Новости коэффициент джини показывает

Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%.

РБК: Росстат зафиксировал рост концентрации доходов в 2023 году

А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках.

Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения

К 1912 году итальянский статистик Коррадо Джини разработал алгебраическую интерпретацию кривой Лоренца: коэффициент, призванный указывать, насколько неравным является экономическое распределение. Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). На примере коэффициента Джини показано, насколько сильно различается оценка неравенства в зависимости от используемых данных и способов расчета.

Индекс Джини: расчет и формула

  • Силуанов допустил рост экономики по итогам 2023 года выше 2,5%
  • Что бы сделал Робин Гуд?
  • Неравенство и бедность
  • Какие страны и почему отличаются высоким показателем джини география реферат
  • Неравенство и бедность

Коэффициент Джини (индекс концентрации доходов, индекс неравенства)

  • предоставляет экономические и финансовые данные
  • Ответственный за раздел
  • Gini Coefficient
  • Измерение неравенства: что такое коэффициент Джини?

Как рассчитать коэффициент Джини в Excel (с примером)

Но оборотной стороной становится экстремальное неравенство, когда доход руководителя компании в сотни раз отличается от зарплаты его самого низкооплачиваемого подчиненного. Экстремальное неравенство наносит серьезный урон экономике, констатирует Аникин. Экстремальное неравенство искажает мотивы трудовой деятельности. Люди склонны к поиску быстрых социальных лифтов, а не к долгосрочным инвестициям в образование и навыки. В то же время статистика Росстата свидетельствует, что в России разрыв заработных плат неуклонно снижается. Средняя зарплата по 10-процентным группам работников показывает, что в 2021 году зарплаты наиболее низкооплачиваемых сотрудников были в 13,5 раз ниже зарплаты наиболее высокооплачиваемых сотрудников. В 2000 году разрыв между теми же группами составлял 34 раза. Разрыв между зарплатами руководителей и рабочих составлял 2,5 раза в октябре 2021 года по всем формам собственности.

При этом в сфере информации и связи он доходил до 4,9 раз. А в сфере добычи полезных ископаемых до 3,8 раза.

Индекс Джини: расчет и формула Коэффициент Джини рассчитывается по следующей формуле: В графическом отображении коэффициент Джини представляет собой соотношение площади фигуры, образованной линией абсолютно равномерного распределения доходов под 45 градусов и кривой Лоренца, отображающей неравномерность распределения, к общей площади треугольника, образованной линиями абсолютно равномерного и абсолютно неравномерного распределения доходов: В десятичном значении показатель выступает коэффициентом, также его могут отображать в процентах, тогда он становится индексом. Расчетом данного показателя занимаются статистические ведомства и международные аналитические организации.

Значения и трактование коэффициента Джини Коэффициент Джини может иметь значение от 0 абсолютно равномерное распределение доходов до 1 абсолютно неравномерное распределение доходов. Чем выше значение индекса Джини — тем выше уровень социального неравенства в государстве.

Максимальное значение коэффициента Джини в России зафиксировано было в 2007 году и составило 0,422. Если в 2022 году этот коэффициент составлял 13,8 раза, то в 2023 году он возрос до 14,6 раза. Эти данные свидетельствуют о сохранении высокого уровня неравенства в стране. Росстат отметил, что неравенство доходов в России остается высоким, но наблюдается некоторое снижение этого показателя.

В идеальной ситуации, то есть ситуации, когда нет неравенства в распределении доходов, эта линия будет биссектрисой, то есть пройдет под углом 45 градусов от начала координат. Индекс Джини представляет собой отношение площади фигуры между упомянутой биссектрисой и кривой Лоренца к площади треугольника, образованного биссектрисой и одной из осей. Достоинства и недостатки индекса Индекс Джини позволяет обобщенно оценить, насколько доходы распределены неравномерно. Из обобщенности метода вытекают как его достоинства, так и недостатки. Так, например, индекс: легко рассчитывается при наличии небольшого количества статистической информации; предоставляет обобщенную, не персонифицированную информацию; позволяет сравнивать страны независимо от масштаба; универсален. Индекс Джини получил широкое признание как универсальный метод оценки неравенства распределения доходов в экономике, индекс рассчитывают многие страны и международные организации для оценки неравенства. Ниже приведена карта мира с распределением стран по индексу неравенства. Источник: Всемирный Банк, 2018 год Как можно увидеть, в развитых странах индекс неравенства находится на уровне от низкого до среднего. Это обусловлено как социальной ролью государства в таких странах, осуществляющего прямую поддержку слоев населения с низкими доходами, так и часто применяемой в развитых странах прогрессивной ставкой налогообложения, являющейся универсальным выравнивающим механизмом.

Что бы сделал Робин Гуд?

Третий блок — вероятность того, что один случайно выбранный аномальный класс будет оценен выше, чем два случайно выбранных нормальных класса. Для наглядности визуализирую блоки на графике. Функция возвращает величину доверительного интервала. Соотношение нулей и единиц подбиралось так, чтобы коэффициент Джини имел определенное значение. Как известно, ширина «классического» доверительного интервала уменьшается при увеличении объёма выборки.

Новости Что бы сделал Робин Гуд? По информации изданий, этот индекс показывает количество денег, которые могли бы получить жители страны, находящиеся за чертой бедности, если между ними разделить состояние самого богатого их соотечественника. Оказалось, что самый высокий индекс Робин Гуда у жителей Кипра, каждому бедному киприоту досталось бы по 46 тысяч долларов. В Швеции показатель составил 33 тысячи долларов, в Таиланде — 27 тысяч. Меньше всего получили бы бедняки Китая 234 доллара , Нигерии 182 доллара и Индии 59 долларов. Россия заняла 32-е место из 42: если состояние бизнесмена Алишера Усманова в 16 миллиардов долларов разделить между российскими бедняками, то каждому достанется по 1029 долларов. Это не собственно индекс Робин Гуда или индекс Гувера, метод расчёта несколько искажён. Вопрос, с какой целью агентство провело такие расчёты? Может быть, интересно поделить чужие доходы или чужое имущество? Если нас интересуют самые богатые жители России, мы можем посмотреть список Forbes. И, наверное, полезнее узнать, за счёт чего они стали богатыми.

Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными. Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов.

Нулевое значение будет в стране или в регионе, в которой абсолютно у всех одинаковый доход. На практике же значения чаще всего укладываются в диапазон от 0,2 до 0,6. Низкий показатель коэффициента Джини не означает богатства или бедности выборки в целом, а лишь низкую разницу между самыми богатыми и самыми бедными. То же самое, но с противоположной стороны, относится и к высокому показателю.

Наши проекты

  • Машинное обучение
  • Коэффициент Джини, значение по странам мира и в России
  • Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини
  • Некоторые равнее: что такое коэффициент Джини и зачем он нужен
  • Все новости

В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи

Различают прожиточный и минимум физического выживания. Прожиточный минимум — минимальный уровень стандарта жизни, принятый в стране или регионе. Раньше в России прожиточный минимум привязывался к продуктовой потребительской корзине. Теперь в него закладывают ещё товары длительного пользования и услуги. На начало 2019 года прожиточный минимум в России — 10 тысяч рублей. Вот как он изменялся с 2013 года: 32 На душу населения в тыс. И это явственно ощущается многими. Россияне в целом не согласны с расчётами Росстата — люди относят к бедным тех, чей месячный доход на человека меньше 15 500 рублей. Минимальный доход, по их мнению, зависит от размера населенного пункта: 32 На душу населения в тыс. Это 43 млн человек. В России количество бедных различается по регионам.

Оценить уровень жизни человека можно и по расходам на питание. Чем они меньше, тем больше остаётся свободных средств на образование, инвестиции или организацию бизнеса. Исследователи Государственного университета Вашингтона посчитали, какой процент дохода люди расходуют на еду в мире: Рис. Доля трат на продукты по странам мира. Деньги притягивают деньги, поэтому, как ни грустно это звучит, то, где мы окажемся в будущем, зависит от стартовых условий, которые были у нас в прошлом. За 2018 год самые крупные состояния увеличились на 900 млрд долларов, то есть богатейшие люди планеты ежедневно зарабатывали 2,5 млрд долларов. Количество миллиардеров тоже выросло, и сегодня их больше двух тысяч человек. Количество миллиардеров по странам мира. Сегодня в мире 3,8 млрд бедных людей. Их общее состояние равно богатству 26 миллиардеров.

Богатые увеличивают состояние намного быстрее, потому что его рост зависит от размера капитала.

Различия в методах сбора статистических данных для вычисления коэффициента Джини приводят к затруднениям или даже невозможности в сопоставлении полученных коэффициентов. Коэффициент Джини отчасти неадекватен для плановых экономик, где распределение ресурсов зависит не только от доходов, но и от лояльности к государству партии. Кроме того, так как частное предпринимательство запрещено в плановой экономике , выходит ситуация когда получаемые доходы фиксируются не у предпринимателей, а у государства. Из-за этого, формально выходит что доходы концентрируют предприниматели, в отличие от плановой экономики, где доходы принадлежат государству. Коэффициент Джини учитывает разницу доходов граждан, а не государства. Это приводит к значительно более положительным показателям коэффициента Джини в плановых экономиках.

Индекс Джини это процентный аналог коэффициента Джини. Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство».

Джини — это мера статистической дисперсии, и как таковая она может измерять любой ряд числовых данных, а не только доход, богатство или политический риск.

Это индекс, который на самом деле пытается объяснить распространение неопределенности, а оценка риска — это на самом деле неопределенность, которую мы пытаемся уменьшить. Когда мы проверяем результаты моделей оценки риска, мы стремимся к как можно более высокому индексу Джини, то есть неравенству, которое будет максимально отражать предсказание только политики высокого риска. В примере мы построили две модели оценки риска страховых полисов в данном случае транспортных средств и оценили риск группы полисов. Прогноз каждой модели — это значение утверждения каждой политики. После выполнения прогноза мы классифицировали уровень риска каждой политики. Каждая точка на оси X символизирует уровень риска полиса, а каждая точка на оси Y — сумму денег, заявленную группой в реальных деньгах.

Социальная поддержка сократила уровень неравенства в России

Как указывает автор, коэффициент Джини лишь один из многих измерителей неравенства, и сказанное относительно коэффициента Джини в равной мере относится и к остальным, близким по содержанию показателям (например, к индексам Тейла, Аткинсона, Херфиналя-Хиршмана. По итогам 2023 года коэффициент Джини в России вырос до 0,403, что говорит об увеличении концентрации доходов в стране по сравнению с предыдущим годом. Коэффициент Джини определяется как отношение площади фигуры, расположенной под кривой Лоренца, к площади треугольника ODC. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. 10%, 30% населения, коэффициент Джини для распределения богатства) Россия опережает любую другую крупную страну. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход.

Коэффициент Джини: все ли равны?

Кривая Лоренца представляет собой график распределения доходов в обществе. Строится она следующим образом: 1. Берём ось координат, по оси X будем отмерять процент населения обычно принято делить на 5 частей, называемых квинтилями , а по оси Y будем отмерять процент дохода также принято делить на 5 частей. Отмечаем точками, процент от общего дохода, который получает каждый квинтиль. Соединяем линии — Кривая Лоренца готова.

Но для определения Коэффициента Джини нужно построить ещё и линию «абсолютного равенства». Линия будет являться биссектрисой между координатными осями. График готов. Чем больше площадь фигуры, образованной Кривой Лоренца и линией «абсолютного равенства», тем сильнее проявляется в данном обществе неравенство.

Коэффициент Джини — это отношение площади этой фигуры к площади треугольника, образованного осью X, линией «абсолютного равенства» и вертикальной линией на отметке 100 по оси X. В результате мы получим значение от 0 до 1. Где 0 — абсолютное равенство, а 1 — абсолютное неравенство когда все доходы принадлежат одному человеку. Если считать по квинтилям, то единицу мы не получим даже в теории, но при разбиении оси X на количество граждан такая ситуация возможна теоретически, если всё принадлежит кому-то одному из представителей данного общества и то, коэффициент всё равно на какие-то миллионные доли будет меньше 1.

То есть, чем меньше значение этого коэффициента, тем меньше будет неравенство. Индекс Джини — это тот же Коэффициент Джини, но выраженный в процентах. Значение индекса находится в пределах от 0 до 100. Децильный коэффициент Помимо Коэффициента Джини есть и другие коэффициенты, отражающие неравенство в обществе.

Так, популярностью пользуется также Децильный коэффициент. Дециль — это десятая часть.

В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини. В какой стране самый высокий индекс Джини? Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов. World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные.

Что означает индекс Джини, равный 50? Джини в 50 — это половина пути, и в целом его можно воспринимать как место, где доходы распределяются несправедливо: только в 15 странах мира индекс Джини составляет 50 и более. Коэффициент Джини в США высокий или низкий? В США коэффициент Джини равен 41,1, что является высоким показателем для такой развитой экономики. Экономисты возлагают вину за растущее неравенство доходов в США на такие факторы, как технологические изменения, глобализация, упадок профсоюзов и снижение минимальной заработной платы. Особенности Индекс Джини — это показатель распределения доходов среди населения. Из-за данных и других ограничений индекс Джини может завышать неравенство доходов и скрывать важную информацию о распределении доходов.

Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению.

Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям.

Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy.

В разных странах в разные времена действовали различные системы распределения доходов. Однако, обобщив все их сходства и различия, можно выделить 4 основных принципа распределения доходов в обществе: 1 уравнительное распределение; 2 рыночное распределение; 3 распределение по накопленному имуществу; 4 привилегированное распределение. Теперь давай более подробно остановимся на каждом из них. Первый принцип подразумевает, что все члены общества или его определённая часть получают равные доходы или блага.

Распределение по данному принципу теперь уже встречается редко, так как он характерен для первобытных социумов или стран с режимом, который К. Маркс и Ф. Энгельс назвали «казарменный коммунизм». Второй принцип предполагает, что каждый из владельцев какого-либо фактора производства получает разный по сумме денег доход — в соответствии с его продуктивностью и востребованностью в данный момент времени на рынке. Третий принцип проявляется в получении дополнительных доходов теми, кто накапливает и передает по наследству какую-либо собственность. Четвёртый характерен для стран с неразвитой демократией и пассивным гражданским обществом.

В таких странах правящая элита перераспределяет общественные блага в свою пользу. В реальной жизни трудно назвать страну, в которой мы смогли бы четко отследить действие какого-либо одного из вышеназванных принципов. Обычно они по-разному сочетаются в том или ином виде. Однако, какой бы система распределения ни была, в любом обществе неизбежно неравенство доходов.

Индекс Джини

Шаг 2: Рассчитайте площади под кривой Лоренца Затем нам нужно рассчитать отдельные площади под кривой Лоренца , которую мы используем для визуализации распределения доходов в стране. Это чрезвычайно простой пример того, как рассчитать коэффициент Джини, но вы можете использовать те же самые формулы для расчета коэффициента Джини для гораздо большего набора данных.

Если один человек получает все доходы, а остальные не имеют никакого, «кривая Лоренца» совпадает с осью X — общие доходы будут сконцентрированы в конце графика. Площадь B будет равна нулю, а коэффициент Джини — 1 Сравнение показателей: Рассказывает ли показатель Джини ту же историю, что и другие показатели неравенства? Показатели неравенства пытаются обобщить информацию о том, насколько распределение неравномерно — точно так же, как стандартное отклонение.

В таких суммарных показателях заложены суждения о том, что именно должно иметь наибольшее значение при измерении неравенства Для примера сравним два выдуманных общества. В первом богатые люди намного богаче тех, кто находится в середине распределения, но доходы более бедных лишь немного ниже тех, что получают в середине. Во втором — обратная ситуация: доходы богатых лишь немного выше доходов средних, но бедные намного беднее В каком обществе выше неравенство? Ответ будет зависеть от того, какие разрывы в разных частях распределения считать вносящими наибольший вклад в уровень неравенства. Такие оценочные суждения неявно заложены в математические определения показателя неравенства Это относится ко всем показателям неравенства, и коэффициент Джини не является исключением.

Но его отличает более высокая чувствительность к изменениям в середине распределения, чем в самом верху и внизу Особенности коэффициента Джини можно рассмотреть на примере четырёх стран.

Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере.

Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy.

Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period. Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if missing data account for more than one third of the observations in the series. Weighted Mean 66POP: Aggregates are calculated as weighted averages of available data for each time period.

No aggregate is shown if countries with missing data represent more than one third of the total population of your custom group. Note 1: In none of the above methodologies are missing values imputed. Therefore, aggregates for groups of economies should be treated as approximations of unknown totals or average values. Note 2: Aggregation results apply only to your custom-defined groups and do not reflect official World Bank aggregates based on regional and income classification of economies. Results may be inappropriate e.

Коэффициент Джини. Формула. Что показывает

Самым распространенным показателем измерения уровня экономического неравенства коэффициент является коэффициент Джини. Самым распространенным показателем измерения уровня экономического неравенства коэффициент является коэффициент Джини. Коэффициент итальянского экономиста, статиста и демографа Коррадо Джини (более известный как индекс Джини) позволяет более точно, количественно измерить степень неравномерности распределения доходов населения. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход. Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25.

Индекс Джини и неравенство доходов

В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395. Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе.

Похожие новости:

Оцените статью
Добавить комментарий