Авария на АЭС Три Майл Айленд к несчастью подтвердила правильность технических решений в области безопасности. Авария на американской АЭС «Три-Майл-Айленд» произошла 28 марта 1979 года в 4 часа утра из-за утечки теплоносителя. Авария на атомной электростанции Три-Майл-Айленд, находящейся в Пенсильвании, стала крупнейшей в истории США.
Ядерная авария на АЭС «Три-Майл-Айленд», 1979
После аварии на Три-Майл-Айленд в США не было построенони одной новой АЭС. 28 марта 1979 года в США на АЭС «Три-Майл-Айленд» в штате Пенсильвания произошло повреждение активной зоны реактора. В рамках цикла передач "Аварии на АЭС" речь пойдет конечно же об атомной энергетике. В 1979-ом название «Три-Майл-Айленд» не сходило с заголовков газет – знаменитая авария на одноименной АЭС привела к тяжелейшим последствиям.
28 марта 1979 года авария на АЭС Три-Майл-Айленд в США. Хронология событий
Блок No 2 на АЭС "Тримайл-Айленд", как оказалось, не был оснащен дополнительной системой обеспечения безопасности, хотя подобные системы на некоторых блоках этой АЭС имеются. Но авария на Три-Майл-Айленд фактически остановила расширение отрасли, что заставило американцев обратить внимание на развитие альтернативных источников и изменить свою международную энергетическую политику. Коренной перелом в развитии американской ядерной энергетики произошёл после аварии на АЭС Три-Майл-Айленд в 1979 году. Три-Майл-Айленд. Так называемый «американский Чернобыль» произошел за восемь лет до самой крупной катастрофы в истории мирного атома 28 марта 1979 года.
Ядерная авария на Три-Майл-Айленде
Крупнейшая в мире авария на атомной станции Три-Майл-Айленд, США, 28 марта 1979 года | Авария на Три-Майл вызвала широкий резонанс в американском обществе, где и так нарастал скепсис по отношению к отрасли. |
Ядерная авария на Три-Майл-Айленде | Авария на Три-Майл-Айленде обрушилась на атомную электростанцию в Мидлтауне, штат Пенсильвания. |
Авария на Три-Майл-Айленде | В ходе аварии произошло расплавление около 50 % активной зоны реактора, после чего энергоблок так и не был восстановлен. |
Насколько авария в Чернобыле была страшнее других аварий на АЭС?
Ядерные катастрофы мира. № 8 Авария на АЭС Три-Майл-Айленд | Сейчас АЭС «Три-МАйл-Айленд» продолжает вырабатывать электроэнергию из первого блока и обеспечивает 800000 жителей дешёвой электроэнергией. |
Американская ядерная катастрофа 1979 года | «Авария на АЭС «Три-Майл-Айленд» 28 марта 1979 года стала крупнейшей в истории атомной энергетики США. |
Авария на атомной станции. США 1979 год
С 26 октября первый энергоблок находился на профилактике. Он был остановлен, на нем шли ремонтно-восстановительные работы, и система радиологической тревоги сработала во время замены паровых генераторов. По данным проведенных исследований, максимальная доза облучения у одного из сотрудников составила всего 16 миллирентген в час. Это лишь в два раза больше количества, которое человек получает при однократном облучении рентгеновскими лучами. Но тем не менее власти всерьез отнеслись к произошедшему. Именно на этой атомной электростанции в марте 1979 года 30 лет назад произошла крупнейшая в истории США авария — взрыв второго энергоблока.
Реклама Тем не менее, АЭС удалось справиться с аварией. Несмотря на значительное загрязнение внутри станции, радиационные последствия почти не повлияли на население и окружающую среду. Специалисты, которые занимались расследованием инцидента, выяснили, что в нем виноват не только отказ оборудования, но и неподготовленность работников к нештатной ситуации. На ликвидацию последствий аварии в США потратили примерно миллиард долларов.
В этот день мы призываем не только помнить о тех, кто столкнулся с невидимой угрозой, но и подумать о том, что решением риска новых радиационных аварий является постепенный переход на безъядерные технологии. Для такого перехода уже есть и сами технологии, и экономические условия, о чём говорит мировая статистика. В соответствии с ней, последние 20 лет АЭС вышли на плато по выработке электроэнергии, а ВИЭ, опередив атомные станции, продолжают свой экспоненциальный рост. Эти технологии — ключ к устойчивости возобновляемой энергетики, который делает её самодостаточной и предсказуемой.
Разрушение активной зоны[ править править код ] Конечное состояние активной зоны реактора: 1 — вход 2-й петли B; 2 — вход 1-й петли А; 3 — каверна; 4 — верхний слой обломков топливных сборок; 5 — корка вокруг центра активной зоны; 6 — затвердевший расплав; 7 — нижний слой обломков топливных сборок; 8 — вероятный объём расплава, который стёк вниз; 9 — разрушенные гильзы внутриреакторного контроля; 10 — отверстие в выгородке активной зоны; 11 — слой затвердевшего расплава в полостях выгородки; 12 — повреждения плиты блока защитных труб Прибывший в 6 часов утра персонал следующей смены, благодаря свежему взгляду, смог наконец определить состояние электромагнитного клапана компенсатора давления [38] [25]. Установив тем самым факт продолжительной потери теплоносителя, операторы должны были приступить к ликвидации аварии, запустив систему аварийного охлаждения, однако по неустановленным причинам это действие не было незамедлительно выполнено [22] [40] [41]. Около 06:30 началось быстрое окисление оболочек твэлов в верхней части активной зоны за счёт пароциркониевой реакции с образованием водорода. Образовавшаяся расплавленная смесь из топлива, стали и циркония стекала вниз и затвердевала на границе кипения теплоносителя [43]. Ближе к 7 часам утра кипящий теплоноситель покрывал уже менее четверти высоты активной зоны [44]. Не имея в своём распоряжении приборов, позволявших определить уровень жидкости непосредственно в корпусе реактора [45] , и не осознавая нехватку теплоносителя, операторы попытались возобновить принудительное охлаждение активной зоны. Были предприняты попытки запуска каждого из четырёх главных циркуляционных насосов. В результате верхняя часть активной зоны, состоящая из серьёзно повреждённых твэлов, потеряла устойчивость и просела вниз, сформировав каверну пустое пространство под блоком защитных труб БЗТ [43]. На этот раз было принято принципиальное решение: не мешать автоматической работе систем безопасности, пока не будет полного понимания состояния реакторной установки [55]. С этого момента процесс разрушения активной зоны был остановлен [48]. Возобновление охлаждения реактора[ править править код ] Реакторная установка находилась в состоянии, которое не было учтено при её создании. В распоряжении персонала не было инструментов, позволявших контролировать и ликвидировать подобные аварии. Все последующие действия эксплуатирующей организации носили импровизационный характер и не были основаны на заранее просчитанных сценариях. Безуспешность попыток запуска главных циркуляционных насосов привела к пониманию того, что в первом контуре имелись области, занятые паром [56] , однако в конструкции реакторной установки не существовало устройств для дистанционного выпуска этих парогазовых пробок. Исходя из этого, было принято решение поднять давление в первом контуре до 14,5 МПа для того чтобы сконденсировать имеющийся пар. Если бы эта стратегия принесла успех, то, по мнению эксплуатирующего персонала, контур оказался бы заполнен водой и в нём бы установилась естественная циркуляция теплоносителя [57]. Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии. С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62]. Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе.
Произошла крупнейшая в США авария на атомной электростанции
Они говорят, что существует «отдаленная» возможность того, что пузырь может выдавить жизненно важную охлаждающую воду, обнажив активную зону реактора и вызвать расплавление топлива. Хендри, тогдашний председатель Комиссии по ядерному регулированию, заявил на брифинге, что может потребоваться предупредительная эвакуация жителей в радиусе 20 миль, если инженеры попытаются вытолкнуть пузырь из реактора. Люди покидают районы, близлежащие к атомной станции. Дентон, специалист по поиску и устранению неисправностей, заверяет журналистов на пресс-конференции поздним вечером, что «неизбежного катастрофического события не предвидится».
Почти 250 000 жителей покинули близлежащие к станции районы. Одних приютили родственники и друзья, другие отправилась в специальные эвакуационные центры. В тот же день священники приходского округа совершают полное отпущение грехов во время воскресной мессы.
Такого рода отпущение грехов практикуется обычно во время войны или при других обстоятельствах, когда люди не имеют возможности покаяться в своих грехах священнику. Районные больницы принимают только больных по скорой помощи, больничные койки освобождены на случай эвакуации. Гарольд Дентон, специалист по поиску и устранению неисправностей, сообщает, что водородный пузырь резко сократился.
Гарольд Дентон объявляет, что водородный пузырь устранен. Более поздние исследования показали, что пузырь, вероятно, был устранен двумя днями ранее. Федеральная Резервная Система объявляет, что направлены крупные суммы наличными в местные банки.
Подкомитет Сената США начинает расследование происшествия. Эвакуация беременным женщин и детей дошкольного возраста отменена. Паникеры раздували самые дикие теории, в том числе, что наступает «конец света».
Оба очень эффективно использовали фразу «Мы прерываем эту программу... Радиопостановка 1939 года была научной фантастикой, но половина населения США полагала, что это реальность, а 40 лет спустя авария на TMI была реальной, а людей не оставляло чувство, что это научная-фантастика. Рекомендации в первые дни аварии варьировались от: «если вы живете в определенном радиусе 10 миль было наиболее распространенным , убирайтесь к черту из города и быстро» до: «оставайтесь внутри, не выходите ни по какой причине.
Царили беспокойство, смятение и хаос, подпитывавшиеся слухами и ошибочными сообщениями. Казалось, не было никого во главе и различные представители не обладали достоверной информацией. Репортеры местных средств массовой информации, национальной прессы и организаций по всему миру были разочарованы противоречивыми сообщениями официальных лиц.
И вот прошло еще 40 лет, а атомная станция должна быть закрыта этой осенью. Билл Бландо, работал редактором местной газеты в 1979 году «Я был капитаном пожарной станции Highspire 55, когда поступил вызов через монитор. Когда я прибыл на станцию, диспетчер округа попросил первого доступного ответственного линейного сотрудника позвонить в центр связи округа.
Поскольку я был единственным офицером, я позвонил в округ, и мне просто сказали следующее: «Приготовьтесь к эвакуации вашего поселка, ждите дальнейших указаний. После чего последовали 3 дня напряженного ожидания. Мне пришлось эвакуировать мою жену и моих братьев, мать моих родственников.
Мы с женой жили в пределах 5-мильной зоны, которая была на Ламбер-стрит. Границы зоны совершенно не имели смысла, потому что другая сторона улицы была не безопаснее, чем та сторона, где мы жили. Наш дом и сейчас находится через дорогу от моста на Три-Майл-Айленд.
Это был полный хаос. Мой отец сидел в офисе на связи с государственной службой, как я полагаю, но никакой иной информации, кроме как ждать дополнительных указаний, не получал после того, как первоначально было сказано, что беременным женщинам и маленьким детям следует эвакуироваться.
Более 23 тыс. На этой территории находилось 217 населенных пунктов с более 280 тысячами жителей, ближе всех к эпицентру катастрофы было несколько заводов комбината «Маяк», военный городок и колония заключенных.
Для ликвидации последствий аварии привлекались сотни тысяч военнослужащих и гражданского населения, получивших значительные дозы облучения. Общая длина составляла примерно 300 км, при ширине 5-10 км.
Было решено, что в эвакуации населения, проживавшего рядом со станцией, нет необходимости, однако губернатор Пенсильвании посоветовал покинуть пятимильную 8 км зону беременным женщинам и детям дошкольного возраста. Работы по устранению последствий аварии были начаты в августе 1979 года и официально завершены в декабре 1993 г. Они обошлись в 975 миллионов долларов США.
Это автоматически привело к выключению турбогенератора и включению аварийной системы подачи воды тремя аварийными насосами. Однако вода так и не поступила в генератор. Из-за человеческой ошибки во время планового ремонта, произошедшего за несколько дней до аварии, были закрыты задвижки подачи воды с аварийных насосов. Первые 12 секунд после аварии В результате прекратился отвод тепла с первого контура реактора. Растущее давление уже через несколько секунд превысило допустимый предел. Как правило, это приводит к открытию дополнительного клапана системы компенсации давления, которая позволяет сбросить пар в барботёр — специальную ёмкость. Так случилось и на этот раз, поэтому рост давления на реакторе замедлился. Тем не менее, спустя 9 секунд включилась аварийная защита реактора, так как давление достигло 17 МПа. Температура упала, а объем воды стал уменьшаться. Давление наоборот, стало резко падать. Падение давления до 12 МПа должно было привести к закрытию клапана барботёра, но этого не случилось. При этом пульт оператора показывал, что клапан закрыт. На деле оказалось, что сигнал на пульте управления означает не закрытие клапана барботёра, а отключение его от электричества. Так что, теплоотвод уже спустя минуту полностью прекратился. Но уровнемер давал некорректные показания и падение давления в реакторе продолжалось из-за некомпенсированной течи.
СМИ вспомнили аварию на американской АЭС
Насколько авария в Чернобыле была страшнее других аварий на АЭС? | Авария на АЭС Три-Майл-Айленд — Президент Джимми Картер покидает АЭС Три-Майл-Айленд после личного визита 1 апреля 1979 года. Авария на АЭС Три-Майл-Айленд (англ. Three Mile Island accident) — одна из крупнейших аварий в истории ядерной энергетики. |
Videos АВАРИЯ НА АЭС ТРИ-МАЙЛ-АЙЛЕНД | | После аварии на АЭС Три-Майл-Айленд в США было принято решение больше не строить атомных электростанций, что привело к застою в американской атомной энергетике. |
Ядреный атом. Мир пугали Чернобылем, замалчивая масштабную аварию в США - Экспресс газета | Авария на АЭС Три Майл Айленд к несчастью подтвердила правильность технических решений в области безопасности. |
Пять самых опасных аварий на ядерных объектах в мире | Но авария на Три-Майл-Айленд фактически остановила расширение отрасли, что заставило американцев обратить внимание на развитие альтернативных источников и изменить свою международную энергетическую политику. |
28 марта 1979 года. Произошла авария на АЭС Три-Майл-Айленд в Пеннсильвании | Авария на АЭС Три-Майл-Айленд — крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции по. |
Авария на атомной станции. США 1979 год
После более чем часа медленного повышения температуры и осушения первичного контура насосы первого контура начали вибрировать, потому что они перекачивали больше пара, чем воды. Однако естественная конвекция блокировалась водородом, уже захваченным в парогенераторах, поэтому тепло не отводилось парогенераторами, и испарение воды из первого контура еще больше ускорялось. В этот момент начала открываться верхняя часть сердца. Первичный контур снова начал опорожняться в кожухе, но на этот раз из-за очень сильно загрязненной воды в результате разрушения топливных элементов, что вызвало срабатывание аварийной сигнализации. Изоляция для поддержания приемлемое давление которое обычно являлось ролью неисправного клапана. Это снова привело к выбросу сотен кубометров загрязненной воды в защитную оболочку. В течение следующих часов операторы пытались заполнить первый контур водой, что было затруднительно, поскольку большие количества водорода были захвачены в верхних точках парогенераторов. Состояние реактора было очень ухудшенным, но, тем не менее, топливо можно было охладить.
Власти решили, что масштабная эвакуация населения не нужна, но губернатор Пенсильвании все же рекомендовал беременным женщинам и детям дошкольного возраста покинуть 8-километровую зону вокруг аварийного реактора. Снимок 30 марта 1979 года. Миссис Дэвид Нил вместе со своей дочкой Даниэль и домашним питомцем собираются покинуть опасную зону вокруг аварийного реактора. Их сосед, Джон Суайтзер, помогает им загрузить вещи в автомобиль. В непосредственной близости от градирни находится детская игровая площадка. Снимок сделан 30 марта 1979 года. Безлюдная улица города Голдсборо, Пенсильвания 31 марта 1979 года.
Часть населения этого города уехала подальше от аварийной АЭС, те же, кто не смог или не захотел уехать, старались не выходить на улицу без особой необходимости. Власти утверждали, что в результате этой аварии жители 16-километровой зоны вокруг АЭС получили эквивалентную дозу облучения не более 100 миллибэр, что составляет примерно одну треть от годовой дозы облучения, получаемой американцами за счет естественного фонового излучения.
Но это не погубило саму станцию, она была остановлена всего на несколько лет, после чего вновь вернулась в строй, пусть и с одним энергоблоком ТМА-1. ТМА-2 пережил частичное расплавление и к работе уже так никогда и не вернулся, поскольку ремонт при таких повреждениях смысла не имел. Причина закрытия станции не техническая, а экономическая. Наблюдая за тем, как оператор АЭС, компания Exelon, не справляется с устранением последствий старой аварии, власти штата Пенсильвания закономерно отказывались сотрудничать с ней. Из-за этого АЭС не смогла поставлять выработанную энергию в общую энергосеть и зарабатывать на этом.
Особенно ясно я это понял после общения с Андреем Сахаровым. Это было в один из моих первых приездов в СССР. Его только-только выпустил из ссылки Горбачев. На приеме в посольстве я подошел к нему и представился. Завязался разговор. Он очень четко обозначил проблему безопасности атомной энергетики и выдвинул несколько тезисов. По одному из них мы стали спорить. Он был уверен, что безопасность станции возрастет на порядок, если ее «прятать» под землей, как это делают японцы. Я доказывал, что сейсмическая активность, движение земной коры делают эту идею рискованной. Проспорили весь вечер, забыв обо всем. Потрясающего ума был человек! А вообще Чернобыль во мне что-то надломил. При президенте Буше-старшем я сам попросился в отставку, ушел в экспертный Совет по международным связям. Был примерно в 50 странах — везде, где есть АЭС и где их хотели бы иметь. Последним моим делом было инспектирование безопасности чешской АЭС, причем по заказу обеспокоенных австрийцев. Смысл моего заключения был таким: спите, австрийцы, спокойно». Прожив всю жизнь в Вашингтоне, вместе с супругой Люсиндой вырастив троих детей и выйдя на пенсию, Гарольд Дантон переехал в глубинку — тихий город Ноксвилл на реке Теннесси. И, выйдя в отставку, я продолжаю иногда давать консультации». Поставив точку в этом материале для газеты «Страна Росатом», я решил напоследок уточнить возраст моего знакомца с фантастической биографией. Набрал в интернете его имя и вдруг увидел, что ровно год назад в 80-летнем возрасте Гарольд Дантон ушел из жизни.
СМИ вспомнили аварию на американской АЭС
28 марта 1979 года -в Пенсильвании на АЭС Три-Майл-Айленд произошла утечка теплоносителя и и в силу потери охлаждения выгорело более половины активной зоны реактора, это стало крупнейшей аварией в историиг атомной энергетики США. крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции по причине своевременно не обнаруженной утечки теплоносителя первого. Однако, авария на Три-Майл-Айленд вызвала, в первую очередь, широкий информационный резонанс и, получив пятый уровень опасности по шкале ИНЕС, ускорила развитие антиядерной кампании в США, которая привела к застою в атомной энергетике страны на десятилетия.
Ядерная авария на АЭС «Три-Майл-Айленд», 1979
Остановка питательного насоса второго контура, в результате чего циркуляция воды прекратилась, а реактор начал перегреваться. Именно здесь случилось главное событие, послужившее началом аварии: из-за грубой ошибки, допущенной во время ремонта, не запустились аварийные насосы второго контура. Как выяснилось позже, проводившие ремонт техники не открыли задвижки на напоре, но операторы не могли видеть этого, так как индикаторы состояния насосов на пульте управления были просто-напросто закрыты ремонтными табличками! Первые 12 секунд после аварии. Повышение температуры и давления в реакторе запустило систему аварийной защиты, которая заглушила атомный котел. Чуть ранее сработал предохранительный клапан, который начал выпускать из реактора пар и воду она скапливалась в специальной емкости — барботере. Однако при достижении нормального давления клапан по какой-то причине не закрылся, что заметили только через 2,5 часа — за это время барботер переполнился, из-за критического уровня давления лопнули расположенные на нем предохранительные мембраны, и помещения гермооболочки начали заполняться перегретым паром и горячей радиоактивной водой. Сработала система аварийного охлаждения реактора — в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку. Первая грубая ошибка операторов.
Несмотря на то, что реактор был практически пуст, приборы показывали, что в нем слишком много воды, а поэтому операторы постепенно отключили все аварийные насосы, закачивающие воду в первый контур. Операторы, наконец, обнаружили, что аварийные насосы второго контура не работают, но их запуск не особо исправил ситуацию. Вплоть до 6. В результате активная зона реактора, лишенная охлаждения, начала в прямом смысле слова плавиться, хотя цепная ядерные реакции уже были остановлены. Перегрев был обусловлен распадом высокоактивных продуктов деления урана именно из-за этого ядерный реактор не может быть остановлен сразу, в одно мгновение. Лишь в 6. Однако насосы аварийного охлаждения, остановленные двумя часами ранее, по разным причинам удалось запустить лишь в 7. Казалось бы, авария предотвращена, и теперь можно спокойно заниматься полной остановкой реактора.
В результате верхняя часть активной зоны, состоящая из серьёзно повреждённых твэлов, потеряла устойчивость и просела вниз, сформировав каверну пустое пространство под блоком защитных труб БЗТ [43]. На этот раз было принято принципиальное решение: не мешать автоматической работе систем безопасности, пока не будет полного понимания состояния реакторной установки [55]. С этого момента процесс разрушения активной зоны был остановлен [48]. Возобновление охлаждения реактора[ править править код ] Реакторная установка находилась в состоянии, которое не было учтено при её создании. В распоряжении персонала не было инструментов, позволявших контролировать и ликвидировать подобные аварии. Все последующие действия эксплуатирующей организации носили импровизационный характер и не были основаны на заранее просчитанных сценариях. Безуспешность попыток запуска главных циркуляционных насосов привела к пониманию того, что в первом контуре имелись области, занятые паром [56] , однако в конструкции реакторной установки не существовало устройств для дистанционного выпуска этих парогазовых пробок. Исходя из этого, было принято решение поднять давление в первом контуре до 14,5 МПа для того чтобы сконденсировать имеющийся пар.
Если бы эта стратегия принесла успех, то, по мнению эксплуатирующего персонала, контур оказался бы заполнен водой и в нём бы установилась естественная циркуляция теплоносителя [57]. Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии. С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой.
Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62]. Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе. Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65]. Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось.
По видимому, это было вызвано тем, что в это время в активной зоне шло кипение теплоносителя, образование пара и, возможно, водорода [67]. За счёт этих процессов давление в первом контуре держалось около 3 МПа даже при непрерывном сбросе среды. В любом случае поставленная цель была принципиально ошибочной, так как система планового расхолаживания не предназначена для работы с первым контуром, лишь частично заполненным жидкостью [62]. Положительным следствием принятой стратегии явилось то, что большой объём неконденсирующихся газов, прежде всего водорода, был удалён из первого контура в атмосферу защитной оболочки [68]. Таким образом содержание газов в пределах реакторной установки было существенно уменьшено, хотя для этого и не требовалось поддерживать низкое давление так долго [62].
Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой.
Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62]. Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе. Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65]. Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось.
По видимому, это было вызвано тем, что в это время в активной зоне шло кипение теплоносителя, образование пара и, возможно, водорода [67]. За счёт этих процессов давление в первом контуре держалось около 3 МПа даже при непрерывном сбросе среды. В любом случае поставленная цель была принципиально ошибочной, так как система планового расхолаживания не предназначена для работы с первым контуром, лишь частично заполненным жидкостью [62]. Положительным следствием принятой стратегии явилось то, что большой объём неконденсирующихся газов, прежде всего водорода, был удалён из первого контура в атмосферу защитной оболочки [68]. Таким образом содержание газов в пределах реакторной установки было существенно уменьшено, хотя для этого и не требовалось поддерживать низкое давление так долго [62]. С другой стороны, возможно, в это время имело место повторное осушение части активной зоны [69] , подача охлаждающей воды в реактор была снижена [70] и в целом реакторная установка была близка к состоянию, которое существовало перед закрытием отсечного клапана в 06:22 [71]. Учитывая безуспешность попыток снизить давление в первом контуре до 2 МПа и риск осушения активной зоны, было принято решение вернуться к стратегии восстановления принудительной циркуляции в первом контуре, как к хорошо известному для персонала способу охлаждения реактора [72].
Успех в возобновлении принудительной циркуляции теплоносителя был обусловлен тем, что контур уже был достаточно заполнен водой, а газовые пробки были существенно уменьшены при предыдущей попытке снизить давление. Стабильное охлаждение активной зоны было наконец-то восстановлено [75]. Остаточное энерговыделение в топливе постепенно снижалось, и 27 апреля единственный работающий главный циркуляционный насос был остановлен, после чего в первом контуре установилась естественная циркуляция. К этому времени тепло, производимое работой насоса, в два раза превышало энерговыделение в активной зоне [76]. Уже к вечеру 27 апреля теплоноситель остыл настолько, что было достигнуто состояние «холодного останова» [примечание 5] реактора. Только к ноябрю 1980 года тепловыделение в активной зоне упало до столь незначительных величин порядка 95 кВт , что позволило отказаться от использования парогенераторов. В январе 1981 года реакторная установка была изолирована от второго контура и охлаждалась исключительно за счёт передачи тепла от поверхности оборудования к атмосфере герметичной оболочки [77].
Удаление водорода из первого контура[ править править код ] К концу 29 марта стало очевидным, что в теплоносителе первого контура всё ещё имеется большое содержание газов, в первую очередь водорода, образовавшегося ранее при пароциркониевой реакции [78] [79]. Эта информация вызвала в СМИ совершенно беспочвенную панику о возможности взрыва внутри корпуса реактора, тогда как фактически в объёме первого контура отсутствовал кислород, что делало такой взрыв невозможным [81]. Тем не менее из-за риска нарушить циркуляцию в первом контуре от водорода решено было избавиться [76]. Растворимость водорода в воде падает при снижении давления. Теплоноситель из первого контура отводился через линию продувки в бак подпитки, давление в котором значительно ниже, чем в реакторе, в баке происходила дегазация теплоносителя: газ удалялся в систему газоочистки и по временным трубопроводам под гермооболочку [82] [83]. Использовался также и другой способ: теплоноситель распылялся в компенсаторе объёма в котором электронагревателями поддерживалась высокая температура при открытом отсечном клапане, при этом газы удалялись в объём герметичной оболочки.
Тогда в атмосферу выбросило облако радиоактивных продуктов. Но, по официальной информации, заражения местности и людей зафиксировано не было. После того случая в США усилили контроль за всеми атомными станциями, а второй энергоблок законсервировали. Сейчас на АЭС работает целая бригада специалистов, выясняющих причины новой аварии. Картина дня.
Произошла крупнейшая в США авария на атомной электростанции
Они отключили один, а затем и второй аварийный насос из трёх работающих, а на оставшемся вручную уменьшили расход более чем в 2 раза, такого количества воды было недостаточно для компенсации течи. Причиной такого решения послужили показания уровнемера компенсатора объёма, из которых следовало, что вода подаётся в первый контур быстрее, чем выходит через неисправное предохранительное устройство. Управляющий реактором персонал был обучен предотвращать заполнение водой компенсатора давления не «вставать на жёсткий контур» , так как при этом затрудняется регулирование давления в контуре, что опасно с точки зрения его целостности, поэтому они отключили «лишние» по их мнению насосы высокого давления. Как оказалось впоследствии, уровнемер давал неправильные показания.
На самом деле в это время происходило дальнейшее падение давления в первом контуре из-за некомпенсированной течи. Когда давление упало до точки насыщения, в активной зоне начали образовываться пузырьки пара, которые начали вытеснять из неё воду в компенсатор давления, тем самым ещё больше увеличивая ложные показания уровнемера. Всё ещё обеспокоенные необходимостью не допустить переполнения компенсатора, операторы начали сливать воду из него ещё и через дренажную линию первого контура.
Персонал понял, что аварийная питательная вода не поступает в парогенераторы, задвижки открыли и началось её поступление. То обстоятельство, что подача питательной воды в парогенераторы была прервана на 8 минут, само по себе не могло привести к серьёзным последствиям, но прибавило замешательства в действия персонала и отвлекло их внимание от опасных последствий заедания в открытом положении импульсного клапана в системе компенсации давления. Также в это время было замечено срабатывание предохранительных мембран на барботёре из-за превышения в нём давления, в результате чего пар с высокими параметрами стал поступать в помещения гермооболочки.
Операторы на щите управления выключили их, всё ещё не понимая, что в помещениях гермообъёма большое количество воды. Также в это время было замечена ещё одна странность — концентрация жидкого поглотителя, борной кислоты, в контуре сильно снизилась и, несмотря на полностью погружённые регулирующие стержни, начали расти показания приборов контроля нейтронного потока. Снижение концентрации борной кислоты также было последствием сильной течи.
Операторы приступили к экстренному вводу бора, чтобы не допустить повторной критичности реактора, что было частично правильным решением, но не решающим главную проблему, которая до сих пор не была определена. Операторы выключили насосы, чтобы предотвратить их разрушение или повреждение трубопроводов первого контура. Принудительная циркуляция теплоносителя прекратилась.
Можно отметить, что отключение циркуляционных насосов в первом контуре реакторов с водой под давлением не должно приводить к прекращению циркуляции теплоносителя, должна продолжаться естественная циркуляция. Однако под крышкой реактора на этот момент накопился парогазовый пузырь, наличие которого вкупе с геометрическим расположением активной зоны и парогенераторов в конструкции данной ядерной установки воспрепятствовало возникновению естественной циркуляции в первом контуре.
Для сравнения, недавно были обнародованы экономические показатели для запланированных на Кольском полуострове ветропарков. Ранее в этом году группа "Экозащита!
Авария на АЭС Три Майл Айленд оказала беспрецедентное влияние на развитие атомной энергетики, от которого Запад до сих пор не оправился. С тех пор на визитной карточке атомной энергетики написано: риск аварий, противодействие общественности и дороговизна. Современные реакторы стоят дороже ветровых станций, не говоря уже о традиционных источниках энергии.
Срабатывание предохранительных устройств бака-барботера также не осталось незамеченным, но персонал никак не связал это событие с продолжительной утечкой из первого контура [33] , приписав его скачку давления при кратковременном срабатывании электромагнитного клапана в самом начале аварии [34]. В эксплуатационной документации был определён перечень признаков течи из первого контура [35] , одни из них действительно имели место, например падение давления в реакторной установке, повышение температуры под гермооболочкой и наличие воды на её нижнем уровне.
Однако операторов привело в замешательство отсутствие симптомов, которые они считали ключевыми: не было снижения уровня в компенсаторе давления он, наоборот, возрастал , также не было сигнализации о повышенном уровне радиации в атмосфере гермооболочки возможно, порог срабатывания датчика был некорректно установлен. Таким образом, даже зная о наличии воды в помещениях гермооболочки, персонал не смог адекватно определить источник её происхождения [36] [37]. Разрушение активной зоны[ править править код ] Конечное состояние активной зоны реактора: 1 — вход 2-й петли B; 2 — вход 1-й петли А; 3 — каверна; 4 — верхний слой обломков топливных сборок; 5 — корка вокруг центра активной зоны; 6 — затвердевший расплав; 7 — нижний слой обломков топливных сборок; 8 — вероятный объём расплава, который стёк вниз; 9 — разрушенные гильзы внутриреакторного контроля; 10 — отверстие в выгородке активной зоны; 11 — слой затвердевшего расплава в полостях выгородки; 12 — повреждения плиты блока защитных труб Прибывший в 6 часов утра персонал следующей смены, благодаря свежему взгляду, смог наконец определить состояние электромагнитного клапана компенсатора давления [38] [25]. Установив тем самым факт продолжительной потери теплоносителя, операторы должны были приступить к ликвидации аварии, запустив систему аварийного охлаждения, однако по неустановленным причинам это действие не было незамедлительно выполнено [22] [40] [41]. Около 06:30 началось быстрое окисление оболочек твэлов в верхней части активной зоны за счёт пароциркониевой реакции с образованием водорода.
Образовавшаяся расплавленная смесь из топлива, стали и циркония стекала вниз и затвердевала на границе кипения теплоносителя [43]. Ближе к 7 часам утра кипящий теплоноситель покрывал уже менее четверти высоты активной зоны [44]. Не имея в своём распоряжении приборов, позволявших определить уровень жидкости непосредственно в корпусе реактора [45] , и не осознавая нехватку теплоносителя, операторы попытались возобновить принудительное охлаждение активной зоны. Были предприняты попытки запуска каждого из четырёх главных циркуляционных насосов. В результате верхняя часть активной зоны, состоящая из серьёзно повреждённых твэлов, потеряла устойчивость и просела вниз, сформировав каверну пустое пространство под блоком защитных труб БЗТ [43].
На этот раз было принято принципиальное решение: не мешать автоматической работе систем безопасности, пока не будет полного понимания состояния реакторной установки [55]. С этого момента процесс разрушения активной зоны был остановлен [48]. Возобновление охлаждения реактора[ править править код ] Реакторная установка находилась в состоянии, которое не было учтено при её создании. В распоряжении персонала не было инструментов, позволявших контролировать и ликвидировать подобные аварии. Все последующие действия эксплуатирующей организации носили импровизационный характер и не были основаны на заранее просчитанных сценариях.
Безуспешность попыток запуска главных циркуляционных насосов привела к пониманию того, что в первом контуре имелись области, занятые паром [56] , однако в конструкции реакторной установки не существовало устройств для дистанционного выпуска этих парогазовых пробок. Исходя из этого, было принято решение поднять давление в первом контуре до 14,5 МПа для того чтобы сконденсировать имеющийся пар. Если бы эта стратегия принесла успех, то, по мнению эксплуатирующего персонала, контур оказался бы заполнен водой и в нём бы установилась естественная циркуляция теплоносителя [57]. Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии.
С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой.
Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60].
Более десятка крупных независимых исследований подтвердили отсутствие последствий для здоровья человека и окружающей среды в результате аварии на ТМА. Самое значительное исследование было проведено в 2002 году Школой общественного здравоохранения Университета Питтсбурга. Были обследованы более 32 тыс. Исследователи пришли к выводу: радиоактивность, образовавшаяся в результате аварии, не вызвала увеличения смертности от рака среди жителей этого района. Даже если забыть о внедрении новых технологических решений, авария стала поворотным моментом в истории отрасли.
После аварии был создан Институт эксплуатации ядерной энергии, задачей которого стало обучение персонала управлению атомными станциями. Укреплена комиссия по ядерному регулированию США — теперь специальные инспекторы Комиссии присутствуют на каждом объекте ядерной энергии. Помимо этого, был установлен постоянный контроль всех систем безопасности, налажены взаимодействие и обмен опытом между станциями, осуществлены многие другие нововведения. Все это потребовало значительных затрат, но безопасность того стоила. Для подтверждения своих слов Д. Ядерная энергия, оказывается, самая безопасная. Несчастные случаи на ветряных и солнечных станциях такие как падение с лестницы, крыши или турбины унесли больше жизней в расчете на мегаватт-час произведенной электроэнергии, чем все аварии на атомных станциях, включая самые крупные.
Вследствие инцидентов на гидростанциях погибло больше людей, чем на всех остальных энергостанциях с неископаемым топливом. Аварии и несчастные случаи на станциях с ископаемым топливом становятся причинами большего количества смертей, чем инциденты на всех остальных станциях, вместе взятых. По данным Всемирной организации здравоохранения, центров по борьбе с болезнями, Национальной академии наук, только источники энергии на перерабатываемом топливе и биотопливе негативно влияют на здоровье человека. Это подтверждают и многочисленные исследования в области здравоохранения, проведенные в последнее десятилетие. Всемирная организация здравоохранения назвала сжигание биомассы одной из основных проблем здравоохранения во всем мире. Смертность работников угольной, атомной и гидроэнергетики в США гораздо ниже, чем в среднем по миру. Это обусловлено высокой культурой безопасности на рабочих местах.
Деятельность Федеральной комиссии по регулированию энергетики FERC обеспечила высокий уровень безопасности при эксплуатации американских гидроэлектростанций. Контроль за атомными станциями со стороны Комиссии по ядерному регулированию NRC позволил добиться наименьших показателей смертности на ядерных объектах Соединенных Штатов Америки. Некоторые считают, что главной причиной глобальных перемен стала именно авария на ТМА. Безопасность и четкое соблюдение правил имеют наивысший приоритет, и это делает NRC самым сильным регулирующим органом в мире. Первый энергоблок ТМА до сих пор нормально работает. С тех пор АЭС произвела энергию, которая компенсировала сжигание более 95 млн метрических тонн углерода, что эквивалентно изъятию из эксплуатации 20 млн автомобилей. Материал подготовил Антон СМИРНОВ Андрей Гагаринский доктор физико-математических наук, советник директора НИЦ «Курчатовский институт» — В нашей стране, если не считать очень незначительного числа статей в научной периодике, чернобыльская тема в средствах массовой информации практически сошла на нет.
Вялый интерес к теме поддерживается, по существу, лишь периодическими попытками правительства ускорить естественный процесс сокращения затрат на «чернобыльские льготы». Исключения можно пересчитать по пальцам. Несколько по-другому обстоят дела в мире.
Авария на атомной станции. США 1979 год
Авария на АЭС — в широком смысле любая неполадка в работе атомной электростанции, связанная с внезапным выходом из строя какой-то техники. На ликвидацию последствий ЧП на АЭС «Три-Майл-Айленд» было потрачено около миллиарда долларов. Авария на станции Три-Майл-Айленд началась с рядового технического сбоя, который никак не угрожал реактору.
Ядерная авария на Три-Майл-Айленде
А ведь были ещё аварии на Три-Майл-Айленд, Фукусиме и множестве других, не столь известных объектов, но при этом также разрушительные и смертоносные. А три реактора, оставшиеся на Чернобыльской АЭС, были постепенно выведены из эксплуатации. Авария на Три-Майл-Айленде вдохновила Чарльза Перроу Обычная теория аварии, в которой авария происходит в результате непредвиденного взаимодействия нескольких отказов в сложной системе.