Новости деление атома

В 1939 г физиками О. Фришем и Л. Мейтнером была предложена капельная модель ядра, в рамках которой был описан процесс деления ядра атома урана. В конце 1938 года из Старого света пришла новость о том, что два немецких ученых, Отто Ган и Фриц Штрассман, открыли реакцию деления атомного ядра. Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. Поэтому в ядерном реакторе, если копнуть чуть глубже есть и деления урана 8 быстрыми нейтронами, энергия которых может достигать 18МэВ. В пересчете на один атом деление урана дает в 50–100 миллионов раз больше энергии, чем любая химическая реакция.

ЯДЕР ДЕЛЕНИЕ

В центре каждого атома находится ядро, состоящее из тесно связанных между собой протонов и нейтронов. В то время как число протонов уникально для каждого элемента периодической таблицы, число нейтронов может меняться. По этой причине существует несколько "подвидов" ряда элементов, которые называются изотопами. В качестве примера можно привести некоторые изотопы урана: Уран-238: 92 протона, 146 нейтронов Уран-235: 92 протона, 143 нейтронов Уран-234: 92 протона, 142 нейтронов Эти изотопы могут быть стабильными или нестабильными. Стабильные изотопы обладают относительно постоянным или неизменным числом нейтронов. Но если у химического элемента слишком много нейтронов, он становится нестабильным или делящимся. Когда делящиеся изотопы пытаются стать стабильными, они освобождают избыток нейтронов и энергии. Именно эта энергия является источником взрывной силы ядерного оружия. Различают два типа ядерного оружия: Атомные бомбы: в них для создания взрыва используется эффект домино, заключающийся в многочисленных реакциях деления урана или плутония.

Водородные бомбы: они основаны на сочетании деления и синтеза урана или плутония при участии более легких элементов, таких как изотопы водорода.

В такой реакции нейтрон, попавший в ядро, вызывает его деление, в результате которого возникают новые нейтроны, которые в свою очередь также вызывают новые деления ядер, и так далее. Цепная реакция деления. В ядрах урана возможно и спонтанное деление, без возбуждения нейтроном.

Удельная энергии связи у более легких элементов выше, а значит, ядру урана энергетически «выгодно» распасться на более легкие ядра. Этому препятствуют ядерные силы, нужен внешний возбуждающий импульс, но существует ненулевая вероятность, что в ядре начнется распад и без такого импульса. Что мы узнали? Ядра урана при бомбардировке нейтронами способны делиться на более легкие части.

Механизм деления описывается в рамках капельной модели ядра. Тест по теме.

Вторая мировая война и возможное военное применение деления атомного ядра привели к прекращению на долгое время публикаций по физике деления ядра. Теория деления ядер В рамках капельной модели ядра атомное ядро рассматривается как капля равномерно заряженной несжимаемой жидкости. На нуклоны действуют уравновешивающие друг друга ядерные силы притяжения и электростатические силы отталкивания между протонами , стремящиеся разорвать ядро. В процессе деления ядро изменяет форму: из сферического оно деформируется в вытянутый эллипсоид, затем на экваторе эллипсоида образуется перетяжка. Возникает гантелеобразная фигура, и когда перетяжка рвётся, образуются осколки деления.

Деформация ядра при делении сопровождается увеличением его поверхности; при этом, как и в жидкой капле, силы поверхностного натяжения возрастают, препятствуя дальнейшей деформации ядра. Конкуренция сил поверхностного натяжения и кулоновских сил в капельной модели определяется параметром делимости, который пропорционален Z.

Сплав натрия с калием сходен по свойствам с натрием, но остается жидким при комнатной температуре. Гелий — прекрасный теплоноситель, но у него мала удельная теплоемкость.

Диоксид углерода представляет собой хороший теплоноситель, и он широко применялся в реакторах с графитовым замедлителем. Терфенил имеет то преимущество перед водой, что у него низкое давление паров при рабочей температуре, но он разлагается и полимеризуется под действием высоких температур и радиационных потоков, характерных для реакторов. Тепловыделяющие элементы. Тепловыделяющий элемент твэл представляет собой топливный сердечник с герметичной оболочкой.

Оболочка предотвращает утечку продуктов деления и взаимодействие топлива с теплоносителем. Материал оболочки должен слабо поглощать нейтроны и обладать приемлемыми механическими, гидравлическими и теплопроводящими характеристиками. Тепловыделяющие элементы — это обычно таблетки спеченного оксида урана в трубках из алюминия, циркония или нержавеющей стали; таблетки сплавов урана с цирконием, молибденом и алюминием, покрытые цирконием или алюминием в случае алюминиевого сплава ; таблетки графита с диспергированным карбидом урана, покрытые непроницаемым графитом. Все эти твэлы находят свое применение, но для водо-водяных реакторов наиболее предпочтительны таблетки оксида урана в трубках из нержавеющей стали.

Диоксид урана не вступает в реакцию с водой, отличается высокой радиационной стойкостью и характеризуется высокой температурой плавления. Для высокотемпературных газоохлаждаемых реакторов, по-видимому, весьма подходят графитовые топливные элементы, но у них имеется серьезный недостаток — за счет диффузии или из-за дефектов в графите через их оболочку могут проникать газообразные продукты деления. Органические теплоносители несовместимы с циркониевыми твэлами и поэтому требуют применения алюминиевых сплавов. Перспективы реакторов с органическими теплоносителями зависят от того, будут ли созданы алюминиевые сплавы или изделия порошковой металлургии, которые обладали бы прочностью при рабочих температурах и теплопроводностью, необходимыми для применения ребер, повышающих перенос тепла к теплоносителю.

Поскольку теплообмен между топливом и органическим теплоносителем за счет теплопроводности мал, желательно использовать поверхностное кипение для увеличения теплопередачи. С поверхностным кипением будут связаны новые проблемы, но они должны быть решены, если использование органических теплоносителей окажется выгодным. В большинстве обычных реакторов в качестве теплоносителя используется вода, либо под давлением, либо кипящая. Реактор с водой под давлением.

В таких реакторах замедлителем и теплоносителем служит вода. Нагретая вода перекачивается под давлением в теплообменник, где тепло передается воде второго контура, в котором вырабатывается пар, вращающий турбину. Кипящий реактор. В таком реакторе кипение воды происходит непосредственно в активной зоне реактора и образующийся пар поступает в турбину.

В большинстве кипящих реакторов вода используется и как замедлитель, но иногда применяется графитовый замедлитель. Реактор с жидкометаллическим охлаждением. В таком реакторе для переноса теплоты, выделяющейся в процессе деления в реакторе, используется жидкий металл, циркулирующий по трубам. Почти во всех реакторах этого типа теплоносителем служит натрий.

Пар, образующийся на другой стороны труб первого контура, подается на обычную турбину.

Деление ядер урана. Цепная ядерная реакция

это ядерная реакция или радиоактивный распад, в котором ядро атома расщепляется на два или более меньших и более легких ядра. Существуют два различных способа освобождения ядерной реакции: деление тяжелых ядер и термоядерные. 1 Деление атомов как источник энергии. В критическом реакторе деления нейтроны, образующиеся при делении атомов топлива, используются для того, чтобы вызвать еще большее количество делений. Ядерные реакторы на АЭС, атомных судах и подводных лодках используют деление ядер урана (иногда вместе с плутонием). Предыдущие исследования показали, что атомные ядра с большим количеством протонов и нейтронов нестабильны.

Деление атомного ядра

Ввиду этого взрыв атомной бомбы, если он происходит в подходящей среде, может вызвать вспышку термоядерной реакции (см. §226). ## $a: Физика деления атомных ядер $h: [Текст]: $b: Сборник статей $c: Под ред. д-ра физ.-мат. наук Н. А. Перфилова и канд. физ.-мат. наук В. П. Эйсмонта. Газ, скапливающийся в ядерном топливе в результате реакций деления, может быстро выходить из него благодаря давлению атомов топлива. Высвобождение дополнительных нейтронов в процессе деления может привести к распаду других соседних атомов U-235. это процесс, при котором атом распадается на два, образуя два атома меньшего размера и огромное количество энергии. Ввиду этого взрыв атомной бомбы, если он происходит в подходящей среде, может вызвать вспышку термоядерной реакции (см. §226).

Атомы ядерного топлива выталкивают образующийся при его делении газ

Достройкой реактора Vogtle 3 занялись местные компании Southern Nuclear и Georgia Power, с чем они справились. До этого четыре реактора по проекту AP1000 смогли построить в Китае местные компании. Юридически продажа Westinghouse корпорациям Cameco и Brookfield Renewable Partners должна быть закрыта до конца текущего года. Toshiba купила Westinghouse в 2006 году. Для Westinghouse и её новых хозяев продолжение работы и запуск второго модуля важны в дальнейшей перспективе. Представители Westinghouse уже заключили предварительную договорённость о строительстве до шести реакторов AP1000 в Польше.

Иными словами, речь идет не только о риске радиоактивного излучения, о котором мы должны беспокоиться. Тем не менее, привыкнув к воздействию сжигания ископаемого топлива на здоровье человека, мы мало задумываемся о влиянии на него твердых частиц, образующихся при сжигании угля, который сам по себе тоже не совсем свободен от радиоактивных веществ. Стоимость Для сравнения затрат на производство электроэнергии исследователи используют так называемую выровненную стоимость энергии, или LCOE.

Это показатель средней себестоимости выработки электроэнергии, рассчитанный на весь срок службы объекта. Этот показатель зависит от множества факторов, связанных с местоположением и колебаниями ресурсов. Тем не менее, можно получить общее представление о LCOE в мире для сравнения технологий. Могут ли атомные электростанции спасти мир? Конечно, новые технологии всегда могут изменить ситуацию. Поиск лучших способов улавливания ядерных отходов может сделать их более безопасными или, по крайней мере, дать общественности уверенность в том, что в будущем они будут представлять меньшую угрозу. Альтернативы изотопам урана могут снять тревогу по поводу расплавов и возможности создания оружия в ядерных программах. Изменение технологий может повлиять на масштабы реакторов или даже полностью повысить их LCOE.

Но, скорее всего, это будет слишком поздно. Анализ внедрения атомной и возобновляемой энергетики в более чем ста странах за последние 25 лет показал, что атомная энергетика не достигла таких же результатов по снижению выбросов углерода, как возобновляемые источники энергии. Более того, инвестиции в атомную энергетику - это невозвратные затраты, затрудняющие последующий переход на возобновляемые источники энергии. Все это не означает, что ядерной энергетике нет места в будущем производстве энергии. Например, освоение космоса может выиграть от развития технологий ядерного деления. Помимо производства энергии, бесценной отраслью является производство особых изотопов для медицины и научных исследований с использованием деления.

С этим обстоятельством связано одно из основных преимуществ ядерных реакторов, работающих на быстрых нейтронах, по сравнению с тепловыми реакторами. Сечения деления четно-четных нуклидов до порога деления равны, естественно, нулю, а выше порога они хотя и отличаются от нуля, но никогда не приобретают больших значений. Так сечение деления 238U при энергиях выше 1 МэВ оказывается порядка 0,5 барн.

Осколки деления. Несмотря на большую энергию примерно по 82 МэВ у каждого осколка , пробеги осколков в воздухе оказываются не больше, а даже несколько меньше пробегов альфа-частиц около 2 см. И это несмотря на то, что альфа-частицы имеют значительно меньшие энергии 4 — 9 МэВ. Происходит это потому, что электрический заряд осколка значительно больше заряда альфа-частицы, и поэтому он гораздо интенсивнее теряет энергию на ионизацию и возбуждение атомов среды. Более точные измерения показали, что пробеги осколков, как правило, оказываются не одинаковыми, и группируются около значений 1,8 и 2,2 см. Вообще при делении могут образовываться осколки с самыми различными массовыми числами в пределах от 70 до 160 то есть около 90 различных значений , но образуются осколки с такими массами с разными вероятностями. Эти вероятности принято выражать т. Обычно величину YА выражают в процентах.

Сейчас астрофизики исследуют это явление.

На Солнце атомы водорода сливаются, образуя гелий, высвобождая энергию и делая возможной жизнь на Земле. Однако деление ядра — это отдельная тема, оно никогда раньше не наблюдалось в космосе. Астрономы сейчас изучают деление ядер в космосе. Они обнаружили первые признаки того, что при слиянии нейтронных звезд атомные ядра также расщепляются. Эти открытия могут помочь разгадать загадку происхождения тяжелых элементов во Вселенной. Природа способна создавать сверхтяжелые атомные ядра, превосходящие самые тяжелые элементы в периодической таблице.

ИСТОРИЧЕСКАЯ СПРАВКА

  • Открытие ядерного деления
  • Деление ядер урана. Цепная ядерная реакция
  • Открытие ядерного деления - Discovery of nuclear fission
  • Атомы ядерного топлива выталкивают образующийся при его делении газ
  • Физика атома и ядра (курс лекций): Спектр атома водорода

Ядерные реакции

Цепная ядерная реакция – самоподдерживающаяся реакция деления тяжёлых ядер, в которой непрерывно воспроизводятся нейтроны, делящие всё новые и новые ядра. Резерфорд много сделал для изучения строения атома и внес вклад и в исследование того, как происходит деление ядра атома. это процесс, при котором атом распадается на два, образуя два атома меньшего размера и огромное количество энергии.

Группа учёных смогла выяснить, как вращаются ядра атомов поле их деления спустя 80 лет.

  • СОДЕРЖАНИЕ
  • Деление ядра — Википедия
  • Подписка на дайджест
  • Нейтроны — герои реактора

Дирижер атомного взрыва: тело и жизнь самой тайной части ядерного заряда

Ядерное деление-это реакция, при которой ядро атома распадается на два или более меньших ядра. Деление атомов. Недавно в атомной энергетике произошло событие, которое можно сравнить разве что с созданием вечного двигателя: четвертый энергоблок Белоярской АЭС с реактором. В 1939 г физиками О. Фришем и Л. Мейтнером была предложена капельная модель ядра, в рамках которой был описан процесс деления ядра атома урана. При расщеплении (делении) урана высвобождается три нейтрона, которые сталкиваются с другими атомами урана, в результате чего возникает цепная реакция. 1. История открытия деления атомного ядра 2. Капельная модель ядра 3. Цепная реакция деления 4. Использование энергии деления ядер 5. Настоящее и будущее атомной энергетики.

Похожие новости:

Оцените статью
Добавить комментарий