Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. Начинаем погружаться в основу основ квантовой связи и квантовой информатики, так что сегодня узнаем, что такое кубит, для чего он нужен и в каких направления.
Вступай в наши группы и добавляй нас в друзья :)
- Квантовый компьютер как способ движения в завтра
- Квантовый компьютер как способ движения в завтра
- Как работают квантовые процессоры. Объяснили простыми словами
- Российские разработки отстают на 5 лет
- В погоне за миллионом кубитов
Сердце квантовых компьютеров - как создаются кубиты?
Что такое кубит, для чего он нужен и как физически может быть реализован? Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. Последние новости о разработке собраны в этой статье.
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы
Так, один куквинт кудит в пяти состояниях заменяет два классических двухкубитовых вентиля и один вспомогательный уровень, что было показано в работе на примере запуска квантового алгоритма Гровера для поиска по неупорядоченной базе данных. По словам заведующего лабораторией квантовых информационных технологий НИТУ МИСИС Алексея Фёдорова, куквинт хорош тем, что его состояние позволяет уменьшить количество физических носителей в виде кубитов и упростить декомпозицию многокубитных вентилей гейтов — сложных операций с кубитами. В итоге в квантовой системе можно сократить число двухчастичных гейтов, которые в работе используют две физические системы. В представленном на страницах Entropy примере специалисты показали, как можно реализовать модель декомпозиции обобщенного вентиля Тоффоли обобщенную на n-кубитов версию вентиля контролируемое НЕ.
С помощью этого алгоритма можно построить любую обратимую классическую логическую схему, например, классический процессор.
Если же таких атомов много, то с ними можно за раз произвести столько однотипных вычислений, сколько требуется. За счёт этой особенности квантовые компьютеры должны намного эффективнее обычных справляться с задачами, в которых требуется перебор большого количества значений. Примером такой задачи является, например, взлом неизвестного кода. Это сделало бы крайне уязвимыми все существующие защиты от несанкционированного доступа. Например, злоумышленник, обладающий квантовым компьютером, с лёгкостью смог бы получить доступ к любой банковской карте или счёту. Именно поэтому многие банки сейчас активно исследуют возможности квантовой криптографии, которая должна прийти на смену обычной криптографии и за счёт законов квантовой физики гарантирует, что в случае попытки взлома вы как минимум тут же о ней узнаете и сможете оперативно предотвратить возможный ущерб. Но, к сожалению, на данный момент существует не так много задач, для решения которых квантовые компьютеры могли бы действительно быть более эффективными, чем компьютеры обычные. Чтобы задействовать квантовые эффекты в полной мере, нужны специальные алгоритмы, а в подавляющем большинстве случаев такие алгоритмы или невозможны в принципе, или настолько сложны, что пока не разработаны. Поэтому, даже если квантовый компьютер удастся создать в ближайшем будущем, он будет или узконаправленным, как знаменитый D-Wave, или будет работать ненамного быстрее обычного компьютера.
Существует, однако, одна область, в которой приход квантовых вычислений может совершить мини-революцию. Эта область — химия. До этого химия была по большей части эмпирической наукой, которая основывалась не на строгих теоретических моделях, а на многочисленных опытных данных. Существовали определённые правила, по которым можно было пытаться предсказывать исход новых химических реакций, но эти правила были далеки от совершенства и в лучшем случае давали только грубое приближение, а зачастую предсказывали совершенно неверный результат. Единственным способом проверить, будет ли та или иная потенциально полезная реакция работать, было непосредственное проведение эксперимента. И если в неорганической химии в силу её большей простоты это ещё как-то работало, то в химии органических веществ большинство открытий совершалось или случайно, или в результате долгой кропотливой работы по перебору большого количества реагентов. В 1920-е годы учёные создали квантовую физику — инструмент, который в принципе позволяет рассчитывать результаты химических реакций на бумаге. Проблема, однако, заключается в том, что точный расчёт даже в простейших случаях требует совершенно немыслимых временных затрат. И даже развитие компьютерных технологий не позволило в полной мере решить эту проблему. Задачу квантового расчёта того, как двигаются молекулы, — а именно это требуется для химических реакций — относят к классу экспоненциально сложных.
Кроме того, кубиты могут быть квантово запутаны друг с другом, что позволяет проводить параллельные вычисления и работать с большими объёмами информации. Однако, чтобы достичь квантового превосходства и превзойти классические компьютеры, требуется устройство с достаточным количеством стабильных кубитов и минимальным воздействием шумов и возмущений из окружающей среды. Главная сложность в разработке квантовых компьютеров заключается в сохранении квантовых состояний кубитов, так как чрезвычайно чувствительны к внешним воздействиям и шумам. Чем больше кубитов, тем сложнее поддерживать их запутанное состояние без искажений данных.
Ожидается, что эти квантовые компьютеры превзойдут существующие технологии в таких областях, как моделирование, логистика, анализ тенденций, криптография и искусственный интеллект. Квантовые вычисления — что это такое Идея квантовых вычислений была впервые предложена в начале 1980-х годов Ричардом Фейнманом и Юрием Маниным. Фейнман и Манин считали, что квантовый компьютер может моделировать данные способами, которые недоступны ламповым и транзисторным компьютерам. Лишь в конце 1990-х годов исследователи создали первые подобия квантовых компьютеров. Квантовые вычисления используют принципы квантовой механики, такие как суперпозиция и запутывание, для выполнения вычислений. Квантовая механика — это раздел физики, который изучает законы взаимодействия на уровень мельчайших частиц энергии.
Основной блок обработки квантовых вычислений — это квантовые биты или кубиты. Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей. Кубиты похожи на биты, используемые в стандартном компьютере, тем, что кубиты могут находиться в квантовом состоянии 1 или 0. Но, кубиты отличаются тем, что они также могут находиться в суперпозиции состояния 1 и 0, то есть кубиты могут представлять как 1, так и 0 одновременно. Когда кубиты находятся в суперпозиции, два квантовых состояния складываются вместе и приводят к другому квантовому состоянию. Суперпозиция означает, что несколько вычислений обрабатывается одновременно. Таким образом, два кубита могут представлять четыре числа одновременно. Обычные компьютеры обрабатывают биты только в одном из двух возможных состояний — 1 или 0, а вычисления обрабатываются по очереди. Квантовые компьютеры также используют эффект запутывания для обработки кубитов. Когда кубит запутан, это означает, что состояние одного кубита влияет на состояние другого кубита, независимо от расстояния.
Квантовый процессор — это ядро компьютера Создание кубитов — сложная задача.
Квантовые компьютеры. Почему их еще нет, хотя они уже есть?
Новый квантовый компьютер достигает когерентности кубита на заряде электрона в 0,1 миллисекунды. Поэтому для квантовых компьютеров придумали единицу информации кубит (от английского quantum bit). Квантовый бит (кубит) может находиться в любом из бесконечного множества промежуточных состояний и плавно переключаться между ними. С точки зрения физики кубит — это элементарная частица, например электрон, а значение кубита — это значение одного из физических свойств этой частицы. это элементарная единица информации в квантовых вычислениях.
Будущее квантовых компьютеров: перспективы и риски
Новый прорыв в области кубитов может изменить квантовые вычисления | Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы. |
Что такое квантовый компьютер и как он работает | Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. |
Квантовые компьютеры. Почему их еще нет, хотя они уже есть?
Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир | Аргументы и Факты | Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов. |
Квантовые вычисления – следующий большой скачок для компьютеров | С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами. |
Как устроен и зачем нужен квантовый компьютер | Новый квантовый компьютер достигает когерентности кубита на заряде электрона в 0,1 миллисекунды. |
ЧТО ТАКОЕ КУБИТ | С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами. |
Что такое кубиты и как они помогают обойти санкции?
Это может привести к открытию лекарств от ныне неизлечимых болезней. И сделать более эффективным лечение любых заболеваний. Используя КК будет сокращено время разработки лекарственных средств, многие лекарства разрабатывают в течении 5-10 лет. Использование технологий КК можно сократить время до 1-2 лет. Применение КК в фармакологии выведет нас на новый уровень в борьбе с заболеваниями. Б «Суперкомпьютеры в медицине» 28. Анализ рынка. Лидеры в области квантовых компьютеров Согласно последнему анализу индустрии квантовых вычислений, проведенному Persistence Market Research, выручка рынка составит 6,9 млрд долларов США в 2021 году. Persistence Market Research сообщает, что решения для квантовых вычислений принесли выручку в размере 5,6 млрд долларов в 2020 году.
Мы стремимся решать сложные проблемы, которые самые мощные суперкомпьютеры в мире не могут решить и никогда не смогут». D-Wave Systems Inc — создают и поставляем системы, облачные сервисы, инструменты разработки приложений и профессиональные услуги для поддержки непрерывного процесса квантовых вычислений для предприятий и разработчиков Microsoft позволяет получить доступ к разнообразному квантовому программному обеспечению, оборудованию и решениям от Microsoft и партнеров. Google продвигает современные технологии квантовых вычислений и разрабатывает инструменты, позволяющие исследователям работать за пределами классических возможностей. Intel — разработка КК. Atom Computing, Inc создает масштабируемые квантовые компьютеры из отдельных атомов. Xanadu Quantum Technologies Inc производство масштабируемых КК, Полностью управляемый квантовый облачный сервис, предлагающий прямой доступ. Strangeworks,Inc Все квантовые инструменты, которые когда-либо понадобятся, представлены в едином пользовательском интерфейсе. IonQ производитель компактных КК широкого использования.
Quantum Circuits, Inc. Создание квантовых компьютеров, рассчитанных на масштабирование. Huawei Высокопроизводительная облачная платформа для крупномасштабного моделирования квантовых схем на основе мощной вычислительной инфраструктуры и инфраструктуры хранения HUAWEI CLOUD Rigetti — компания, занимающаяся интегрированными системами. Создает квантовые компьютеры и сверхпроводящие квантовые процессоры, на которых они работают. Благодаря платформе Quantum Cloud Services QCS машины могут быть интегрированы в любое публичное, частное или гибридное облако. Honeywell — разработка компьютера с высококачественными кубитами. Квантовые компьютеры и фондовый рынок Компании, связанные с КК можно разделить на 2 группы. Каждая имеет свои особенности и инвестиционный подход.
Дефекты в системе кубитов могут значительно сократить время когерентности. По этой причине команда исследователей решила поймать электрон на сверхчистой твердой поверхности неона в вакууме. Неон является одним из шести инертных элементов, то есть он не вступает в реакцию с другими элементами.
Используя сверхпроводящий резонатор размером с микросхему — как миниатюрную микроволновую печь — команда смогла манипулировать захваченными электронами, позволяя им считывать и сохранять информацию с кубита, что делает его полезным для использования в будущих квантовых компьютерах. В предыдущих исследованиях в качестве среды для удержания электронов использовался жидкий гелий. Этот материал было легко очистить от дефектов, но колебания свободной жидкости могли легко нарушить состояние электрона и, следовательно, поставить под угрозу работу кубита.
Твердый неон предлагает материал с небольшим количеством дефектов, который не вибрирует, как жидкий гелий. После создания своей платформы команда выполняла операции с кубитами в реальном времени, используя микроволновые фотоны на захваченном электроне, и охарактеризовала его квантовые свойства.
Теоретически квантовые вычисления могут решить эти проблемы быстрее и эффективнее. Квантовые вычисления также могут открыть возможности, о которых мы даже не задумывались. Это как микроволновая печь против обычной духовки — разные технологии с разными целями. Но мы еще не достигли цели. На данный момент одна компания заявила, что ее квантовый компьютер может выполнять определенные вычисления быстрее, чем самые быстрые классические суперкомпьютеры. До ученых, регулярно использующих квантовые компьютеры для ответа на научные вопросы, еще далеко. Чтобы использовать квантовые компьютеры в больших масштабах, нам необходимо улучшить технологию, лежащую в их основе — кубиты.
Кубиты — это квантовая версия самой основной формы информации обычных компьютеров, битов. Что особенного в кубитах? В атомном масштабе физика становится очень странной. Электроны, атомы и другие квантовые частицы взаимодействуют друг с другом иначе, чем обычные объекты. В определенных материалах мы можем использовать это странное поведение. Некоторые из этих свойств — особенно суперпозиция и запутанность — могут быть чрезвычайно полезны в вычислительной технике. Принцип суперпозиции заключается в том, что кубит может находиться в нескольких состояниях одновременно. С традиционными битами у вас есть только два варианта: 1 или 0. Эти двоичные числа описывают всю информацию на любом компьютере.
Кубиты сложнее. Представьте себе кастрюлю с водой. Когда у вас есть вода в кастрюле с крышкой, вы не знаете, кипит она или нет. Обычно вода либо кипит, либо нет — точка зрения не меняет ее состояния. Но если бы горшок находился в квантовой сфере, вода представляющая квантовую частицу могла одновременно кипеть и не кипеть, или любая линейная суперпозиция этих двух состояний могла бы быть справедливой. Если бы вы сняли крышку с этой квантовой кастрюли, вода сразу же перешла бы в то или иное состояние. Измерение переводит квантовую частицу или воду в определенное наблюдаемое состояние. Запутанность — это когда кубиты связаны друг с другом, не позволяя им действовать независимо. Это происходит, когда квантовая частица имеет состояние например, спин или электрический заряд , которое связано с состоянием другой квантовой частицы.
Эта взаимосвязь сохраняется даже тогда, когда частицы физически находятся далеко друг от друга, даже далеко за пределами атомных расстояний. Эти свойства позволяют квантовым компьютерам обрабатывать больше информации, чем обычные биты, которые могут находиться только в одном состоянии и действуют независимо друг от друга.
Духова , Института физики металлов им. Михеева Екатеринбург , Института физики ионных пучков и исследования материалов Германия и Университета Аалто Финляндия. Российские ученые повысили производительность квантовых процессоров с помощью кудитов Ученые НИТУ МИСиС и Российского квантового центра предложили подход к реализации квантовых алгоритмов с использованием дополнительных уровней квантовой системы, который позволил на порядок повысить итоговое качество выполнения квантовых алгоритмов. Российские ученые знают, как сделать квантовый процессор мощнее По словам ученых, основной способ повышения производительности квантовых процессоров — увеличение числа их кубитов — наименьшей единицы информации в квантовом компьютере. Однако ионы или атомы, которые часто выступают в роли кубитов, имеют больше двух уровней и могут работать не только как кубиты, но и как кудиты, которые являются расширенной версией кубита и могут находиться в трех кутриты , четырех кукварты , пяти куквинты и более состояниях. Дополнительные состояния позволяют плотнее кодировать данные в физических носителях, что, в свою очередь, дает возможность реализовывать все более сложные и комплексные квантовые алгоритмы. Таким образом возрастает мощность квантового процессора , и операции могут производиться значительно быстрее, пояснили исследователи. По состоянию на апрель 2023 года, большая часть исследований, посвященных квантовым операциям, сосредоточена на кубитах — все операции, которые применяются к квантовой системе, представляются в виде одно- и двухкубитных квантовых вентилей, преобразующих входные состояния кубитов в выходные по определенному закону.
Для работы с кудитами важно найти новые подходы с математической точки зрения. Ученые Университета МИСиС и Российского квантового центра рассмотрели один из способов использования куквинтов — 5-уровневых кудитов — и представили модель декомпозиции обобщенного вентиля Тоффоли. В качестве примера рассмотрен квантовый алгоритм Гровера для поиска по неупорядоченной базе данных. Известно, что, используя только этот вентиль, можно построить любую обратимую классическую логическую схему, например, арифметическое устройство или классический процессор. Такое рассмотрение помогает одновременно и сократить число физических носителей информации, и использовать дополнительный уровень в качестве вспомогательного состояния для упрощения декомпозиции многокубитных вентилей, или как их еще называют — гейтов — сложных логических операций с кубитами. Благодаря этому подходу при реализации квантовых алгоритмов на куквинтах становится возможным сократить число двухчастичных гейтов, то есть задействующих две физические системы», — рассказал заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров. Заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров В качестве раскладываемого многокубитного гейта ученые выбрали часто встречающийся в квантовых алгоритмах многокубитный гейт Тоффоли — обобщенную на n кубитов версию универсального контролируемого обратимого вентиля. Его применение инвертирует состояние n-го кубита, если все остальные n-1 кубитов находятся в состоянии 1. Как отметили исследователи, располагая в каждом куквинте по два кубита и используя пятый уровень в качестве вспомогательного, можно значительно сократить число двухчастичных гейтов в его разложении по сравнению с расположениями на кубитах и таким образом повысить качество выполнения квантовых алгоритмов. Для демонстрации процессов был выбран именно этот алгоритм, так как для его выполнения необходимо неоднократно реализовать многокубитные гейты.
Мы сравнили три способа декомпозиции многокубитных вентилей в рамках выполнения данного алгоритма на 2-10 кубитах, когда в качестве носителей информации используются кубиты, кутриты и куквинты, и продемонстрировали, как сокращается число двухчастичных гейтов», — пояснила эксперт научного проекта НИТУ МИСиС, научный сотрудник РКЦ Анастасия Николаева. Например, для 8-кубитного алгоритма Гровера на кубитах требуется выполнить больше 1000 двухчастичных гейтов, в то время как для его реализации на куквинтах их потребуется всего 88. Полученные учеными результаты применимы к квантовым процессорам , основанным на различных физических платформах, таких как ионы, нейтральные атомы, сверхпроводящие цепи и другие. Статья опубликована в научном журнале Entropy. Баумана одни из первых в мире смогли реализовать двухкубитную операцию, используя сверхпроводящие флаксониевые кубиты — альтернативу популярным трансмонам. Особенность флаксониумов состоит в более продолжительном жизненном цикле и большей точности операций, что дает возможность выполнять более длинные алгоритмы. Как известно, одна из основных проблем разработки универсального квантового вычислителя заключается в кубитах, а именно — из каких квантовых объектов лучше всего делать процессоры для квантовых компьютеров : электронов, фотонов, ионов, сверхпроводников или других кандидатов в «квантовые транзисторы». За последние десять лет сверхпроводниковые кубиты получили огромный толчок в развитии. При этом самыми коммерчески успешными сверхпроводящими кубитами по состоянию на 2022 год являются трансмоны, которые активно исследуются и используются в квантовых разработках Google , IBM и других мировых лабораторий, рассказали в НИТУ МИСИС. По словам ученых, главная задача кубита — целостно хранить и обрабатывать информацию.
Случайный шум и даже просто наблюдение способны привести к потере или изменению данных. Для устойчивой работы сверхпроводниковых кубитов часто необходима чрезвычайно низкая температура окружающей среды — близкая к нулю Кельвин, что в сотни раз холоднее температуры открытого космоса. В ходе испытаний для защиты кубитов от шума исследователи добавили в цепь супериндуктор — сверхпроводниковый элемент с высоким уровнем сопротивления переменному току, который представляет собой цепочку из 40 джозефсоновских контактов — структур из двух сверхпроводников, разделенных тонким слоем диэлектрика. Основной плюс флаксониумов заключается в том, что с ними можно работать на низкой частоте — порядка 600МГц.
Количество кубитов в квантовых компьютерах — это обман. Вот почему
Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. В этом году квантовый вычислитель обещают уже использовать в медицинских целях. Его установят в клинике города Кливленд в США. Он поможет выявлять новые штаммы вирусов и займется поиском лекарств от болезни Альцгеймера. Но есть и опасения по поводу новой технологии. Наталья Малеева, старший научный сотрудник криолаборатории электронных систем НИТУ МИСиС: «Квантовый компьютер — это разложение больших чисел на простые множители, это несортированный поиск. Обе эти задачи часто вспоминаются в приложении к современной криптографии. Недавно китайские ученые заявили, что им хватило десяти кубитов для взлома 48-битного алгоритма шифрования. Подобный метод, хотя и посложнее, применяют в защите наших банковских счетов». Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «В какой-то.
Предлагаю поговорить о суперпозиции как будто мы люди с айфонами, а не крепостным правом. Потому вместо кота мы возьмем монетку :D Когда мы раскручиваем или подбрасываем её в воздух — она находится в суперпозиции орла и решки. Да, «как бы» одновременно. Только поймав монетку мы получаем один из результатов нашего измерения.
Не поймаем — не узнаем. В чем же драматическая разница с так нелюбимым нами котом? В том, что внутри монетки всегда есть чёткие вероятности её падения орлом или решкой. Но если мы зададимся целью немного «подкрутить» фокус себе на пользу — мы можем сделать монетку из разных сплавов или как-то притягивать одну из сторон магнитом. Отныне всегда, когда слышите про суперпозицию, представляйте себе именно такую подброшенную монетку.
Суперпозиция — не загадочный феномен «одновременности», а чёткое и простое отношение двух вероятностей Находясь в «суперпозиции», монетка не просто для нас «как бы одновременно орел и решка», она имеет две вполне стабильные и известные нам вероятности выпадения одного и другого. Всё это уже намного удобнее использовать на практике, не правда ли? Вероятности мы умеем складывать, умножать, творить другие непотребства, в отличии от мертвых котов. Поэтому и дальше, когда мы будем говорить о квантовых битах, про которые все говорят, что они «одновременно 1 и 0», забейте на это и представляйте себе их как монетки. Каждый бит-монетка имеет строгую вероятностью быть прочитанным как 1 и строгую вероятность 0.
Компьютер же может управлять этими вероятностями прямо в полёте пока не прочитает сам бит. Прочитали бит — поймали монетку. Очень удобно. Если вы поняли монетки — вы уже наполовину поняли квантовый компьютер, поздравляю. Простите, я должен был использовать этот каламбур.
Представим себе, что мы распилили нашу монетку вдоль. Как печеньки Oreo. Получилось две монетки — одна только с орлом, вторая только с решкой. Пустая сторона разреза нас щас не интересует. Не подглядывая где какая, мы подбрасываем обе новых монетки в воздух переводим в суперпозицию, как мы теперь знаем.
Монетки начинают вертеться в воздухе и не падают потому что они теоретические! Тут квантовый физик скажет, что между монетками создана запутанность. Русская терминология лажает, потому лучше дополнительно запомнить английское слово — Entanglement. Оно встречается чаще. Всё это означает некую «зависимость», «спутанность» или просто «связь» состояний двух монеток.
Как видите, никакой магии пока нет, законы физики мы не нарушали, на митинг не выходили. Мы упаковываем одну из наших новых прикольных крутящихся монеток в коробку и отправляем её своему знакомому в другой город. А еще лучше на другую планету или в соседнюю галактику. Теперь мы оба имеем по монетке, но понятия не имеем орел нам достался или решка. Кажется, пришло время посмотреть.
Звучит тупо, да? Вот только Эйнштейн не был доволен такой фигнёй. Монетки находились далеко друг от друга, так? Но результат чтения одной моментально повлиял на значение второй, так? Значит мы только что нарушили теорию относительности и передали информацию быстрее скорости света.
На этот раз без штрафа, но я выпишу вам предупреждение. Но есть и хорошие новости: мы научились создавать системы из двух частиц, которые вот так моментально при чтении одной гарантируют нам значение другой. Мы называем такие половинки «запутанными» друг с другом. Такой вот физически нерушимый IF. Кубит Подойдём к настоящим квантовым вычислениям.
Другие статьи в интернете сразу начинают с объяснения кубитов, но мне показалось, что зная три правила выше, нам будет намного проще разговаривать и действительно понять суть кубитов, а не «магию». Теперь можно раскидать всё прямо на пальцах. Кубит qubit — это квантовый бит Звучит крутейше, но для начала вспомним что такое бит. Прямая бочка пошла... Не, в смысле кумплюктерный бит.
Когда таких выключателей на стене много, мы даже можем закодировать в них какую-то информацию, чтобы сосед её увидел. Набор букв АААА, переданных по сети как 01000001 01000001 01000001 01000001, сообщит собеседнику, что вы орёте над его мемом. Любое устройство, на котором вы сейчас читаете эти строки, состоит из таких вот единичек и ноликов. Вся информация кодируется в битах, биты молотит ваш процессор, биты хранятся на диске, образуя байты, мегабайты, гигабайты — вы это знаете лучше меня. Физически нам действительно неважно что у них внутри.
Посмотрим, что это такое и нужно ли оно нам. Начнём с квантового компьютера. Биты и кубиты В обычном компьютере все вычисления основаны на понятии «бит». Это такой элемент, который может принимать значения 0 или 1.
Физически это реализовано так: В компьютере есть деталь под названием транзистор. Представьте, что это кран на трубе: если его включить, вода польётся, если выключить — остановится. В транзисторе вода — это электричество, и включение-выключение крана тоже зависит от электричества. Представьте, что краны соединены между собой так, что вода из одного крана включает или выключает другой кран, — и так каскадом по цепочке.
Транзисторы соединены таким хитрым образом, что когда они включаются и выключаются, на них можно производить математические вычисления. Из-за того, что транзисторов очень много миллиарды , а работают они очень быстро близко к скорости света , транзисторные компьютеры могут очень быстро совершать математические вычисления. Всё, что вы видите в компьютере, — это производные от вычислений. Вы видите окно, буквы, картинки, а где-то в самой-самой глубине это просто сложение и вычитание, а ещё глубже — включение-выключение кранов с электричеством на скорости света.
Транзистор в компьютере может принимать значение 1 или 0, то есть «включён» или «выключен». С точки зрения компьютерной логики, этот транзистор называется битом. Это минимальная единица информации в компьютере.
Более того, если событие — скажем, фотон, врезающийся в какую-то точку на экране, — может произойти в одном случае с положительной амплитудой, а в другом случае с отрицательной, то обе вероятности могут взаимно уничтожиться: общая амплитуда станет равна нулю и событие никогда не произойдет. Это явление называется квантовой интерференцией, и именно она лежит в основе всего того, что вам кажется очень странным в квантовом мире. Вернемся к кубитам. Кубит — это просто бит информации с двумя амплитудами вероятности: 0 и 1.
Если вы наблюдаете за кубитом, вы заставляете его случайным образом принять значение либо 0, либо 1. Однако если вы не наблюдаете за ним, то происходит интерференция амплитуд, и кубит выдает эффекты, свойственные обеим амплитудам. Вы не можете объяснить их только тем фактом, что кубит в состоянии 1 или в состоянии 0. Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Что происходит, если у вас не один кубит, а тысяча, и все они взаимодействуют друг с другом в результате чего получается то самое состояние квантовой «запутанности»? Законы квантовой механики действуют непреклонно — придется просчитывать все возможные значения всех тысяч бит. Это 2 в тысячной степени — больше, чем количество атомов в наблюдаемой Вселенной!
Если у вас 53 кубита, как в «Сикоморе» от Google, то получится 2 в степени 53, или около 9 квадриллионов значений. В чем суть эксперимента по квантовому превосходству? Цель эксперимента Google — с помощью 53 кубит «Сикомора» произвести вычисление, для симуляции которого обычному компьютеру действительно понадобилось бы 9 квадриллионов шагов. Кубиты в «Сикоморе» расположены в прямоугольной сетке, которая позволяет каждому кубиту взаимодействовать с соседними. От обычного компьютера снаружи холодильной камеры к «Сикомору» идет сигнал, сообщающий каждому кубиту, как ему себя вести, с каким из соседей взаимодействовать и когда. Иначе говоря, это программируемое устройство — именно поэтому оно и называется компьютером. В конце все кубиты измеряют, получая случайную строку из 53 битов.
Какая последовательность взаимодействий используется для получения этой строки, неважно. В эксперименте Google они были случайными. Затем можно снова выполнить ту же самую последовательность, чтобы сэмплировать другую случайную 53-битную строку точно таким же образом — и так далее, так часто, как вам нужно. По оценке Google, чтобы повторить пробное вычисление, которое заняло у «Сикомора» 3 минуты 20 секунд, понадобилось бы 10 тысяч лет и 100 тысяч традиционных компьютеров, на которых запущены самые быстрые на сегодняшний день алгоритмы. Эта задача так сложна, что с помощью обычного компьютера оказалось невозможно даже проверить результаты вычисления! Так что для проверки работы квантового компьютера в самых сложных случаях Google полагался на аналогии с более простыми.
Что такое квантовый компьютер? Разбор
Подчас дешифрование вообще невозможно в разумные сроки. Тогда используются квантовые алгоритмы, которые дают некий наиболее вероятный ключ дешифровки и открывают им дешифрованные данные. Ключ можно быстро проверить повторным шифрованием данных и сравнением результата, и если результат повторной шифровки не совпал с оригиналом, значит ключ оказался ошибочным, и квантовые алгоритмы запускаются заново. Как видите, никто не собирается с помощью квантовых компьютеров управлять ядерными реакторами, это было бы самоубийством. Но моделировать ядерные реакции в научных целях вполне можно. Там вероятности появления ошибок поглощаются и взаимоуничтожаются большой массой однотипных вычислений, и не оказывают никакого влияния на общий результат. Резюме — квантовые вычисления применимы там, где они дают преимущество, и никто не будет их применять в чистом виде там, где нужна однозначная точность результата.
Заключение Тема сложная, и эта статья не даёт представление о механике работы квантового компьютера в целом. Мы лишь разобрались в первом приближении, чем и как оперирует кубит. Для полного понимания логики работы квантового компьютерра нужны углублённые знания математики, а для полного понимания физического принципа работы нужны углублённые знания в квантовой физике. Нахрапом всего этого не освоить, так что, если вам интересна эта тема, попробуйте «кушать слона по частям».
В результате систему можно будет расширять в соответствии с будущими потребностями, и «апгрейдить» при появлении следующего поколения квантовых процессоров. Стремясь облегчить разработчикам и инженерам работу с квантовыми вычислениями, IBM анонсировала выход в феврале 2024 года версии 1.
В дополнение к Qiskit, IBM анонсировала Qiskit Patterns — способ, позволяющий квантовым разработчикам легко создавать код и оптимизировать квантовые схемы с помощью Qiskit Runtime, а затем обрабатывать результаты. На презентации он продемонстрировал использование генеративного ИИ на базе Watson X для создания квантовых схем при помощи базовой модели Granite, обученной на данных Qiskit. Это две ключевые характеристики, которые могут привести к появлению коммерческих универсальных квантовых компьютеров. Архитектура испытана на одно- и двухкубитовых схемах, чем подтвердила свою перспективность. Источник изображения: MIT Современные квантовые вычислители компаний Google и IBM на сверхпроводящих кубитах для построения логических элементов используют так называемые трансмониевые кубиты transmon. В основе таких кубитов лежит джозефсоновский переход , работающий на одной частоте.
Около десяти лет назад были предложены кубиты на двухчастотных джозефсоновских переходах. Архитектурно трансмониевые кубиты можно считать одиночками, тогда как флюксониевые кубиты задействованы группами — цепочками, в которых несколько или даже множество джозефсоновских переходов. В этих группах низкочастотные флюксониевые кубиты использовались для хранения квантовых состояний кубитов , а высокочастотные — для логических операций гейтов. Со временем было показано, что флюксониевые кубиты способны примерно на порядок дольше удерживать кубиты в когерентном состоянии, что давало время на выполнение логических операций с более низкой вероятностью возникновения ошибок, чем в случае трансмониевых кубитов. Так, одна из работ лета этого года показала, что время жизни флюксониевого кубита достигло 1,43 мс. До недавнего времени специалисты мало работали с флюксонием, но такие его выдающиеся качества игнорировать нельзя — это может стать кратчайшим путём к производительным и масштабируемым универсальным квантовым компьютерам.
Отказоустойчивая квантовая архитектура, в которой трансмониевый кубит связывает два флюксониевых кубита. Источник изображения: American Physical Society В новой работе исследователи из MIT показали, как можно повысить надёжность работы помехоустойчивость флюксониевых кубитов. Дело в том, что сильная связь, образующаяся между флюксониевыми кубитами в цепочке, кроме полезных свойств также вела к увеличению влияния ошибок. Поэтому учёные фактически разбавили флюксониевые кубиты трансмониевыми, врезав трансмониевый элемент между двумя флюксониевыми. Источник изображения: huawei. Китайская разведывательная база на Кубе действует как минимум с 2019 года, заявил близкий к американским властям источник WSJ — Пекин и Гавана совместно управляли четырьмя станциями прослушивания на острове, а сейчас ведут переговоры о создании совместного военного учебного центра на северном побережье Кубы.
Примечательно, что комментарии по поводу инцидента отказались дать не только американские посольства Китая и Кубы, но также офис Директора Национальной разведки США и администрация президента США. В Huwaei в очередной раз подчеркнули, что не имеют отношения к китайской разведке. А вот официальный представитель Пентагона Джон Кирби John Kirby накануне заявил, что ведомство было осведомлено об этой программе, и за работающими на Кубе сотрудниками китайских компаний действительно велась слежка. При этом никаких фактов, подтверждающих связь Huawei и ZTE с деятельностью китайской разведки, американская сторона так и не предоставила. Используя Tunnel Falls, учёные могут сразу же приступить к экспериментам и расчётам, вместо того чтобы пытаться изготовить свои собственные устройства. В результате становится возможным более широкий спектр исследований, включая изучение основ кубитов и квантовых точек и разработка новых методов работы с устройствами с несколькими кубитами.
Источник изображений: Intel «Tunnel Falls — это самый совершенный на сегодняшний день чип Intel с кремниевыми спиновыми кубитами, созданный на основе многолетнего опыта компании в разработке и производстве транзисторов. Это следующий шаг в долгосрочной стратегии Intel по созданию полнофункциональной коммерческой системы квантовых вычислений. Несмотря на то, что на пути к устойчивому к ошибками квантовому компьютеру необходимо решить фундаментальные вопросы и задачи, академическое сообщество теперь может изучить эту технологию и ускорить развитие исследований», — сообщил Джим Кларк Jim Clarke , директор Quantum Hardware, Intel. Tunnel Falls производится на 300-мм пластинах на фабрике Intel D1. Каждое кубитное устройство, по сути, представляет собой электронный транзистор, что позволяет изготавливать его по технологии, аналогичной стандартной линии на основе комплементарных оксидов металлов и полупроводников CMOS. Эти чипы могут образовывать конфигурации от 4 до 12 кубитов, которые можно изолировать или использовать в операциях одновременно, в зависимости от потребностей исследователей.
Intel считает, что кремниевые спиновые кубиты превосходят другие технологии кубитов из-за их синергии с передовыми транзисторами.
Однако многие видят в них угрозу, ведь они будут в состоянии не только делать за человека механическую работу, но и легко заменят представителей творческих специальностей. Но не все так плохо: всемогущие кванты могут стать и нашими защитниками. Что такое квантовый ключ и как он защитит от мошенников С телефонными мошенниками хоть раз сталкивался каждый. Их главная задача — узнать секретную информацию. Если не напрямую от нас, то путем взлома смартфона или компьютера. Но совсем скоро эти воры останутся не у дел. Потому что защищать наши деньги будут при помощи квантовой криптографии, или, как ее еще называют, квантового распределения ключей. То есть мы используем только одни маленькие очень сильно ослабленные лазерные импульсы.
И потом с их помощью, скажем так, передаем ключ. В этом случае не происходит передачи непосредственной информации. Мы передаем именно ключ", — пояснила кандидат физико-математических наук, доцент Московского технического университета связи и информатики Татьяна Казиева. Квантовый ключ представляет собой шифр, и передают его при помощи фотонов света — квантов. Если вы знаете шифр, а точнее, не вы, а ваш компьютер или телефон, они автоматически расшифровывают секретное сообщение. Это может быть что угодно: электронная подпись, информация из банка или страховой компании.
Идея принадлежит специалистам исследовательского центра QuTech. Протокол, работающий на канальном уровне, разработан группой ученых под руководством профессора Стефани Вейнер Stephanie Wehner. Также они проработали общую концепцию квантовых сетей, которые в будущем, по их мнению, могут заменить собой традиционный интернет и локальные сети. В основе идеи специалистов QuTech лежит принцип очень быстрой обработки кубитов, поскольку они не могут находиться в памяти длительное время. Это обеспечит высокую скорость передачи информации, а явление квантовой запутанности, еще одна основа протокола, даст возможность максимально защитить передаваемые данные. Явление квантовой запутанности подразумевает взаимозависимость двух и более объектов, в данном случае кубитов, и их неразрывную связь друг с другом. Попытка перехвата данных приведет к изменению квантового состояния одного или нескольких кубитов и, как следствие, к потере передаваемой информации. Другими словами, информацию может получить исключительно целевое устройство — несанкционированный доступ к ней исключен. Технические подробности о работе первого протокола квантовой сети Стефании Вейнер оставила в тайне. Она уточнила лишь, что для работы квантового интернета вполне сгодится физическая инфраструктура обычного интернета. Какие компании разрабатывают квантовые компьютеры уже сегодня? Формально дальше всех в этой гонке продвинулась канадская компания D-Wave. Она создала и успешно продает единственные представленные сегодня на рынке квантовые компьютеры. В конце января этого года D-Wave анонсировала выпуск коммерческой версии квантового компьютера четвертого поколения D-Wave 2000Q. Его мощность, как утверждают в компании составляет 2000 кубитов.
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
И делают кубиты на сверхпроводниках, которым нужны экстремально низкие температуры. За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы). Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. аж 1,8 миллисекунды. На первой линейке (кубите) "q[0]" мы видим оператор синий кружок с плюсом внутри. Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности.
Квантовые вычисления – что это такое
- Квантовые вычисления для всех
- Квантовые компьютеры. Почему их еще нет, хотя они уже есть? -
- Что такое квантовый компьютер
- Что такое квантовый компьютер? Принцип работы кубитов и квантовых вычислений
- Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир
- Что такое квантовые вычисления? - Linux Mint Россия
Что такое кубит?
Инвестиции в квантовые компьютеры: на что стоит обратить внимание | Кубит, минимальная единица передаваемой или хранимой квантовой информации, аналогичная биту в классической информации. |
Квантовые вычисления для всех | Российские ученые изготовили и испытали первый в нашей стране сверхпроводящий кубит. |
Квантовые вычисления для всех | Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. |
Новости по тегу кубит, страница 1 из 1 | С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами. |