный на единицу с пятнадцатью нулями. Для этого необходима огромная энергия, которую можно получить в виде тепла.
Солнечный климат для этого идеален, температура внутри звезды достигает экстремальных величин — 15 миллионов градусов. Вещество при такой температуре переходит в состояние плазмы, работать с которой в земных условиях не так-то просто. Плазма считается четвертым агрегатным состоянием вещества. Если нагреть твердое вещество, оно становится сначала жидким, затем газообразным и, наконец, — плазмой. При температуре в десятки тысяч градусов атомы газа теряют свои электроны и превращаются в ионы — свободные электрические заряды. Такой газ называется ионизованным и является средой, проводящей электрический ток. В естественных условиях Земли плазма встречается в виде разрядов молний или в магнитосфере планеты при полярном сиянии. В космосе она буквально повсюду: материя в межгалактическом пространстве существует именно в плазменной форме. Солнце и звезды тоже являются сгустками сильно нагретой плазмы. Вещество в состоянии плазмы видел каждый, когда в небе сверкала молния , а вот удержать и сжать такое вещество — задачка не из легких, но ее необходимо решить для реализации управляемого термоядерного синтеза на Земле.
Фото iStock Удержать плазму внутри построенных человеком установок тяжело — нагреваясь до миллионов градусов, она плавит даже самое прочное покрытие. Поэтому стенки камер реактора для управляемого синтеза не должны соприкасаться с плазмой. Другое важное условие использования плазмы — сжатие. Если не сжимать разогретую плазму со всех сторон равномерно, она выскользнет, остынет, и реакции в ней прекратятся. Плазма подобна надутому воздушному шарику — как бы равномерно вы ни надавливали на него, шар всегда будет просачиваться через пространство между пальцами. Солнечная плазма не разлетается по всему космосу из-за огромной массы звезды — ее гравитационное давление постоянно сжимает ядра атомов вместе. Масса Земли в 330 тысяч раз меньше, поэтому создать подобное давление на нашей планете невероятно трудно. Каждый раз, когда ученые пытались сжать плазму в реакторе, она выплескивалась наружу. Как причесать ежа, или попытки удержать плазму К решению задачи удержания плазмы вплотную подошли советские ученые Института им.
Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и.
Вестник РАН, 2021, T. 91, № 5, стр. 470-478
FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв | Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. |
Американские физики повторно добились термоядерного зажигания | На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. |
Академик В.П. Смирнов: термояд — голубая мечта человечества | Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. |
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика
Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech | Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. |
Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». |
Российские физики рассказали о приручении термоядерного синтеза | Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times. |
Вестник РАН, 2021, T. 91, № 5, стр. 470-478
Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час. Глеб Курскиев рассказал ПРОСТО о том, что такое термоядерный синтез и почему он так важен! Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез.
Термоядерный синтез
Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние. Зачем на самом деле строится самый большой термоядерный реактор. Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский.
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика
Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. Волна термоядерных реакций превращает дейтериево-тритиевое топливо в высокоэнергетический гелий и нейтроны, которые можно улавливать для выработки тепла и электричества. Хотя подход Z-пинч тестировался еще в 1950-х, исследователи столкнулись с проблемой быстрого угасания плазмы. Zap заявляет, что решила ее с помощью стабилизации сдвигового потока — инновации, которая теоретически может продлить срок жизни Z-пинч плазмы почти до бесконечности.
Для примера: объём плазмы ИТЭРа равен 840 м3, что более чем в 10 раз превосходит объём плазмы самого крупного из действующих токамаков — токамака JET. Строительство и запуск ИТЭРа призваны продемонстрировать работоспособность идеологии, позволяющей создать на базе токамака термоядерный энергетический реактор. Основной задачей экспериментов на ИТЭРе будут отработка и испытание важнейших технологий и компонентов реактора. Принципиально важной станет проверка концепции использования вольфрама в качестве материала для диверторных пластин — как самого тугоплавкого металла — в условиях ожидаемых на ИТЭРе огромных потоков энергии. Напомним, что наилучшие режимы удержания плазмы получены сегодня при использовании покрытий с низким зарядовым числом атомов в составе покрытия — углерода и бериллия; в ИТЭРе этими материалами будет покрыта первая обращённая к плазме стенка вакуумной камеры. Вопрос о том, будут ли и в каком количестве ионы вольфрама поступать в основную плазму, снижая её температуру за счёт излучения, может быть окончательно решён только в ходе экспериментов на ИТЭРе. Начиная с 2016 г.
В августе 2020 г. Это событие стало предметом пристального внимания со стороны масс-медиа и заслужило ряд приветственных обращений высшего политического руководства стран — участников проекта. Отметим, что в случае соблюдения действующего ныне графика строительства, выполнения всеми сторонами своих обязательств и преодоления последствий пандемии 2020—2021 гг. По мнению авторов, основные проблемы вполне понятны и могут быть поименованы. Во-первых, это колоссальная технологическая сложность самого устройства, которая особенно ясно проявилась в проекте ИТЭР. Протекающий по плазме токамака электрический ток в тороидальном магнитном поле обеспечивает как формирование итоговой магнитной конфигурации, являющейся идеальной ловушкой для удержания частиц плазмы, так и нагрев этой плазмы. Однако для длительного устойчивого удержания плазмы термоядерных параметров требуется множество инженерных систем, создание которых находится на пределе имеющихся технологических возможностей. Так, например, стационарность требует сверхпроводимости магнитных обмоток; при этом на стенку камеры и в дивертор идут колоссальные потоки тепла. Понятно, насколько серьёзными должны быть инженерные решения, обеспечивающие такое соседство. Другой пример связан с необходимостью создания мощных источников высокоэнергичных нейтральных атомов — речь идёт о нескольких мегаваттах мощности при энергии в сотни и даже тысячи килоэлектронвольт в ИТЭРе два таких источника суммарной мощностью 33 МВт должны выдавать потоки МэВных 4 4 частиц в течение часа; ранее таких источников просто не существовало!
Во-вторых, это достаточно очевидная проблема длительного поддержания тока. Униполярный электрический ток, наводимый в тороидальной плазме при помощи индуктора, не может существовать вечно с электротехнической точки зрения токамак представляет собой трансформатор с одновитковой вторичной обмоткой — плазмой. Сегодня предложено и экспериментально проверено несколько способов неиндукционного поддержания тока, среди которых уже упомянутая инжекция пучков быстрых нейтральных атомов. Можно использовать и ввод обладающих компонентой импульса в тороидальном направлении электромагнитных волн различного диапазона: электронного циклотронного, нижнегибридного, а также свистового волны-геликоны. Весьма интересен и крайне важен так называемый бутстрэп-эффект bootstrap , заключающийся в формировании анизотропной функции распределения заряженных частиц неоднородной плазмы в магнитной конфигурации токамака эффект связан с тороидальной геометрией токамака и в цилиндре отсутствует. Точно так же большинство физических вопросов, казавшихся непреодолимыми на начальном этапе работ по УТС, таких как управление равновесием, многочисленные неустойчивости, аномальные процессы переноса, сегодня решены на практическом уровне.
Фото: Синьхуа На первом этапе работы реактор рассчитан на получение стабилизированного выхода мощности - необходимой для выработки электроэнергии - в 200 мегаватт, что примерно соответствует мощности небольшой угольной электростанции. Китайский термоядерный реактор, вероятно, не будет первым в мире: строительство Международного термоядерного экспериментального реактора ITER на юге Франции почти завершено, и он может быть запущен к 2025 году. Но после многочисленных задержек с момента начала строительства в 2007 году ИТЭР стал самым дорогим международным научным проектом в истории, который обойдется странам-участницам, включая Китай, в сумму от 45 до 65 миллиардов долларов США. И хотя он впервые воплотит в жизнь идею искусственного солнца, вырабатываемое им количество тепла не может быть устойчивым, чтобы генерировать достаточно энергии для производства электричества, как это делает китайский реактор.
Сонг сказал, что Китай и другие страны оказывают содействие и следят за прогрессом во Франции, используя знания и технологии, разработанные для ITER, для совершенствования своих собственных проектов термоядерных реакторов - гонка за их разработку разгорается. Китайские исследования в области термоядерного синтеза изначально проводились с использованием российского оборудования и технологий, но в последние годы, по словам Сонга, Китай занял лидирующие позиции в этой области. В мае на моделирующем устройстве в Хэфэе была создана горящая плазма с температурой 150 миллионов градусов Цельсия, которая поддерживалась на стабильном уровне более 100 секунд, что является мировым рекордом. Ученые удерживали горячий газ, который был чрезвычайно непредсказуем и мог разрушить все, чего бы он ни коснулся, с помощью сверхсильного магнитного поля, созданного на основе сверхпроводников. Сонг сказал, что следующей целью китайского проекта будет увеличение продолжительности горения до 400, а затем до 1 000 секунд. По словам Сонга, эта разработка принесла положительные результаты и в других отраслях. Благодаря достижениям в исследованиях термоядерного синтеза, китайские производственные мощности по выпуску сверхпроводящих материалов увеличились в 10 000 раз, отметил он. Сверхпроводниковая продукция необходима в самых разных отраслях, от транспорта до медицинского оборудования, и рост производства позволяет значительно снизить ее цену. Китайское правительство планирует начать массовое строительство термоядерных электростанций до 2060 года - крайнего срока для достижения поставленной страной цели по обеспечению углеродной нейтральности окружающей среды. В Британии 24.
Утверждается, что технология приведёт к коммерчески выгодным компактным термоядерным реакторам и намного эффективнее альтернативных систем. Демонстрация установки состоится в 2022 году, а коммерческое распространение ожидается к 2030 году. Компания Tokamak Energy на государственные субсидии и частные инвестиции планомерно совершенствует сферические токамаки. Проведённые с тех пор модернизации позволяют поднять температуру плазмы до рекордных для такого малыша значений. Внутри токамака разогретая плазма удерживается сильнейшим магнитным полем, поэтому роль магнитов сложно переоценить. Особенно важны параметры магнитов для сферических токамаков с небольшим по объёму соленоидом по центру. Компания Tokamak Energy делает ставку на высокотемпературные сверхпроводящие магниты и технологии масштабирования магнитов. Чем сильнее магнит в меньшем исполнении, тем меньше размеры рабочей камеры реактора, и здесь на передний план выходит защита сверхпроводящих магнитов от повреждений плазмой. По словам Tokamak Energy, они разработали не имеющую аналогов технологию защиты сверхпроводящих магнитов и готовятся создать установку с её использованием. Запуск установки с новой обвязкой сверхпроводящими магнитами запланирован на следующий год.
Это не приведёт к мгновенному решению вопроса, но мало-помалу продвинет разработчиков к желанной цели — к созданию компактных термоядерных реакторов. В США 10. Данное достижение смогли осуществить сотрудники американской компании Commonwealth Fusion Systems и Массачусетского технологического института, сообщает 8 сентября пресс-служба американского научного заведения. Это самое мощное магнитное поле, которое когда-либо создавалось на Земле», — говорится в сообщении. Из публикации следует, что достигнуть этого позволил электромагнит новой конструкции, созданный специалистами двух указанных организаций. Его особенность — намного меньшие размеры, чем у тех, что появлялись до сих пор. Эта конструкция стала возможной благодаря новому виду сверхпроводящего материала, который стал коммерчески доступным несколько лет назад», — отмечается в статье. Магнит состоит из 16 пластин, сложенных вместе. Конструкция является плоской. Работать пластины будут, согласно описанию, при температуре 20 Кельвинов.
Согласно последующим планам ученых, на основе данной разработки к 2025 году будет собран демонстрационная установка типа токамак под названием SPARC. Внутри него создается магнитное поле напряженностью 3,6 Тл. Реакторы типа "токамак" нужны для замыкания ядерного топливного цикла и перехода к "зеленой" атомной энергетике.
Тем не менее, двое людей, знакомых с результатами эксперимента, сказали, что выход энергии был больше, чем ожидалось, что привело к повреждению некоторого измерительного оборудования, что усложнило анализ.
Прорыв уже широко обсуждался учеными, добавили источники. Если результаты подтвердятся, это будет означать, что исследователями из Ливерморской лаборатории удалось добиться цели, недостижимой в течение десятилетий. Ранее в этом году, в ходе оглашения стратегии развития термоядерной энергии, один из американских конгрессменов заявил, что технология является «святым граалем» чистой энергетики и потенциально способна избавить большее число людей от бедности, чем открытие огня. Большинство исследований пока связаны с т.
Если ранее термоядерной энергетикой занимались преимущественно государственные учреждения, то в последнее время инвестиции в соответствующую отрасль потекли и в частные компании, обещающие создать работоспособные технологии к 2030-м годам.
Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба".
До коммерческого получения термоядерной энергии еще далеко
- ЗА ЧТО БОРЕМСЯ
- Искусственное солнце: как первый в мире термоядерный реактор изменит мир // Новости НТВ
- Каждая деталь – шаг в неизведанное
- и
- Международный экспериментальный термоядерный реактор — Википедия
- МЫ БЫЛИ ПЕРВЫМИ
Мегаджоули управляемого термоядерного синтеза
Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии | Китайский термоядерный реактор поставил рекорд в ядерной энергетике. |
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте | Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. |