Новости термоядерная физика

Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост. Справка «МК» Классическая термоядерная реакция происходит при преодолении электростатического отталкивания двух положительно заряженных ядер дейтерия и трития. Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил.

Иллюстрации

  • Термоядерный реактор: что это, как устроен, международный термоядерный реактор ИТЭР
  • Выбор сделан - токамак плюс - Российская газета
  • Быстрее взрыва
  • Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить
  • Иллюстрации

Термоядерный синтез

Темы Это интереснейший физический процесс, который пока в теории может избавить мир от энергетической зависимости от ископаемых источников топлива. В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома — выделение из него энергии в ядерных реакторах в процессе распада — термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов.

В Китае и Германии достигнуты новые прорывные результаты в области управляемого термоядерного синтеза Китайский токамак EAST 14 апреля 2023 656 12 апреля 2023 года китайский токамак EAST сокращение от «experimental advanced superconducting tokamak» - экспериментальный усовершенствованный сверхпроводящий токамак , установил новый мировой рекорд длительности удержания плазмы с параметрами, необходимыми для термоядерного синтеза.

Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду.

С использованием точных методов квантовой механики он вычислит сечения наиболее интересных с прикладной точки зрения термоядерных реакций синтеза. На основе найденных величин можно будет рассчитать кинетику ядерных превращений для расчета коэффициента полезного действия КПД конкретной энергетической термоядерной или гибридной ядерной установки.

Элрих Мюирич Эмм, вот кто здесь вообще новости пишет? Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба".

Выбор сделан - токамак плюс

В природе термоядерные реакции постоянно происходят на Солнце, но там плазму удерживает огромная гравитация звезды. Экспериментальная установка для термоядерных реакций в городе Хэфэй работала на протяжении 17 минут. Ученым удалось разогреть плазму до 70 миллионов градусов по Цельсию, что выше температуры Солнце примерно в пять раз. Токамак представляет собой устройство, которое может генерировать сильное магнитное поле.

Экспериментальная установка для термоядерных реакций в городе Хэфэй работала на протяжении 17 минут. Ученым удалось разогреть плазму до 70 миллионов градусов по Цельсию, что выше температуры Солнце примерно в пять раз. Токамак представляет собой устройство, которое может генерировать сильное магнитное поле. Когда материал нагревается до очень высокой температуры, он превращается в плазму, в результате электроны отделяются от атома и превращаются в свободно движущиеся заряженные частицы, которые удерживаются сильным магнитным полем.

Они увеличились мощность лазеров примерно на восемь процентов, а также изготовили мишень с меньшим количеством дефектов и отрегулировали способ подачи энергии, чтобы взрыв внутрь был более сферическим. До коммерческого получения термоядерной энергии еще далеко Пока что о коммерческом получении термоядерной энергии речь не идет. Дело в том, что воспламенение не компенсирует всю энергию, потраченную на работу лазеров — около 322 мегаджоулей, — а только ту, что была потрачена непосредственно на нагрев мишени.

Таким образом, NIF не является установкой для эффективного производства энергии, а служит лишь для экспериментального доказательства самой возможности воспламенения. Многие специалисты сомневаются, что сам подход с использованием лазеров может стать основой для получения термоядерной энергии из-за множества сложных технических проблем. В NIF используется инерциальный управляемый термоядерный синтез ICF , когда реакция инициируется путем теплового сжатия мишеней размером с булавочную головку с помощью лазеров. Однако чтобы доказать, что тип синтеза, проводимый в NIF, может быть жизнеспособным методом производства энергии, эффективность выхода — высвобождаемая энергия по сравнению с энергией, которая идет на создание лазерных импульсов — должна вырасти в 100 и более раз. Этот результат все еще далек от фактического прироста энергии, необходимого для производства электроэнергии Тони Роулстоун, эксперт в области термоядерного синтеза из Кембриджского университета Теоретически проблемы, связанные с низкой эффективностью лазерного нагрева, могут быть решены путем повышения скорости испускания импульсов и быстрого отвода тепла и мусора из камеры для запуска следующей мишени. Также могут быть использованы новые конструкции, где подачу энергию осуществляют лазерные диоды, производящие энергию в диапазоне частот, которые сильно поглощаются стенками хольраумов.

Все благодаря международной команде ученых и инженеров в Оксфордшире», — заявил министр ядерной энергетики и сетей Великобритании Эндрю Боуи. Проект разрабатывается с середины 1980-х годов, закончить строительство главной конструкции планируют в 2025 году.

В готовом виде токамак ИТЭР будет представлять собой 60-метровое сооружение массой 23 000 т. Знаете, почему термоядерный реактор не могут построить уже 50 лет?

Реакция общества

  • Эра термоядерного синтеза
  • Мировой рекорд
  • Главные новости
  • Впервые осуществлена безубыточная термоядерная реакция: Наука: Наука и техника:
  • ЗА ЧТО БОРЕМСЯ

Ученые в США провели третий успешный эксперимент с ядерным синтезом

Китайский термоядерный реактор поставил рекорд в ядерной энергетике. На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия.

Эра термоядерного синтеза

И все же о достижении экономически выгодного управляемого термоядерного синтеза пока говорить рано. Установка Национального комплекса зажигания использует метод инерционного синтеза, который заключается в облучении изотопов водорода лазерным пучком. Он создавался как сугубо научный, не имеющий реального коммерческого применения. Так что мечта о бесконечном и чистом топливе пока остается далекой. Британская аэрокосмическая компания Pulsar Fusion собирается первой в мире запустить в космосе двигатель термоядерного синтеза. Предполагается, что эта технология позволит сократить время полета на Марс вдвое, а до Титана с десяти до двух лет.

Но до практического применения результатов еще далеко, поскольку полная энергия, потребляемая установкой, в десятки раз превышает энергию, полученную от синтеза». Духова «Событие, важное не только для мировой науки, для человечества — это термоядерный синтез с положительным выходом энергии. Американский "Национальный комплекс зажигания" National Ignition Facility, NIF в Ливерморской национальной лаборатории воспроизвел так называемый инерционный управляемый термоядерный синтез, предусматривающий облучение крошечной порции водородной плазмы самым большим в мире лазером».

Вот когда появится первая ТЯ электростанция на 100 гвт, тогда и будет порыв. А так, просто болтовня! Гоблин даже про него говорил.

В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад. Что же касается той новости, которую вы пересказываете сейчас, то это типичная армия Венка, которая вот-вот придет и спасет Берлин;.

Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3. Оно самое перспективное с энергетической точки зрения. Оптимизировать конструкция камеры поможет искусственный интеллект и суперкомпьютеры американцев из Princeton Satellite Systems. Предполагалось, что её агрегат обеспечит скорость в 1,8 миллиона километров в час за счет создания в рабочей камере особых плазмоидов.

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается. Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил.

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Все самое интересное и актуальное по теме "Ядерная физика". Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Американцы совершили прорыв в изучении термоядерной энергии. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции.

Термоядерный синтез вышел на новый уровень: подробности

Это в пять раз выше температуры Солнца. Специалисты надеются, что их разработка станет источником безграничной чистой энергии. Успехи китайцев назвали важными для науки, но для экономики они вряд ли окажутся полезными. Мировой рекорд Китайские ученые заявили о прорыве на пути к созданию источника чистой термоядерной энергии. Им удалось разогреть экспериментальный реактор до 70 миллионов градусов по Цельсию. При такой температуре установка проработала 17 минут 36 секунд, уточнило издание South China Morning Post. Установка находится в городе Хэфэй провинции Аньхой. EAST к представляет собой установку в форме бублика для магнитного удержания плазмы. Термин «токамак» придумал советский физик Игорь Головин еще в конце 1950-х годов. Сейчас экспериментальный усовершенствованный сверхпроводящий токамак называют «искусственным солнцем».

Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму. В результате процесса распыления плазма существенно охлаждается, что может помешать термоядерному синтезу. Чтобы избежать этого, ранее была разработана концепция так называемой потеющей стенки: внутренняя поверхность реактора покрывается сетью каналов, из которых истекает жидкий литий. В данном подходе слой жидкого лития берёт на себя часть защитных функций. Поэтому материал для «потеющей стенки» должен быть тугоплавким и теплопроводным, а также не должен вступать с жидким литием в химическое взаимодействие и при этом хорошо им смачиваться.

Феклисов, которому Фукс передал информацию о производстве плутония в США, о реакторах британского атомного центра в Уиндскейле, принципиальную схему водородной бомбы, результаты испытаний ураново-плутониевой бомбы на атолле Эниветок, данные о британо-американском атомном сотрудничестве и многое другое. Между тем над головой Клауса начали сгущаться тучи. Среди выданных Гузенко оказался и британский физик-ядерщик Алан Мэй. Он был арестован в марте 1946 года, а уже 1 мая того же года приговорён к 10 годам каторжных работ. Предъявить что-либо конкретное Фуксу британская контрразведка не могла, но за ним была установлена открытая слежка. Фукса допрашивал лучший британский следователь из МИ-5 — Скардон, тот самый, который пытался расколоть и некоторых членов Кембриджской пятёрки. Но и он уже было решил отказаться от бесполезных допросов Клауса Фукса. И тут совершенно неожиданно Фукс сломался.

Читайте также 89 — много. А сколько регионов нужно России для счастливой жизни? Жители не всех «ликвидированных» территорий довольны произошедшей оптимизацией Когда в Лондоне официально заявили: «Ученый-атомщик Фукс передавал секретную информацию агентам советского правительства», официальный ТАСС 8 марта 1950 г. В тот же день он вернулся в Германию ГДР. Работал в Центральном институте ядерных исследований, где скоро стал заместителем директора. Также преподавал в Дрезденском техническом университете. Умер 28 января 1988 года в Дрездене. Как вспоминал многолетний куратор Фукса полковник советской разведки Александр Феклистов, он в 1964 году обратился в советское правительство с просьбой наградить немца.

Тогдашний президент Академии Мстислав Келдыш заявил председателю КГБ: «Это делать нецелесообразно, так как бросит тень на советских учёных в создании ядерного оружия».

В ней впервые удалось достичь температуры термоядерной реакции в 100 миллионов градусов — почти в 10 раз больше, чем внутри Солнца! У любого термоядерного реактора типа токамака есть отверстие в центре.

Объясняется это теоремой о причесывании ежа, согласно которой невозможно причесать свернувшегося клубком ежика так, чтобы ни одна его иголка не торчала наружу. Если придать плазме форму шара, то ее магнитное поле всегда будет иметь минимум одну выпадающую точку. С тором такой проблемы не возникнет, его можно гладко «причесать» по всей поверхности, причем разными способами.

Так выглядит изнутри тороидальная камера токамак для осуществления реакции синтеза Прошло почти 70 лет, но токамак все еще остается самым перспективным типом термоядерных реакторов — практически у каждой развитой страны сегодня есть собственная тороидальная установка. Реакторы других форм создают для изучения свойств плазмы. Например, сферический токамак напоминает сплюснутый глобус и позволяет дольше удерживать плазму.

А в стеллараторе, прозванном «мятым бубликом», магнитные катушки находятся снаружи тора, за счет чего он может работать без перерывов, в отличие от классического токамака. Существуют и альтернативные виды реакторов, например установки на инерциальном удержании. На тритий-дейтериевую мишень размером с булавочную головку направляют больше сотни сверхмощных лазеров.

Они нагревают мишень до сотен миллионов градусов и сжимают в тысячи раз, запуская термоядерную реакцию. Такую энергию, полученную лазерным синтезом, можно контролировать и использовать. Однако подобные реакторы работают в импульсном непостоянном режиме, поэтому вещество быстро разлетается и долго удерживать плазму не удается.

Отдельная задача в том, чтобы сжать вещество абсолютно симметрично со всех сторон. Наконец, даже если в реакторе удастся обеспечить нужную форму и плотность плазмы, потери энергии на это должны быть минимальны, чтобы термоядерная реакция была экономически выгодной. Это критерий Лоусона, который стал одной из главных целей управляемого термоядерного синтеза.

Именно на выполнение этого условия нацелены современные экспериментальные мега-проекты термоядерного синтеза. Один реактор на 35 стран В 2010 году на юге Франции развернулась стройка исполинских масштабов. Здесь на базе исследовательского центра ядерной энергетики «Кадараш» создают международный термоядерный реактор — ITER от латинского «путь».

Стоимость токамака ИТЭР оценивается в 20 миллиардов евро. Ни одно государство не может позволить себе запустить подобный проект самостоятельно, поэтому страны объединяют свои силы. Вид с воздуха на установку ИТЭР — международную исследовательскую площадку для изучения свойств плазмы при реализации термоядерного синтеза Вклад стран-участников не денежный, а технический.

Практически у каждой из 35 стран есть собственные термоядерные мини-установки.

Прорыв в термоядерном синтезе

Топливо — Дейтерий и Гелий-3. Оно самое перспективное с энергетической точки зрения. Оптимизировать конструкция камеры поможет искусственный интеллект и суперкомпьютеры американцев из Princeton Satellite Systems. Предполагалось, что её агрегат обеспечит скорость в 1,8 миллиона километров в час за счет создания в рабочей камере особых плазмоидов. Эти сгустки, образованные замкнутым магнитным полем, вылетая наружу, и добавят скорости.

Наблюдается удовлетворительное согласие расчетных и экспериментальных значений нейтронного выхода во всем исследованном диапазоне сдвигов. Эти результаты показывают, что, несмотря на чрезвычайно широкий диапазон изменения характера газодинамического течения, наблюдается удовлетворительное согласие расчетного и экспериментального значений нейтронного выхода и времени сжатия капсулы с DT-газом. Впоследствии данная установка получила название "УФЛ-2M".

Установка предназначена для проведения углубленных исследований в широком круге направлений физики высоких плотностей энергии. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Мишени прямого облучения представляют собой полую стеклянную или полимерную сферическую оболочку с высокой однородностью толщины, заполненную либо газообразной смесью дейтерий-тритий, либо дейтерием. Диаметр сферы от 200 до 1000 мкм, толщина стенки 0,5—15 мкм, давление газа внутри оболочки 1—100 атм. На внешнюю поверхность сферы может быть нанесено какое-либо покрытие. Мишени непрямого облучения представляют собой мишень прямого облучения, заключенную в сферический или цилиндрический кожух диаметром 1—4 мм из металла с высоким атомным номером. Мишень для исследования уравнения состояния в лазерных экспериментах представляет собой базовую пластину из алюминия или меди толщиной 40—60 мкм, на одну из сторон которой нанесены в виде ступеньки слои из материала базы и исследуемого материала толщиной 4—10 мкм.

Ступеньки отстоят друг от друга на расстоянии 50—100 мкм.

Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров.

К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание». Лебедева РАН «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Это научное достижение, показывающее, что достигнуто неплохое понимание поведения экстремально сжимаемой материи.

Но до практического применения результатов еще далеко, поскольку полная энергия, потребляемая установкой, в десятки раз превышает энергию, полученную от синтеза».

Термоядерная реакция позволяет звездам генерировать огромные объемы энергии, однако на Земле ее крайне трудно воспроизвести, так как для поддержания такой реакции требуется чрезвычайно высокоэнергетическая среда. Для этого ученым необходимо обеспечить стабильное «зажигание», которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта «зажигания», команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча.

Похожие новости:

Оцените статью
Добавить комментарий