Новости катод заряд

Новости металлургической отрасли. Магнитогорский завод прокатных валков запустил комплекс по приготовлению формовочных смесей.

Подпишитесь на ежемесячную рассылку новостей и событий российской науки!

  • Научились заряжать аккумулятор за несколько секунд ученые в России
  • Новый LMR-катод минимизирует падение напряжения в литий-ионных батареях -
  • - Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
  • Что такое анод и катод, в чем их практическое применение

Катод и анод

Кальций, как пятый по распространённости элемент в земной коре, широко доступен и недорог, а также у него более высокий потенциал плотности энергии, чем у лития. Также считается, что его свойства помогают ускорить перенос ионов и диффузию в электролитах и катодных материалах, что даёт ему преимущество перед другими альтернативами литиевым батареям — такими, как магний и цинк. Однако на пути коммерческой жизнеспособности кальциевых батарей остаётся много препятствий. Основными препятствиями были отсутствие эффективного электролита и отсутствие достаточно качественных катодных материалов.

В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация.

В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность.

Статью с описанием работы опубликовал Nature Materials, кратко об этом пишет пресс-служба Сколковского института науки и технологий. Литий-ионные аккумуляторы - основной источник питания для автономных электрических устройств, начиная с различных гаджетов и заканчивая межпланетными зондами и промышленными инструментами. Несмотря на все преимущества таких аккумуляторов, у них есть и недостатки: например, медленная скорость зарядки, взрывоопасность и низкая энергетическая емкость, которая ограничивает производство и использование электромобилей. Ученые давно пытаются решить эту проблему. Для этого они совершенствуют устройство уже существующих батарей, а также пытаются создать батареи на основе не солей лития, а других соединений. В частности, среди таких соединений - чистый литий, соединения натрия, серы, калия и других элементов.

Основные титансодержащие реагенты легко доступны, устойчивы и не токсичны. Несмотря его преимущества, причиной, по которой его не могли применить в качестве катодных материалов, долгое время оставался низкий электрохимический потенциал, ограничивающий почти достижимую удельную энергию аккумулятора. Исследователи из Сколтеха создали перспективный, коммерчески выгодный катодный материал на основе фторидофосфата титана. Он отличается беспрецедентной стабильностью работы при высоких скоростях заряда и разряда, а также имеет высокий электрохимический потенциал.

Андрей Травников оценил приборы ночного видения завода «Катод» для СВО

В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность. Они сохраняли до трети своей ёмкости даже после 25 тысяч рабочих циклов - если бы обычный аккумулятор в телефоне обладал такой же стабильностью, то его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет.

Вдобавок исследователи не нашли намеков на то, что вырабатываемое ими напряжение падало, что характерно для батарей с катодами на базе других слоистых соединений лития. Это относительно много для катодных материалов натрий-ионных аккумуляторов. Более того, сам материал оказался устойчив к воздействию влаги, а его емкость не падает на протяжении большого числа циклов разряда и заряда, что не характерно для подобных соединений Пока у нового материала нашли один крупный недостаток - напряжение вырабатываемого им тока сильно меняется в процессе разряда и заряда. Из-за этого эффективность натрий-ионных аккумуляторов на его основе сильно хуже, чем у конкурентов. Химики надеются, что в дальнейших экспериментах они смогут справиться с этой проблемой, что откроет дорогу для практического использования подобных источников питания.

Улучшить характеристики катодов на основе марганца авторы разработки смогли за счёт создания специального токопроводящего покрытия, которое повышает устойчивость материала к воздействию высоких температур, неизбежно возникающих при эксплуатации тяговых батарей. Демонстрация прототипов аккумуляторов нового поколения намечена разработчиками на четвёртый квартал текущего года.

Но они пошли дальше и сделали попытку соединить в новых аккумуляторах лучшие технологии литиевых аккумуляторов и суперконденсаторов, слив воедино ёмкость, удельную мощность и скорость зарядки. О новой работе учёные рассказали в журнале Energy Storage Materials. Название статьи говорит само за себя: «Проводящий анод с S-легированием из многовалентного сульфида железа с низкой кристалличностью и катод из 3D-пористого графитового углерода с высоким содержанием N [натрия] для высокопроизводительных натриево-ионных гибридных накопителей энергии». Понятно, что нельзя просто взять и объединить в новом устройстве аноды от обычных аккумуляторов и катоды от суперконденсаторов. Необходимо изменить свойства как анодов, так и катодов.

Архив материалов

  • Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
  • В КНР ученые нашли пагубное влияние черного чая на легкие — ведет к онкологии
  • Новый LMR-катод минимизирует падение напряжения в литий-ионных батареях
  • Создан уникальный катод для металл-ионных аккумуляторов

Андрей Травников оценил приборы ночного видения завода «Катод» для СВО

Плотность энергии литий-ионных аккумуляторов может быть улучшена за счет сохранения заряда при высоких напряжениях за счет окисления оксидных ионов в материале катода. Справиться с внешними угрозами и приблизить успешное завершение спецоперации российской армии помогают новосибирские предприятия, в числе них новосибирский завод «Катод». Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. Проблема заключалась в том, что катоды на основе подобных соединений отличаются относительно низким содержанием ионов натрия и энергоемкостью.

Ученые разработали новый тип катода для аккумуляторов

Увеличение диапазона электромобилей требует материалов для изготовления аккумуляторов, которые смогут хранить больший заряд при более высоких напряжениях, то есть необходимо достичь высокой «плотности энергии». Существует ограниченное количество способов увеличения плотности энергии литий-ионных катодных материалов. Большинство современных катодных материалов представляют собой слоистые оксиды переходных металлов, включающие, например, кобальт, никель и марганец.

Причем, судя по всему, для удерживания хлора лучше всего подходят микропоры размером менее 2 нанометров. Чтобы проверить эту гипотезу, авторы изготовили несколько ячеек с катодом из другого пористого материала — ketjenblack carbon black. Этот материал имеет удельный объем пор даже больше, чем у аморфных углеродных наносфер, но большая часть его приходится на мезопоры размером от 2 до 50 нанометров. Ячейка с крупнопористым катодом из ketjenblack carbon black тоже показала обратимый разряд и заряд, но проработала всего сорок циклов, а затем ее кулоновская эффективность резко стала уменьшаться.

Поэтому авторы статьи полагают, что путь к стабильным тионилхлоридным аккумуляторам лежит через поиск катодного материала с еще большим объемом микропор. Кроме того, стабилизировать батарею помогают добавки фтор-содержащих солей в электролит. На натриевом электроде тоже образуется слой хлорида натрия, и ионам натрия постепенно становится труднее проходить через него. Фторид натрия и другие фтор-содержащие соли способствуют образованию пустот в этом слое и облегчают движение ионов натрия. Авторы также изготовили перезаряжаемый источник тока с литиевым анодом. Он показывал чуть более высокую емкость первого разряда 3250 миллиампер-час на грамм катода , но при последующих разрядах и зарядах емкость была такая же, как и у натриевого варианта.

Для увеличения проводимости в активную массу катода включают электропроводные добавки. Оксиды кобальта обеспечивают Li-ion аккумуляторам большое напряжение 3,7 В и солидный запас емкости. Иногда для изготовления катода используют смешанные оксиды или фосфаты, которые улучшают эксплуатационные характеристики элементов питания. Ячейки с катодом из литий-железо-фосфата LiFePO4 выдерживают большие токовые нагрузки, отличаются морозоустойчивостью, химической стабильностью и ресурсом свыше 2000 циклов. Но номинальное напряжение у них ниже — 3,2—3,3 В. Кроме экспериментов с разными материалами, изучается возможность покрытия катода тонкодисперсными оксидами. Электрохимические процессы в Li-ion аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду.

Они временно покидают графит анода и встраиваются в кристаллическую решетку оксида на катоде. Во время зарядки аккумулятора протекает обратный процесс: ионы Li покидают катод, проходят через электролит и встраиваются в структуру анода, раздвигая слои его углеродной матрицы. После многократных циклов работы в структуре Li-ion аккумуляторов наблюдаются изменения: ионы Li утрачивают исходное положение; электролит реагирует с литием; постепенно образуются и растут игольчатые кристаллы — дендриты, которые пронизывают слой электролита и создают риск короткого замыкания. В итоге снижается производительность элементов питания: в процессе зарядки АКБ не восполняет заявленную емкость, а при работе — хуже отдает токи в нагрузку и быстро разряжается.

Ученые считают, что путем дальнейших экспериментов можно значительно улучшить результат. Например, смешивая более мелкие и более крупные частицы. Еще одна важная деталь - сферические частицы минимизируют поверхностный контакт с электролитом батареи, что замедляет деградацию катода. Это позволяет уменьшить размер катодов, сделать батареи более компактными и, следовательно, увеличить емкость хранения энергии при том же объеме. Дополнительным бонусом является то, что материал значительно медленнее деградирует". Исследование было опубликовано в журнале Energy Advances.

Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов

Катод и его отрицательный заряд Отрицательный заряд катода объясняется тем, что во время процесса электролиза, положительно заряженные ионы перемещаются к катоду под. Они показали, что такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. Построена модель термополевой электронной эмиссии из металлического катода с тонкой поверхностнойдиэлектрической пленкой при его температуре 200–400 К. Получено выражение.

Андрей Травников оценил приборы ночного видения завода «Катод» для СВО

Главная» Новости» Катод имеет заряд. Обратимые заряд и разряд стали возможны благодаря наличию множества пор в катоде, которые могут аккумулировать образующийся хлор. Они показали, что такие катоды могут выдерживать до 25,000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных. Вот казалось бы, только вчера мы начали работу над проектом Заряд. Построена модель термополевой электронной эмиссии из металлического катода с тонкой поверхностнойдиэлектрической пленкой при его температуре 200–400 К. Получено выражение.

Андрей Травников оценил приборы ночного видения завода «Катод» для СВО

Основные титансодержащие реагенты легко доступны, устойчивы и не токсичны. Несмотря его преимущества, причиной, по которой его не могли применить в качестве катодных материалов, долгое время оставался низкий электрохимический потенциал, ограничивающий почти достижимую удельную энергию аккумулятора. Исследователи из Сколтеха создали перспективный, коммерчески выгодный катодный материал на основе фторидофосфата титана. Он отличается беспрецедентной стабильностью работы при высоких скоростях заряда и разряда, а также имеет высокий электрохимический потенциал.

Это заставляет катод становиться положительно заряженным по сравнению с анодом , что, в свою очередь, притягивает к катоду больше отрицательно заряженных электронов. Сепаратор в батарее включает электролиты, которые образуют катализатор для ускорения процесса и перемещения ионов и электронов к аноду и катоду.

Этот процесс приводит к появлению свободных электронов на аноде, что создает заряд на положительном токосъемнике батареи. Затем электрический ток течет от коллектора тока через устройство и обратно к коллектору отрицательного тока батареи. Когда литий-ионные батареи заряжаются, происходит тот же процесс, но в обратном направлении, восстанавливая батарею для разряда. В твердотельных Ssbt-батареях используется твердый электролит, а не жидкий. Этот твердый электролит имеет тенденцию действовать как разделитель аккумулятора.

В остальном, процесс очень похож на процесс с литий-ионными батареями, но варьируется в зависимости от типа рассматриваемого твердотельного аккумулятора например, натрий-ионный и т. Преимущества твердотельных батарей перед традиционными Одно из главных преимуществ — безопасность. Жидким электролитам присущи некоторые проблемы. При более высоком напряжении внутри электролитов образуются нити металлического лития, что со временем увеличивает риск короткого замыкания батареи. Поэтому, электролиты в современных литий-ионных батареях легко воспламеняются.

Именно здесь твердотельные батареи обеспечивают гораздо больший уровень безопасности, чем литий-ионные батареи. Например, использование альтернативных керамических электролитов имеет гораздо меньшую вероятность возгорания. Керамические материалы также помогают предотвратить образование литиевых нитей, которые теоретически могут позволить таким батареям работать при гораздо более высоких напряжениях. Однако керамика достаточно хрупкий материал и может оказаться проблематичным при эксплуатации и производстве. Существуют решения, позволяющие упредить эту проблему, к примеру, пропитка керамики наночастицами графена.

Это не только увеличивает долговечность керамических электролитов, но помогает усиливать их ионную проводимость. Помните, что электролиты проводят ионы, а не электричество? Эксперименты в этой области, проводимые группами, к примеру, из университета Брауна, показали, что этот раствор может удвоить или утроить прочность керамического электролита, сохраняя его полезность в качестве потенциального электролита и сепаратора твердотельной Ssbt-батареи. Другие варианты включают использование органических катодов в сочетании с твердотельными ионно-натриевыми батареями. Это интересно, поскольку существующие натриево-ионные батареи, хоть и являются твердотельными, не обладают плотностью энергии литий-ионных батарей.

Другая проблема, связанная с твердотельными батареями solid-state battery такого типа, заключается в том, что слой неактивных кристаллов натрия имеет тенденцию нарастать на катоде, блокируя движение ионов натрия и эффективно разрушая батарею. Так, используя катод из пирен-4, 5, 9, 10-тетраона PTO , исследовательская группа из Хьюстонского университета обнаружила, что этот вид катода имеет много преимуществ, по сравнению с неорганическими, более традиционными катодами. Например, использование PTO позволяет фактически поменять местами резистивную поверхность раздела между катодом и электролитом. Это имеет большое значение для стабильности и увеличения срока службы таких батарей, а также для повышения плотности энергии. Обеспечивая тесный контакт между жестким катодом и твердым электролитом, независимо от изменения диаметра катода во время цикла батареи, это может изменить правила игры для solid-state battery.

Но сбрасывать со счетов натриево-ионные твердотельные батареи пока не стоит. Поскольку другие исследовательские группы работают над поиском решения проблем, присущих именно этой технологии. Группа из университета штата Вашингтон WSU и Тихоокеанской северо-западной национальной лаборатории PNNL нашла способ предотвращения накопления неактивного натрия на катодах. Они обнаружили, что создание катода из оксида металла, пропитанного дополнительными ионами натрия, позволило беспрепятственно производить электричество. Это также может оказаться революционным шагом, потому что позволит производить натрий-ионные батареи наравне с литий-ионными альтернативами.

Это значит, что даже если solid-state battery technology, как упоминалось ранее, считается лучшей альтернативой литий-ионным батареям, могут появиться компромиссные технологии — твердотельные литиевые батареи. Исследовательская группа из Мичиганского университета работает именно над этим проектом.

Полученный материал обладал высочайшей кинетикой, позволяя быструю зарядку, и приблизил его по этому параметру к суперконденсаторам. Похожим образом, но с использованием других материалов, был создан катод, отличающийся рекордной ёмкостью. Тем самым учёные как бы сократили дисбаланс в характеристиках между аккумуляторными анодами и катодами суперконденсаторов. Созданный в лаборатории прототип гибридного натриево-ионного аккумулятора превзошёл по плотности энергии коммерческие литиево-ионные аккумуляторы как показано на графике выше и показал характеристики плотности мощности, свойственные суперконденсаторам. Ожидается, что он подойдет для быстрой зарядки в самых разных сферах — от электромобилей до интеллектуальных электронных устройств и аэрокосмической техники.

Планируемые инвестиционные вложения в повышение энергоэффективности составляют в ближайшие три года чуть менее 3 млрд руб. В ближайшие три года железнодорожная пассажирская компания намерена обустроить 38 пунктов высоковольтного отопления.

Ученые создали долговечный катод для натрий-ионных аккумуляторов

Анодные и катодные материалы, полученные на основе полимерных производных антрахинона, показали высокие удельные емкости и энергоемкости, а также хорошую циклируемость. С каждым годом наша жизнь становится все более интересной и увлекательной из-за появления на рынке разнообразной портативной электроники. И если начиналось все с мобильных телефонов и ноутбуков, то сейчас это уже всевозможные гаджеты, которые не только делают наш досуг разнообразнее, но и помогают в хозяйстве: роботы убирают наш дом, моют окна и даже доставляют продукты из магазина. Популярной становится и электрификация транспорта: всего каких-то десять лет назад «Тесла» была диковинкой, а теперь мы все катаемся на электробусах в Москве и наша столица лидирует в Европе по степени электрификации общественного транспорта. Кажется: давай, наслаждайся жизнью, радуйся стремительному наступлению технического прогресса и открывай для себя все новые «электронные горизонты»! Но есть скрытая угроза, из-за которой будущее может вскоре стать не таким уж радужным, если цены на привычные нам гаджеты взлетят до небес, а электромобили точно станут непозволительной роскошью. Общая часть всей современной электроники — это литий-ионный аккумулятор, в котором много лития. А литий — это химический элемент, который встречается редко, как правило, в небольших количествах. И только отдельные страны могут похвастаться значительными месторождениями лития.

Кроме того, в один и тот же ограниченный объем можно уместить больше монокристаллов сферической формы, чем октаэдрической, поэтому и плотность получается больше". Микроскопическое изображение сферических частиц, составляющих перспективный электрод нового аккумулятора Ivan Moiseev et al. Ученые считают, что путем дальнейших экспериментов можно значительно улучшить результат. Например, смешивая более мелкие и более крупные частицы.

Еще одна важная деталь - сферические частицы минимизируют поверхностный контакт с электролитом батареи, что замедляет деградацию катода. Это позволяет уменьшить размер катодов, сделать батареи более компактными и, следовательно, увеличить емкость хранения энергии при том же объеме.

Мы оказываем им различные виды помощи», — подчеркнул губернатор. Как сообщили Накануне. RU в пресс-службе губернатора и правительства Новосибирской области, «Катод» — это высокотехнологичное предприятие с собственной научной базой, которое тесно сотрудничает в разработках и исследованиях с институтами СО РАН. Предприятие осуществляет разработку и выпуск оптикоэлектронных приборов и комплектующих: электронно-оптических преобразователей, приборов ночного видения, фотоумножителей и. И можно сказать, что это производство уникальное — серийный выпуск ЭОП 3-го поколения сегодня налажен только в двух странах: в России — на «Катоде» и в США. Современные приборы ночного видения, произведенные «Катодом», уже поставлены для снабжения новосибирских бойцов.

Мы, конечно, будем оказывать всяческую поддержку. Ведь кратное увеличение объёмов производства, в частности, на «Катоде», — это серьезный вклад в повышение эффективности работы наших бойцов», — заявил губернатор во время визита на завод. Фото пресс-службы правительства региона По данным правительства региона, подразделения военнослужащих из Новосибирска полностью обеспечены приборами ночного видения. Как отметил Андрей Травников, множество предприятий области сейчас обеспечивает военных всем необходимым. Мы целевым образом помогаем воинским формированиям, которые дислоцируются или были созданы на территории нашего региона — это и «Ермак», и армейские подразделения, составленные из мобилизованных. Мы оказываем им различные виды помощи», — подчеркнул губернатор.

Похожие новости:

Оцените статью
Добавить комментарий