Вегетативная нервная система регулирует функции всех внутренних органов и систем. Практические рекомендации по лекарственному лечению первичных опухолей централь-ной нервной системы. Онкологи из РФ намерены лечить рак при помощи нервной системы. Российские ученые намерены бороться с раком через нервную систему.
Новости дня
- В Москве врачи удалили опухоль центральной нервной системы у беременной пациентки
- Причины опухолей ЦНС
- Позитивное кольцо обратной связи
- Метастазы в мозг
- Жизнь Захара сейчас висит на волоске.
Рак нервной системы. Опухоли ЦНС: причины, симптомы, диагностика и лечение
Фокальная лучевая терапия головного мозга или позвоночника обычно рекомендуется пациентам с симптоматическим заболеванием. Интратекальная химиотерапия проводится посредством люмбальной пункции или с помощью устройства для желудочкового доступа, такого как резервуар Оммайя. Использование резервуара Ommaya может помочь обеспечить более равномерную концентрацию лекарства по всей нервной системе. Нервно-мышечные осложнения Рак может поражать нервы и мышцы в результате прямой инфильтрации или сдавления опухолью, как побочный эффект лечения рака или как паранеопластический эффект рака. Опухоли могут повредить черепные нервы после того, как они вышли из субарахноидального пространства.
Рак молочной железы, легких и предстательной железы часто метастазирует в кости , а поражения основания черепа могут вызвать дисфункцию черепных нервов. Расширенные исследования МРТ могут быть полезны в определении этиологии синдрома краниальной нейропатии. Лечение состоит из лучевой терапии, направленной на симптоматическую область. Хотя плечевые и пояснично-крестцовые плексопатии чаще всего обусловлены опухолевой инфильтрацией или сдавлением, сходные клинические синдромы могут развиваться и вследствие лучевой терапии.
Неопластическая плечевая плексопатия обычно вызывается образованием на верхушке легкого например, опухолью Панкоста или раком молочной железы, метастазировавшим в подмышечные лимфатические узлы. По мере увеличения опухоли или лимфатических узлов сплетение прорастает или сжимается снизу. Первоначальным симптомом обычно является тупая, ноющая боль, охватывающая плечо и руку. Боль становится все более сильной и позже часто сопровождается онемением, парестезиями и слабостью руки или кисти.
Электромиография может помочь локализовать болезненный процесс в сплетении. Лучевая терапия применяется у большинства пациентов с неопластической плечевой плексопатией. Пояснично-крестцовая плексопатия чаще возникает в результате прямого распространения локальных опухолевых масс из колоректального рака, рака шейки матки и рака предстательной железы. Могут развиться недержание и импотенция.
Периферические невропатии, вызванные химиотерапией, являются частым побочным эффектом и причиной заболеваемости у онкологических больных. Агентами, наиболее часто вызывающими нейропатию , являются винкристин Онковин и цисплатин Платинол. У большинства пациентов первоначальная жалоба — покалывание и парестезии дистальных отделов конечностей. Рефлексы исчезают, а вибрационная и проприоцептивная способность снижается.
Восстановление является переменным после прекращения приема препарата. Отправьте запрос в Букинг Клиник Оставьте свой телефон и получите официальный ответ клиники на ваш вопрос. Максимум через 2 часа с момента обращения вам перезвонит врач-консультант. Ваши имя Согласен с политикой конфиденциальности.
Отправьте запрос Оставьте свой телефон и получите официальный ответ на ваш вопрос.
У него нейробластома — злокачественная опухоль нервной системы, РАК. За его спасение взялись врачи из Германии. Уже в клинике обнаружили активные раковые клетки. Лечение пошло не по плану, выставлен новый счёт. Денег на оплату нет. Мама в отчаянии и не знает, у кого просит помощи и поддержки.
Необходимо: Лечение в Университетской клинике г.
Сам факт физического взаимодействия между раковыми клетками и нервными волокнами был замечен много ранее. Так, еще в конце 1990-х гг. А в 2019 г. Также выяснилось, к примеру, что у человека высокая плотность нервных пучков внутри и вокруг опухоли простаты прямо связана с вероятностью рецидива после операции. Подобные корреляции были обнаружены и для опухолей других органов, включая молочную железу, толстый кишечник и легкие. В результате все периферические нервы сейчас считают не просто сторонниками, но активными участниками онкогенеза, а наличие раковых клеток по ходу нервных волокон — маркером высокой агрессивности опухоли. Но для чего опухолям нервы? Возможно, все дело в том, что нервные волокна сами способны расти и, следовательно, вырабатывать молекулярные факторы роста, которые способствуют росту и раковых клеток. Также нервы могут побуждать иммунные клетки макрофаги разрушать близлежащие ткани и секретировать молекулы, стимулирующие клеточный рост.
С другой стороны, раковые клетки могут отслеживать сигналы от симпатических нервов, работа которых меняется при стрессе, и такой мониторинг помогает им синхронизировать свою активность с периодами ослабления иммунной системы.
Оказалось, что активность нейронов непосредственно способствует росту этих опухолей, причем раковые клетки могут активно получать сигналы от здоровых нейронов и использовать нейрональные белки, такие как NLGN3, для своего развития. Кроме того, было обнаружено, что опухоли могут изменять функционирование нервной системы, подавляя когнитивные функции и используя механизмы пластичности мозга для своего роста. Это открытие позволяет считать, что раковые клетки способны не только привлекать, но и подчинять себе нервную систему, используя ее в качестве одного из ресурсов для своего развития. Таким образом, нейротерапия, направленная на блокирование взаимодействия между опухолью и нервной системой, может стать новым методом лечения рака.
Злокачественная - не значит приговор. Что мы знаем о раке головного мозга?
Высокозлокачественные опухоли характеризуются быстрым ростом и плохим прогнозом вследствие резистентности устойчивости к любым видам лечения хирургии, лучевой терапии, химиотерапии. Низкозлокачественные и доброкачественные опухоли растут медленно и прогноз при них благоприятнее. Необходимость других дополнительных методов обследования определяется индивидуально. Профилактика и раннее выявление опухолей ЦНС Специфической профилактики опухолей ЦНС нет, так как современной медицинской науке не известны факторы их вызывающие. Диагностика опухолей ЦНС 1. Методы обследования перед назначением лечения «Золотым стандартом» диагностики опухолей ЦНС является выполнение магнитно-резонансной томографии с внутривенным контрастным усилением. При отсутствии данного оборудования в определенных случаях допустимо проведение рентгеновской компьютерной томографии с внутривенным контрастным усилением.
Последняя также проводится при наличии противопоказаний для проведения магнитно-резонансной томографии наличие у пациента ферромагнитных инородных тел или имплантатов, кардиостимулятора и др. Эти же исследования могут повторяться, если до операции проводится химиотерапии или лучевая терапия с целью оценки их эффективности. В сложных диагностических случаях, а также при нехарактерном клиническом течении с целью уточнения диагноза может потребоваться биопсия патологического образования ЦНС. Вид опухоли и степень ее злокачественности устанавливаются на основании данных морфологического исследования фрагмента опухоли, полученного путем биопсии. Для уточнения распространенности опухоли при подозрении на метастатическое поражение ЦНС и выработки оптимальной тактики лечения проводится рентгеновская компьютерная томография органов грудной клетки, брюшной полости, малого таза. Они подразделяются по степени злокачественности, при этом, также в отличие от большинства других злокачественных опухолей, в эту классификацию включаются также доброкачественные новообразования ЦНС.
Лечение опухолей ЦНС 1. Методы лечения опухолей ЦНС Выбор метода лечения опухоли ЦНС зависит от ее степени злокачественности, распространенности и локализации.
Специалисты убеждены, что взаимодействие ЦНС позволит блокировать молекулы, активизирующие рост опухоли, к примеру, белок нейролигин-3. Проводя эксперимент, исследователи использовали две группы мышей. У одной из них был «активирован» ген нейролинган-3, другая же группа была здорова. Опыты доказали, что у обычных мышей раковая опухоль быстро начала расти, пока у генно-модифицированных животных онкология не прижилась.
Заболевание стартует из мозговых оболочек. Парасагиттальный процесс бывает с одной или двух сторон. Все случаи делят на передние, задние, центральные. Для причисления к классу анализируют расположение очага относительно синусного длинника. Невринома Термином обозначают онкологический доброкачественный процесс, затрагивающий слуховой нерв. Пока ученые не могут сказать, что провоцирует болезнь. Предполагают, что играет роль наследственность. Среди косвенных факторов, как считают некоторые исследователи, нужно отметить нейрофиброматоз.
Это заболевание, как известно, также может передаваться между поколениями. Лечение невриномы возможно тремя способами. Можно ожидать, назначить больному облучение или оперирование. Конкретное решение принимают, ориентируясь на особенности случая. Важно проанализировать габариты образования, локализацию, состояние организма, тонус, качество слуха. Учитывают пожелания нуждающегося. Как уточнить При подозрении на невриному нужно проверить слух. Отоларинголог может заметить ухудшение функции при плановом осмотре пациента.
Организуют слуховой тест, дающий представление о реакции мозгового ствола. Рекомендована электронистагмография — исследование, при котором определяют нистагм, то есть непроизвольную активность элементов глаза. В ушной канал подается жидкость; аппаратура, подключенная к человеку, фиксирует ответные движения глаз. Если на основании проведенных исследований можно предположить онкологическое заболевание, необходимо сделать МРТ. Будем ждать? Такое лечение невриномы рекомендовано при небольших размерах очага и расположении, не угрожающем ближним нервным структурам. Если габариты сравнительно велики, но явление не проявляет себя симптомами, могут также порекомендовать ожидание. Наблюдение показано, если запрещена операция.
Такое возможно из-за преклонного возраста или слабого здоровья. Наблюдение включает ежегодное МРТ и регулярные консультации. Оперирование Такой подход к лечению предполагает изъятие слухового нерва. Мероприятие считается исключительно сложным и проблематичным. Это тонкая операция, требующая умения и опыта, качественного оборудования. Молодым пациентам операция показана, если опухолевый очаг увеличивается в размерах, хирургическое вмешательство радиоволновым методом не показывает надежного итога. Оперирование помогает сохранить возможности видеть и слышать, а также уберегает лицевой нерв. Есть несколько методов проведения вмешательства.
Возможен транслабиринтный, ретросигмоидный доступ или через среднюю ямку. Оперирование требует проведения полного обезболивания, черепную трепанацию. Длительность реабилитации — 6-12 месяцев. Облучение Классический эффективный подход — гамма-нож. Это неинвазивный способ, результативный практически в той же степени, как открытая операция, но сопровождающийся меньшими рисками осложнений.
Тем не менее, в тканях с высокой степенью иннервации, таких как поджелудочная железа и предстательная железа, были обнаружены низкие уровни T-хелперов 1 TH1 [136, 140—142]. Адренергические нервы вносят свой вклад в это иммуносупрессивное окружение несколькими способами Рис.
Лимфатическая система, которая отвечает за транспортировку лимфоцитов, высоко иннервирована адренергическими нервами. На ортотопической мышиной модели рака молочной железы нокаут Adrb2 в MDSC замедляет рост опухоли, снижает экспрессию PDL1 и уровни иммуносупрессивных цитокинов в сыворотке крови [146]. Эти наблюдения, а также тот факт, что опухоли с хорошим ответом на иммунотерапию, по-видимому, обильно инфильтрированы TH1 клетками [136], предполагают, что денервация или прекращение адренергических сигналов может обеспечить новые подходы для улучшения иммунотерапевтического ответа в высокоиннервированных опухолях [147]. TNF является основным хемоаттрактантов для клеток врожденного иммунитета, таких как макрофаги. Стимуляция блуждающего нерва активирует постсинаптические адренергические нервы в чревном ганглии, который иннервирует селезенку, ингибируя высвобождение TNF из макрофагов. А ваготомия устраняет эту иммуносупрессию, повышая тем самым системные уровни TNF [134,148]. Ацетилхолин, в свою очередь, стимулирует никотиновые АХ-рецепторы на макрофагах селезенки, ингибируя высвобождение TNF [148].
В трансгенных моделях рака поджелудочной железы ваготомия существенно увеличивала уровни TNF, приводя к увеличению количества TAM [43,44]. В ортотопической модели рака молочной железы увеличение адренергической передачи сигналов в условиях стресса увеличивало количество внутриопухолевых TAM [58]. Аналогичным образом, при раке предстательной и поджелудочной желез нервно-зависимое увеличение количества ТАМ было ассоциировано с прогрессированием опухоли. Тогда как снижение числа макрофагов ингибировало рост опухоли [19,43,44,46,149]. Суммируя эти данные, можно предположить, что нейроиммунная связь является важным регуляторным компонентом TME, где отдельные ветви вегетативной нервной системы действуют противоположно друг другу, обеспечивая тем самым баланс, который нарушается при возникновении рака. Фибробласты и внеклеточный матрикс Изменения в 3D-структуре и составе TME значительно влияют на прогрессирование опухоли и метастазирование Рис. Например, во многих опухолях плотный внеклеточный матрикс ВКМ действует как физический и химический барьер для инфильтрации иммунных клеток, создавая привилегированную в иммунном отношении среду [150].
В то же время, изменения в составе ВКМ по отношению к среде, богатой коллагеном I типа, приводят к тому, что она действует как ангиогенный суперполимер, способствуя ангио- и нейрогенезу [151—154]. Кроме того, в то время как повышенная плотность ВКМ помогает предотвратить иммунный ответ на ранних стадиях развития опухоли, деградация ВКМ матриксными металлопротеазами MMP способстет миграции и распространению опухолевых клеток метастазов на поздних стадиях развития заболевания [155]. При воспалительных процессах, таких как цирроз печени, наблюдается повышенная адренергическая передача сигналов [156]. В ответ на повышенный уровень норадреналина в печени повышается пролиферация фибробластов и выработка коллагена I типа [152]. На более поздних стадиях онкологического заболевания ремоделирование коллагена необходимо для распространения рака. На ортотопических мышиных моделях протоковой аденокарциномы поджелудочной железы повышенная адренергическая передача сигналов, вызванная стрессом, более чем в 100 раз увеличивала экспрессию MMP в стромальном компартменте, увеличивая метастазирование. В ортотопической мышиной модели рака молочной железы адренергическая иннервация стромы усиливает ремоделирование коллагена, тем самым стимулируя метастазирование, снижение уровня норадреналина ингибирует этот процесс [159].
Таргетная терапия, направленная на иннервацию опухоли Поскольку передача нервных импульсов тесно связана с возникновением и развитием опухолей, таргетная терапия, нацеленная на иннервацию, стала областью большого клинического интереса [160]. Хирургическая денервация с целью противоопухолевой терапии, включая пересечение крупных нервных стволов, содержащих смешанные двигательные и вегетативные нервные волокна, была описана еще в начала 19 века, однако была неточной, и эта методикаприводила к серьезным побочным эффектам [13]. По мере развития хирургической техники и лучшего понимания вегетативной нейроанатомии были разработаны более точные методы денервации. Например, интраоперационная химическая денервация ложа поджелудочной железы, называемая «спланхникэктомия» для некупируемой боли при неоперабельном раке поджелудочной железы, показала хорошие результаты выживаемости в рандомизированных плацебо-контролируемых клинических исследованиях [161]. Однако химическая денервация была непостоянной, и со временем боль прогрессировала. В тоже время временная денервация ботулиническим токсином ортотопического рака предстательной железы у мышей оказалась эффективной [33], но испытания на людях не имели такого же успеха [162]. Методология временной денервации как терапии все еще требует дальнейшего изучения.
Однако эффект хирургической денервации в клинических условиях изучался лишь при некоторых патологиях. При лечении рака желудка у пациентов, перенесших ваготомию в дополнение к гастрэктомии, наблюдалось снижение частоты рецидива опухоли по сравнению с теми, кто перенес только гастрэктомию [3]. Это говорит о том, что денервация может быть дополнительным фактором эффективности хирургического лечения рака. Фармакологическое ингибирование нервной передачи стало перспективной терапевтической мишенью в противоопухолевой терапии. Использование этого класса препаратов, первоначально разработанных для лечения сердечно-сосудистых заболеваний, было описано в ретроспективных исследованиях. Работы были посвящены снижению риска смертности, связанной с множеством видов солидных опухолей, включая рак поджелудочной, молочной и предстательной желез, опухолей яичников, а также меланомы [19,163-166]. Уровень катехоламинов в периоперационном периоде повышается, что, как полагают, частично связано с хирургическими манипуляциями с опухолью или тканями организма, а также с операционным стрессом [169—171].
Ингибирование сигнальных путей нейротрофинов является еще одной новой областью клинического интереса. В то время как нацеливание на передачу сигналов TRKA при раке в доклинических исследованиях на грызунах показало многообещающие результаты, клинические испытания имели смешанные результаты. Теоретически, нацеливание на TRKA у взрослых должно ингибировать инфильтрацию нервов, при этом оказывая минимальное влияние на установленные нервы, поскольку сенсорные и симпатические нейроны теряют трофическую зависимость NGF во взрослом возрасте [179]. Хотя низкомолекулярные ингибиторы рецептора TRKA увеличивают выживаемость при злокачественных новообразованиях, где опухоль экспрессирует аберрантные рецепторы TRKA, они, как было показано, не влияют на выживаемость или прогрессирование заболевания в солидных опухолях с низкой частотой хромосомных перестроек TRK [180—183]. Кроме того, поскольку эти ингибиторы обладают сродством к тирозинкиназам других рецепторов, они имеют множество побочных эффектов, не связанных с основным местом приложения [184]. Таргетирование самого NGF антителами к NGF хорошо переносится пациентами, с минимальными нейрональными или когнитивными побочными эффектами. Было обнаружено, что моноклональное антитело, специфичное к NGF, — танезумаб — эффективно уменьшает боль, вызванную метастазированием в кости [185,186], но его влияние на прогрессирование опухоли еще предстоит оценить.
Выводы В этой статье представлены данные, свидетельствующие о том, что реактивация путей развития и регенерации для стимуляции нейрогенеза является важным компонентом при инициации и прогрессирования опухолей. Вклад различных вегетативных и чувствительных нервных волокон отличается в зависимости от типа опухоли и зависит как от типа ткани, из которой образуется злокачественная опухоль, так и от характера иннервации ткани. Несмотря на последние достижения в области генной инженерии, а также технологий визуализации, которые привели к успехам в изучении роли нервной системы в TME, многие вопросы остаются без ответа. Например, было установлено, что на ранних стадиях рака наблюдается увеличение числа нервов, сопровождающееся повышением уровня нейротрофинов, но еще предстоит выяснить, какие клетки в ТМЕ являются источником нейротрофинов, и какова природа стимулов, которые инициируют выработку нейротрофина. И остается открытым вопрос, как мы можем селективно нацеливаться на возможные терапевтические точки, не затрагивая существующие нервные связи в других частях тела? Хотя ингибирование нервных сигнальных путей оказывает существенное влияние на предотвращение прогрессирования рака на доклинических моделях, трансляция этих методов и технологий все еще находится на самых ранних стадиях и потребует междисциплинарного сотрудничества для успешного внедрения их в клинику. Список литературы Hanahan, D.
Hallmarks of cancer: the next generation. Cell 144, 646—674 2011. Zahalka, A. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321—326 2017. This article shows that adrenergic nerves regulate the vasculature in the TME to promote tumour growth and cancer progression. Zhao, C.
Denervation suppresses gastric tumorigenesis. Transl Med. This article shows that surgical transection of the vagus nerve inhibits development of gastric cancer. Renz, B. Magnon, C. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 2013.
This paper showed a role for adrenergic and cholinergic nerves in prostate tumour growth and metastasis. Langley, J. Heffer, W. Erin, N. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res. Kappos, E.
Denervation leads to volume regression in breast cancer. Peterson, S. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16, 400—412 2015. Sinha, S. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk. Cancer Res.
Saloman, J. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Natl Acad. USA 113, 3078—3083 2016 Vesalius, A. New treatment of cancer. Lancet 34, 112 1840 Zahalka, A. Nerves in cancer.
Nat Rev Cancer 20, 143—157 2020. Cancer-related axonogenesis and neurogenesis in prostate cancer. Albo, D. Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117, 4834—4845 2011. Raju, B. Sympathectomy decreases size and invasiveness of tongue cancer in rats.
Neuroscience 149, 715—725 2007. Huang, D. Nerve fibers in breast cancer tissues indicate aggressive tumor progression. Medicine 93, e172 2014. Partecke, L. Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade. Pancreatology 16, 423—433 2016 Shao, J.
Autonomic nervous infiltration positively correlates with pathological risk grading and poor prognosis in patients with lung adenocarcinoma. Cancer 7, 588—598 2016. Zoucas, E. Selective microsurgical sympathetic denervation of the rat pancreas. Hayashi, A. Retrograde labeling in peripheral nerve research: it is not all black and white. Huang, Z.
Genetic approaches to neural circuits in the mouse. Morphological and electrophysiological properties of pelvic ganglion cells in the rat. Brain Res. McVary, K. Growth of the rat prostate gland is facilitated by the autonomic nervous system. Diaz, R. Histological modifications of the rat prostate following transection of somatic and autonomic nerves.
Kamiya, A. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Thoenen, H. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Arch. Krukoff, T. Effects of neonatal sympathectomy with 6-hydroxydopamine or guanethidine on survival of neurons in the intermediolateral cell column of rat spinal cord.
Degeneration and regrowth of adrenergic nerve fibers in the rat peripheral tissues after 6-hydroxydopamine. Szpunar, M. Sympathetic innervation, norepinephrine content, and norepinephrine turnover in orthotopic and spontaneous models of breast cancer. Brain Behav. Horvathova, L. Sympathectomy reduces tumor weight and affects expression of tumor-related genes in melanoma tissue in the mouse. Stress 19, 528—534 2016.
Coarfa, C. Influence of the neural microenvironment on prostate cancer. Prostate 78, 128—139 2018. Johnson, E. Biochemical and functional evaluation of the sympathectomy produced by the administration of guanethidine to newborn rats. Madden, M. The pancreatic ductal system of the rat: cell diversity, ultrastructure, and innervation.
Pancreas 4, 472—485 1989. Lindsay, T. A quantitative analysis of the sensory and sympathetic innervation of the mouse pancreas. Neuroscience 137, 1417—1426 2006. Fasanella, K. Distribution and neurochemical identification of pancreatic afferents in the mouse. Lau, M.
Incidence and survival of pancreatic head and body and tail cancers: a population-based study in the United States. Pancreas 39, 458—462 2010. Bai, H. Carcinogenesis 32, 1689—1696 2011. Makki, J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Insights Pathol.
Berthoud, H. Functional and chemical anatomy of the afferent vagal system. Alm, P. Gastric and pancreatic sympathetic denervation in the rat. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFalpha in a murine pancreatic cancer model. Oncotarget 8, 22501—22512 2017. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness.
Cancer Discov. Zhu, Y. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323—338 e326 2017. Induction of M2-macrophages by tumour cells and tumour growth promotion by M2-macrophages: a quid pro quo in pancreatic cancer. Pancreatology 13, 508—516 2013. Dicken, B.
Gastric adenocarcinoma: review and considerations for future directions. Myenteric denervation reduces the incidence of gastric tumors in rats. Cancer Lett. Muir, T. The effects of electrical stimulation of the autonomic nerves and of drugs on the size of salivary glands and their rate of cell division. Effect of neonatal sympathectomy on the postnatal differentiation of the submandibular gland of the rat. Cell Tissue Res.
Lillberg, K. Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Chida, Y. Do stress-related psychosocial factors contribute to cancer incidence and survival? Antoni, M. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Cancer 6, 240—248 2006.
Thaker, P. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma.
Главные новости
- Биологи выявили белок, скрывающий клетки нейробластомы от внимания иммунитета
- Ключевые слова
- В UC смогли вернуть в норму клетки злокачественной опухоли нервной системы
- Нарушения нервно-психического развития повысили риск рака яичек
- Опухоли центральной нервной системы
- Ученые нашли эффективное лечение рака нервных оболочек
Влияет ли стресс на развитие рака?
Опухоли периферической нервной системы (ПНС) — редкая патология. Международный коллектив молекулярных биологов открыл свидетельства того, что клетки нейробластомы, одной из форм рака нервной системы, используют белок CKLF для того, чтобы подавлять иммунитет и. К наследственным и семейным опухолям нервной системы относятся нейрофиброматоз (болезнь Реклингхаузена), ангиоретикуломатоз головного мозга, диффузный глиобластоматоз и др.
Особенности распространения
- Рак нервной системы. Опухоли ЦНС: причины, симптомы, диагностика и лечение
- О нейробластоме
- Что такое опухоль спинного мозга
- Влияет ли стресс на развитие рака?
Нейробластома и ганглионейробластома центральной нервной системы у взрослых пациентов
развитие нейрофиброматоза 2-го типа (это заболевание, связанное с поломками генов, при котором формируются множественные опухоли – шванномы либо менингеомы в области нервов и нервной системы). Нейропатия на фоне химиотерапии ведет за собой к изменению в организме и проявляющееся рядом специфических симптомов, связанных с повреждением нервной системы. Международный коллектив молекулярных биологов открыл свидетельства того, что клетки нейробластомы, одной из форм рака нервной системы, используют белок CKLF для того, чтобы подавлять иммунитет и.
Злокачественная - не значит приговор. Что мы знаем о раке головного мозга?
Нейропатия на фоне химиотерапии ведет за собой к изменению в организме и проявляющееся рядом специфических симптомов, связанных с повреждением нервной системы. Опухоли центральной нервной системы – взгляд клинического патолога. Непроизвольное подергивание верхнего или нижнего века может указывать на проблемы центральной и периферической нервной системы. Нейропатия на фоне химиотерапии ведет за собой к изменению в организме и проявляющееся рядом специфических симптомов, связанных с повреждением нервной системы.
Рак мозга: симптомы, статистика и шансы на выздоровление
Взаимосвязь между раком и нервами была известна уже более двух веков, но роль нервов в росте опухолей рассматривалась лишь в контексте передачи болевых сигналов. Однако новые эксперименты показали, что нейроны играют активную роль в развитии рака. Нервные волокна проникают в опухоль и способствуют ее росту. Если перерезать эти нервные волокна, рост опухоли останавливается.
Лечение начинают при первых признаках сдавления.
Назначают корти-костероиды, проводят лучевое и хирургическое лечение, химио- и гормонотерапию. Выполняют ламинэктомию или переднюю декомпрессию. Последняя имеет явные преимущества и подразумевает резекцию тела позвонка вместе с опухолью и последующую фиксацию позвоночника. После ламинэктомии, как правило, проводится локальное облучение.
Диагностика карциноматоза оболочек мозга трудна, так как вышеперечисленные симптомы неспецифичны.
Выяснилось, что нейроны "выкидывают" к раковым клеткам нейриты, что становится своеобразным мостиком к здоровым клеткам. В ходе эксперимента в США в 2013 году ученые перерезали нервные волокна в направлении простаты и тем самым остановили распространение рака. Также это действует и при раке желудка, печени и кожи. Утоняется однако, что для ученых это возможность найти слабое место.
Grassme, K.
Mechanism of action of secreted newt anterior gradient protein. PLoS One 11, e0154176 2016. Miller, T. Digit tip injuries: current treatment and future regenerative paradigms. Stem Cell Int. Takeo, M.
Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499, 228—232 2013. Zhang, Y. Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135, 2161—2172 2008. Knosp, W.
Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Cell 32, 667—677 2015. Lucas, D. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Rinkevich, Y. Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration.
USA 111, 9846—9851 2014. Ekstrand, A. USA 100, 6033—6038 2003. Martin, P. Wound healing—aiming for perfect skin regeneration. Science 276, 75—81 1997.
Griffin, N. Targeting neurotrophin signaling in cancer: The renaissance. Stopczynski, R. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Lei, Y. Systemic depletion of nerve growth factor inhibits disease progression in a genetically engineered model of pancreatic ductal adenocarcinoma.
Pancreas 47, 856—863 2018. Miknyoczki, S. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Cancer 81, 417—427 1999. Pundavela, J. ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer.
Weeraratna, A. Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45, 140—148 2000. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Allen, J. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction.
Mu, P. Science 355, 84—88 2017. Francis, F. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247—256 1999. Schaar, B.
Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 41, 203—213 2004. Mauffrey, P. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569, 672—678 2019. Ayanlaja, A.
Distinct features of doublecortin as a marker of neuronal migration and its implications in cancer cell mobility. Sympathetic nervous system regulation of the tumour microenvironment. Cancer 15, 563—572 2015. Fujiwara, T. The cytoarchitecture of the wall and the innervation pattern of the microvessels in the rat mammary gland: a scanning electron microscopic observation. Kepper, M.
Immunohistochemical properties and spinal connections of pelvic autonomic neurons that innervate the rat prostate-gland. Folkman, J. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58—61 1989. Eichmann, A. Arterial innervation in development and disease.
Carmeliet, P. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193—200 2005. De Bock, K. Cell 154, 651—663 2013. Schoors, S.
Cell Metab. Felten, D. Sympathetic noradrenergic innervation of immune organs. McHale, N. Sympathetic stimulation causes increased output of lymphocytes from the popliteal node in anaesthetized sheep. Rosas-Ballina, M.
Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98—101 2011. This study shows that the autonomic nervous system can directly regulate the immune system. Wang, H. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384—388 2003.
Salmon, H. Host tissue determinants of tumour immunity. Cancer 19, 215—227 2019. Maes, M. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 10, 313—318 1998.
Computational identification of gene-social environment interaction at the human IL6 locus. USA 107, 5681—5686 2010. Shahzad, M. Stress effects on FosB- and interleukin-8 IL8 -driven ovarian cancer growth and metastasis. Feig, C. USA 110, 20212—20217 2013.
Miller, A. Bronte, V. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. Nakai, A. Control of lymphocyte egress from lymph nodes through beta2-adrenergic receptors. Qiao, G.
Cancer Immunol. Wong, C. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101—105 2011. Mohammadpour, H. Bucsek, M.
Borovikova, L. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458—462 2000. Cheng, Y. Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells. Joyce, J.
T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74—80 2015. Hisasue, S. Cavernous nerve reconstruction with a biodegradable conduit graft and collagen sponge in the rat. Twardowski, T. Type I.
Collagen and collagen mimetics as angiogenesis promoting superpolymers. Tuxhorn, J. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Burns-Cox, N. Changes in collagen metabolism in prostate cancer: a host response that may alter progression. Egeblad, M.
New functions for the matrix metalloproteinases in cancer progression. Cancer 2, 161—174 2002. Henriksen, J. Noradrenaline and adrenaline concentrations in various vascular beds in patients with cirrhosis relation to haemodynamics. Oben, J. Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells.
Kim-Fuchs, C. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. The antidepressant desipramine and alpha2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev. Chen, D. Innervating prostate cancer.
Lillemoe, K. Chemical splanchnicectomy in patients with unresectable pancreatic cancer. A prospective randomized trial. Al-Wadei, H. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs 20, 477—482 2009.
Powe, D. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1, 628—638 2010. De Giorgi, V. Treatment with beta-blockers and reduced disease progression in patients with thick melanoma. Diaz, E.
Impact of beta blockers on epithelial ovarian cancer survival. Grytli, H. Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 73, 250—260 2013. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Neeman, E.
A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins. Bahnson, R. Catecholamine excess: probable cause of postoperative tachycardia following retroperitoneal lymph node dissection RPLND for testicular carcinoma. Halme, A. On the excretion of noradrenaline, adrenaline, 17-hydroxycorticosteroids and 17-ketosteroids during the postoperative stage. Acta Endocrinol.
Lindenauer, P. Perioperative beta-blocker therapy and mortality after major noncardiac surgery. Blessberger, H. Perioperative beta-blockers for preventing surgery-related mortality and morbidity. Cochrane Database Syst. Al-Niaimi, A.
The impact of perioperative beta blocker use on patient outcomes after primary cytoreductive surgery in high-grade epithelial ovarian carcinoma. Yap, A. Effect of beta-blockers on cancer recurrence and survival: a meta-analysis of epidemiological and perioperative studies. Musselman, R. Association between perioperative beta blocker use and cancer survival following surgical resection. Cata, J.
Perioperative beta-blocker use and survival in lung cancer patients. Horowitz, M. Exploiting the critical perioperative period to improve long-term cancer outcomes. Denk, F.
«Дружба» рака и нервной системы — плохой сценарий для пациента
Новый подход в лечении на людях не тестировался, но это вопрос ближайшего времени, считают учёные. Препараты, о которых шла речь, одобрены для использования. Химиотерапия повреждает вместе с раковыми и здоровые клетки, что ухудшает слух, приводит к бесплодию и даёт другие тяжёлые последствия. Иногда из-за химиотерапии развивается второй рак. Новый подход позволит избежать побочных эффектов, уверены медицинские исследователи. Об этом сегодня написали журналисты информационного агентства «Газета. Информационное агентство «MedNovelty» Не забудьте добавить «MedNovelty» в источники новостей Поделитесь новостью со своими друзьями!
Если вокруг много стресса, это не значит, что именно у вас появятся опухоли. Как наш организм воспринимает стресс — Воспринимаемый нами стресс и его уровень, а значит и влияние стресса на тело, зависит от трех факторов: внешние условия, особенности нашего восприятия и наши физиологические реакции.
Первое — факторы внешней среды, они могут влиять на наши ощущения. Но бывают люди, которые находятся в сложнейших условиях, а при этом с ними ничего не происходит, они достаточно стабильно себя чувствуют. С другой стороны, внешне все хорошо — а человек себя так внутренне накручивает, что происходят сильные реакции со стороны нервной системы и организма. То есть внешние факторы не равно наш внутренний стресс. Второй фактор — как мы воспринимаем уровень стресса. Здесь многое зависит от того, в каком окружении мы жили в детстве, каким механизмам совладания со стрессом мы научились, умеем ли мы проживать эмоции, не подавляя их, обладаем ли мы навыками эмоционального интеллекта. Если это есть, человек более устойчив к стрессу. Если он привык подавлять эмоции, то в этом случае, так как тело все равно реагирует, гормоны стресса выбрасываются… и мы переходим к третьему фактору.
Третий фактор — реакции физиологии, или физиологический стресс. Этому фактору есть медицинское название: аллостатическая нагрузка. Это то, какие усилия прикладывает наш организм, чтобы сохраняться в стабильном состоянии. Вот здесь, когда мы говорим о том, как реагирует наше тело, мы и можем говорить о некой связи с функциями нашей иммунной, нервной системы, с метаболизмом, геномом и так далее. И тут, в этом третьем факторе, в том, как реагирует наше тело на стресс, есть определенная послойность: наши гены, эпигенетика как ваши гены могут модифицироваться , возможный сбой иммунной системы при стрессе, а также имеющиеся у вас хронические воспаления. Какие гены могут привести к раку? На данный момент известно, что онкологические заболевания не являются наследственными в обязательном порядке, но они являются генетическими. Мы можем наследовать мутации гена, которые при неблагоприятном воздействии факторов внешней среды могут провоцировать появление опухоли.
Есть несколько моментов, на которые надо обратить внимание и пройти скрининг: Если у нескольких кровных родственников с одной стороны по маме или по папе есть один вид онкологии, например рак кишечника у прабабушки, у бабушки, у тети… Тогда мы можем говорить, что есть предрасположенность и высокий риск, и тогда надо обследоваться, чтобы вовремя обнаружить начало и провести лечение. Когда есть сразу несколько видов опухолей у родственников первой линии мама, папа, сестра, брат, сын, дочь. Если онкология появлялась у кровных родственников в молодом возрасте, то есть до 50 лет. Также если у родственников первой линии есть онкологическое заболевание без факторов риска: например, если человек не курит, а у него рак легкого. Наша генетика имеет значение. Сейчас есть возможность проводить генетические тестирования и определять свои риски. И в Беларуси это можно делать тоже. В проекте «Пора к психологу» мы помогаем беларусам справиться с высоким уровнем стресса.
Подпишитесь на «Пора к психологу» в Instagram или Telegram — там много полезного. Почему гены модифицируются, а клетки «перестают слушаться»? Эпигенетика — то, как гены модифицируются под влиянием факторов внешней среды. Это то, что происходит во внутриутробном периоде, в раннем детском возрасте до 3—5 лет и в периоды сильных эмоциональных потрясений в течение жизни. Это работает как включатель-выключатель: может включать и выключать определенные гены. Молекулярная генетика доказала, что наши гены зависят от той среды, в которой мы живем. Когда мы говорим про уровень стресса, важно отметить, что, как правило, негативное влияние на организм оказывает именно хронический. На острый стресс наш организм умеет реагировать, наша стрессорная система для этого и работает, чтобы реализовать механизм «бей или беги».
Включается выброс гормонов стресса, активируется симпатическая нервная система. Мы убегаем или вступаем в бой, а потом все успокаивается, включается парасимпатическая нервная система, и организм возвращается к нормальному функционированию. Так это должно работать. Но сейчас этот стресс переходит в длительный, психоэмоциональный, психосоциальный стресс. И такой стресс длится не часы и даже не дни — он может длиться месяцами. Организму приходится функционировать в условиях измененного количества гормонов стресса в крови, активации симпатической нервной системы, что приводит к изменениям в работе всего тела. Иммунные клетки постоянно сканируют клетки нашего организма на атипичность: все ли клетки ведут себя как нужно, не вышла ли какая-то из-под контроля. И если они это находят, тут же убивают такую клетку.
У нас в организме с этим не церемонятся: если что-то не так с клеткой, лучше от нее избавиться, что происходит постоянно. Например, у нас есть клетки, которые называются «натуральные киллеры». Это цитотоксический, противоопухолевый иммунитет. Когда мы находимся в хроническом стрессе под влиянием кортизола, происходит сдвиг иммунитета, уменьшается активность и количество «киллеров», они хуже сканируют наши клетки на чужеродность.
Поэтому очень важно начать лечение правильно и своевременно. Оно проводится в нейрохирургической клинике.
Что может сделать врач? Основной метод лечения опухолей центральной нервной системы — хирургический. Но новообразования ЦНС имеют особенности, которые затрудняют проведение операции. Если опухоль доброкачественная, то в большинстве случаев она удаляется легко. Другого лечения кроме операции не требуется. При злокачественных опухолях общим принципом является удаление самой опухоли и находящихся вокруг тканей.
В случае с головным мозгом это невозможно — нельзя удалять окружающую новообразование нервную ткань, потому что практически каждая нервная клетка выполняет важные функции. Нейрохирург вынужден действовать очень осторожно, аккуратно. Если опухоль имеет неровные края или неудобное расположение, то в некоторых случаях ее вообще не удается удалить. При этом проводят хирургические вмешательства, которые помогают нормализовать состояние больного.
Неврологические осложнения рака. Ведение больных с метастазами в паренхиму мозга.
Неврологические осложнения при раке делятся на метастатические опухоли нервной системы, осложнения, связанные с лечением, и сопутствующие осложнения — паранеопластические синдромы. В некоторых случаях огромное влияние на качество и продолжительность жизни больного оказывают ранняя диагностика и интенсивное лечение. Однако чаще всего терапия неврологических осложнений онкологического заболевания — это только паллиативная мера, особенно в тех ситуациях, когда качество жизни больного важнее, чем ее продолжительность.